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1,. Intrrtductioll

Many problenrs in rnathematicai physics ancl cngircclillg can llc for-

urulated as intcgïa1'"q,.tãtit"r, ^ltitotìgt'''t"t-ãli.hailc 
b.ccritraclitionally

.,osed in this *ru. ir'19J,;äi'r;';;;il";' i"i"giál ccluatiorr irr *'hich thc

intesrals are tar<cn ;;;r.' th" borrnd"r]-'"i'tìi" i"gi'on..lt'he bou'dar.v is

cliscietised. as in tir" tinite elernent "i"titã¿, 

^ 
tftis' enabli'g the i'tegral

equation to be .ppïã*ir*iå¿ ¡v " s"t'-ái algebr.aic equations rvhich can

be solved. numerlcatly. such, irr essence, is ttr" "technicluc of solution ktrown

;' tfnffälilL?iili"i'i 
#ì1,i3å;"r equatio,r is usrLa'ryrro,u a di{Êercrrtiul

eouatiorr and is effected by thc rtse of'an appropriate rcciPtocal identity

i:.Ë:'äi:#i; id";iìiì. ìãr-íupro.e,s.cquatio")'tog"tt'"' with the use ot a

sinq'larity runctron.),s';:fi"i;;:ã¿uiä"il"r^'piá!"tti"s. that make it thc

ecuivalent oI satisfying the go'e"'"'.'g 
""qoäiå" 

tntotrghout thc regio' of

aôplicability and determining ,o,n" ni,or'oximation to the borrtrdary con-

aiiions. This is jn coutrast to rnany'ã;;t*il;te techniques, iuclLrding

some applications oi"irr" 
'ii"ite 

elcnrent ''åethod, which arrnroximate the

governing equarionl- u,,t ,otirtv "*u"tiy 
'i^rrï- ã"ä"a"ry "Joäitions' 

There
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are alternative ways of deterrnini formation to an integral
equation (e.g. Weighted Residual t in each case it is "the
bonndary conditions which are a

I3ecause a singularity solution
th.e resulting equations are
care is taken not too much
tion of these integral equati
clary Blement Nlethod, is
reduced by one as compared with, sa¡
the integral equation is restricted. to the boundary. By way of disadvan-
tage, the deternination of unknowns at interior: poiits ráquires further
integra_tio¡s. and where one would expect sparsity' in matrices in other
rnethods it is the case that in the Boundary El"-"nt Method the matrices

1so very critical to be aware of sin_
ld be caused by discontinuity of the
undary.

resent the Boundary Blement Method
ible. Indications of how the method
ations are given. A detailed accourrt
ted residual techniclues, is given in

2. Laplaee's Equation

_. _ By way of detailed. exposition, the technique of sorution will be app-
lied to Laplace's equation,- Consider

yzc!, :0 u e d), e.l)
where O is the interior of a domain bounded bJ. f. Suppose that

uelt
,t¿ e lz and (2.2)
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Suppose thaL a satisfies the equation

V2u : -- à" (2.4)

where 8" : ù(zn - z) is the Dirac delta function and. r o 9. call the

solution of (2.4)u", ãnd snbstituting uo for u in (2'3) gives

o

!' 
{-rs' - uoyzu)d'Q : \(" 

U - a"uut-) o'
9l

dl

(2 5)

(2.6)

(2.s)

}:f. u salislies (2,1), then (2.5) becomes

-*:\(
ðaa - Ôu

u--ae-
ôn, Ônr

'lhis equation enables the rralue of u at -any point of .Q.to. be detei-i¡iinecl

io t"t-t of the values oL u at;d u" (and their normal d-erivatives) at the
boundary l.

If, in equation (2.5), 8" is chosen so that
ò'-S(1'-1) :à', ln=t (2'7)

then, provid.ed the boundary is srnooth, it can easily be shown that

_ 7_ 
,,n : t [, !! _ ,,!'idr., (2.8)

':

which is an integral ecluation relating values of tt, on the bounclary I
only. Þ'rorlt (2.2) thc value of u or Í3 t* t no*u at each point on l', aucl

thr.rs the ccluation cletermines the vlluc o1 u or Aj, whichever is tltrklrown
ôn

a[ that point. 'Ihus the solution lo, (2.1) and (!2). wi11.be obtained by
.of"i"g tt"ìnteg'al equation (2.8) and theri using (2.6) to deterr'i'e 'alucs
of u in Ct.

For ease of illustration, O is restricted to a two dirnensional region

and_ Il ís a closed contour. In this case the soiution of (2.4) is

1.4' : ùi,

ôu

ôn ò'

1

2r
7og r

where.t : fr U f, (lr O f¿ : Ø) and n is the direction of the outward
normal to l.

Green's theorem states that

\{"v,, - uyzu)de : \(" X - ,'#) o, 
e.s)l¿t

where , - l: - !"1. Dquation (2.8) can be thus rcarrangerl as

! ui i Ç" ! l- I log ,\ ar : - i: 
al:-gr d't (2'10)

2 ')"ð',\ ,'--' ) )2nôn

and r : lr - rtl. Noìe útat (2.10) is a singular integral equation, and

that wheñ siãgularities occtlf the principal value is taken. In order to
sáive (z.rO), th; boundary f is clividecl into discrete elements 4'(':: 1 . .'. N)' and the sirnplest such aff angement is shown in figure 1.
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I¡igurc 1

îlre values of u anð. ! ^r" 
regard.ed as constarrt throughout the element

ôn
IÌ,, ar'd are those taken at the mid-point of the element.

Ecluation (2.10) is approximated by taking l: Ü E, anð. using the
i:t

constant mid-point values in each .8,. Thus equation (2.10) becomes

orthogonality of r and. ø demands that 
I *? * at ,,)ar :0 ancl thus

Èi

x,i:ï,tn:1...N) P.r4)

yn,: -l; "* 
rd.l, anð. assuming the length of element En to be 2l',

I)
I
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(2.1s)

5

Y,,: clrrlog
¡r

J
0

øzr,)ar:Ð#

(2,rr)

rvhere /¿ represents the clistance from the mid-point of Element E;, and
(2.11) can be written as

ä*,,* 
:äo,,X)' (i: t,..., N) (z.rz)

rvhere

: * (t - logtr). (2'16)

In this particular formulation the sir.rgularity.i.u the determination or xo,
,r""isft"s'and is non-existent inYrr. Tñe remainiug integrab can be deter-

mined. numerically, hence.prod.ucing the matrices X and' Y-'

Returning to (2.12) - at any value of 7 either ui or #¡i "r" koo*t

rrom (2.2) (but not both) and so (2.12), gives -a set of N linear simulta-
;;i*'"qJr"ìioor in N unknowns. In sólrrì.tg them, the values of ui and

LI' 
^r" 

known for all ø, which lneans that (2.6) is approximated to give
ðnl
the following result for values of u e A

u":fy"' *(*^r,)- +w,ff)}ar en)

whe¡e r is the distance'fro^ ,o, the internal point in O. Noting tlaÏ uí

uod. !l' "r" constant within Er, integrals of the same form as (2.13) are
ônl

t"quirãd to evaluat e u. .LLl these integrals are probably best calculated
;;