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1. Introduction. In [1], [2], [3] we considered the nonlinear degene-
rate problem :

(L.1) ‘2—‘:= Ag(u) + a(x, £) on Q = Q x 10, T[
(1.2) w(x, 0) = uy(x) x €L
(1.3) u(x, t) = uy(x, t) on S =0Q x 10, T,

under the assumption

(@) 4y € C(Q),  uy = C(S),  a<=CQ)
Uy, %y, @ =0
(4) :
(ii) ¢ € C¥HRy), o(u), ¢'(#) >0, for u > 0

¢(0) = ¢'(0) =0, ¢"(u) 0.

Q C R? is a regular, bounded, convex, domain. Under certain conditions
on the data we proved, using an explicit difference scheme, that (1.1) —
(1—3) has a unique weak solution in the following sense :

(i) uw e L2Q), u2z0, dou)lox, = LQ)
(ii} (1.2), (1.3) are fulfilled in the generalized sense
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(iii) For any f e HYQ) such that fls, =0,
(1.4) ' o1

3 2
S (u _a{ - %ﬁi"_’ aﬁ;ﬁ dx dt + S uol0)f (%, 0)dx + S a(x, Of (x, H)dx dt = O

Q Q Q
Here S, =S U{(x Tlx Q}.

Unfortunately in the proof of Lemma 2.2 in (2] (an consequently in that
of Lemma 3.1 in [3], too) there is a mistake. Nevertheless, the lemmas
themselves are correct as it is shown in §2, Theorem 2.1. Our main
result is given in §3 where the conditions on the initial function is less
restrictive as in the above mentioned papers. |

9. Difference inequalities, As in'our previous papers we use 2 rectan-
gular mesh with the step i in the Ox,, 1 =12 directions and 7 in the
Ot direction.
The mesh-points of Q, @ ete., will be denoted by €, U4 etc.. For simpli-
city we shall use the same notation for the sets of mesh-points and for
the rectangular domains determined by them. We put [, = 0Q, and A,
for the classical five-point discretization of A. :
Consider the following difference problems :

(2.1) Uik) = Ap(U(k — 1) + alk)  on Qu

2.2) U0) =ty on

2.3) Ulp, = oz, br)  x s Dy B=0,00, K= {1];
and

(2.4) Vi(k) = Due(V(k — 1)) + b(k) on  Qy |
(2.5) V(0) = v on £

2.6 Vi, =viw k1),  #/=T k=01 K:[i]

h T

Suppose that M,N are constants such that u,, #s, @ S M ;
Doy Vo 0 S N; Moy = (14- T)M, Ny = (1'4+ T)N, M, < N,. Denote:

A d T My, =45 N

h?

(2.6). Assume that (A4) s valid.
Then. if A § 1:

rrvva 2.1, ([1], [2]) Suppose that U is the solution of problem (2.4)—

0< UM, foro (%18 Q-

I
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LEMMA 2.2. Suppose that :
(i) Assumption (A) is valid
(i) » s 1
(%ii) Uyp K Vopp Uy S Vs, @ S b, on thei domains of definition.
(iv) U satisfies (2.1)—(23); V satisfies (2.4)—(2.6).
" Then, ' e -
(2.7) . UV on @y

Proof : Denote Wy(k) = Viy(k) — Uy(k). Assume that (2.7) is not
true. Then there exists a triplet of indices (m, #,7) such that Wan(l) <0
for an 7 z 1 and ‘ "0

W(k) = 0 for any 4,7 and & <l
Put

Wk) = };,(Wij_(k) — Wyl — 1))

V.(k) and U;‘j(k) will stand for similar differences of V respectively U
Then, ) -
(2.8) Wl — 1) = AoVl — 1) — (U — 1))
Because

o(Vilt — 1)) — (Ul — 1) > o(Vau(d)) — 2(Unmn(2)),
for any 4, ; it follows that:

Tonlt = 1) 2 = (o Vo) =@ (Uinll)) = (0(Vomll — 1)) =

T <P(l]”'”(l - 1)))] =4 7’:2‘ [&(U'H" (l = 1) mﬂ(l) - c?;/,(ljmn(l))an_(l—— 1)]
Hence '

29) Wanll) (1 — 47 %( Unll))) € Wonlt=1)[1 == 5 & (Umll - 1)),

which by Lemma 2.1 and (4) contradicts our assumption.

. COROLLARY 2..1. .If in addition to the conditions of Lemma 2.1, V
is also ngndecyeasmg in k, then instead of (17) we can assume, A S 1, only.
Indeed, if as in the proof of the lemma, we admit that W,, < 0:

Vnm,(l i 1) § Vmu(l) § Umn(l) § Mo;
which entail that in (2.9) '
4 = @' (Unll — 1)) as well as 4 hi & (Upn (),

are less than A.
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In the sequel #, will be defined with the aid of #, as follows:
(%, 8) = u(x*,¢) x =T, x*e<Q,

where x* is the nearest point to x. In the same time #, will stand for
the restriction to Q, of #u,.

LEMMA 2.3. ([1], [3]) Suppose that conditions of the previous lemma
hold and that Ao(uy) =z 0.
Then

(i) Uik) 20, k=12 ..., K on Q,
(i) wh2 ) Uy(k) € Mom(Q),
%

for h sufficiently small.

THEOREM 2.1. Suppose that :
(i) Assumption (A) holds and u, = C2(Q)

i) » €1
({il) ou,/ot exists and is bounded on S
(iv) @(e0) —co

Then therve exists a constant C > 0 such that
3 (UK < C.
h

Proof : Let ¢ > 0 be a constant and V, € C?(Q) such that:
AV, Z |A(thy)| + c on Q
(2.10) Volp = @(#) | '=0Q V,>0.
Define v, by vq = ¢~%(V,) and the function v, € C(S) as follows:
vy 2 0, dv, /0t exists on S

o

p (%,t) Z2c+c¢e t <10, T[, vix 0)=vlp
£

where ¢ 2 max |0u,/dt] '
With the aid of v,, v, as data functions and b = g, we construct using
the scheme (2.4)—(2.6) the discrete soluttion V:Q, —R.

According to Lemma 2.3 we have V; = 0 and

YAV, £C k=12, ..., K.
%

For convenience we set U(k) = Us(k) and V(&) = V;(k),

?(U(R)) = ¢(U(k)); and o(V(R)) = &(V(k);.
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First we observe that for h small enough:

B9 (ve) > |Aye(uy)]

so that

(2.11) U1 € V4(1)  on Q,.

Because of the properties of ¢ and taking (2.11) into account, we get :
(2.12) le(Us(1))] € 8(V5(1))  on Q.

Indeed, by Corollary 2.1 we have either

Uy(1) € Uy(0) € V;4(0) € V(1)
or Uy0) s Uy(1) € Vi5(0) < Vy(1),
or Uy(0) € V5(0) € Uy(1) S V4(1).

Y/ /AN

For & 2 2 we obtain:
Uyh) — Viglk) = Uylk — 1) — Pylk — 1) +
+ Ay(e(Usk — 1)) — g(Vi(k — 1)) on Q.
Now, we want to prove that for any & =z 2

o(Us(R) < o(Vi(k) on Q.

Suppose that this is not true and let / be the greatest subscript such
that for any 4,4 (for / =2 this is true by (2.11)) :

P(Usll — 1)) S @Vl = 1)) on. Q,
and there is a couple of subscripts m, n such that :
(2.14) e(Um()) > 6(Vanll)).

Since #, € v,, #; € vy, by Corollary 2.1, Upi(l — 1)V (! — 1), Upd()V (D).
Then, in view of (2.14) we must have

(2.15) Upn(®) > V ,a(0).
On the other hand:
POmsill = 1) —F(Visi,ull = 1)) — §(Upll — 1)) + §(Upnll — 1)) €
S Um) = 3(Vonl) — 3(Un(l — 1)) 4 @Vl — 1)) ;

and similar inequalities when (m + 1, ) is replaced successively by (m — 1,x)
(m,n 4+ 1), (m, n —1). From (2.14), (2.15), (2.16):

Umn(l) ) an(l) § U»m(l - 1) - Vﬂm(l - 1) +
+ 4_}:? (@ Umll = 1)) — Vil — 1)) + ¢(Upuli —2)) — o(Uni(l —2))) <0,

(2.13)



230 ERVIN SCHECHTER 6

which contradicts (2.14). A similar argument holds for — o( U;;(R)), so that:
[B(Us(R) < @(Vi(k)-

The conclusion of the theorem now follows from Lemma 2.3. The previous
theorem shows the boundedness of the difference in t of ¢(U), only. Ne-
vertheless Lemma 2.4 of [2] as well as Theorem 3.2 of [3] remain true
as it is shown by the following lemma.

LEMMA 2.4. Suppose that U is the solution of (2.1)—(2.3) and that
conditions of Theovem 2.1 hold.
Then, there exists a constant C independent of h, such that for any Q*

with O* C Q,

K
o 30 03 (U B + ¢(UR):) <C
=
provided that b << ho(QF).

Proof : The argument is mainly the same as in [}]. The only diffe-
rence is that instead of an estimate for U, in the discrete L! norm’ we
have one for ¢(U),. So we shall have to transform the scalar product:

o 3> 5 Uilk)o(U(R)

=1 Qs;‘

into

—Th? i) S UR)(UR), + 2 (U0)e(U)) — U(K) ¢ (U(R)).
k=0 Q; 975
This is bounded since U is bounded on Q.

On the basis of the results of this section we can prove in the same way
as in [1], [2], [3], the following theorem.

THEOREM 2.2. Under the hypotheses of Theorém 2.7 the problem (1.1)—
(1.3) has a wunigue solution u.

If U, is the solution of (2.1)—(2.3) then:

(@) (@Uy) =~ o) in  L¥Q) 2 < [+l

(i) (p(Uy)x,) — d¢(u)[dx,, 1 = 1,2 weakly in L¥Q)

(iv) Up—muin L*(Q), p = [1, +ool.
Here Uj; € C(Q,) is the multilinear (finite-element) interpolate of the
discrete function U,

3. Time independent boundary conditions. The main result of this
section is given in the following lemma. ‘
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1EMMA 3.1. Suppose that :
(1) Assumption (A) is valid
(i) uy = WHQ)
(i) 2 < 1
(iv) w, is comstant with vegard to ¢.
Then, there exists a constant C independent of h such that
3.1) . h2;|U,-| £
h

Proof : (8.1) is valid if there exists a constant C, such that

hzzjw,(kn <Cy k=12 ..., K
b .
For £k =1 this means that
K 2 (il < Co
which is true according to (3.1) and assumption (4). Further we have:

Ui(k — 1) = 84(e(U(k — 1)) — ¢(U(k — 2))),

so that
Oyth) = (1 = 45 @tk — D)Usk — 1) +
= [l — D5k — 1) + G slh — D0i gk — 1) +

+ i1k — DUijalk — 1) + §i5-1Us im0k — 1))

As before the sign ~ indicates an apropriate intermediary value.
Hence taking into account condition (iv) we get for any integer £ > 1:

; |Uy5(k)| < QE |[Uy(k — 1),

which completes our proof.
Finally we notice that The assertion of Theorem 2.2. remains valid under
the conditions of Lemma 3.1.

REMARK. It is readily seen from the proof that condition (ii b
replaced by ¢(#,) = Wi(Q). i A
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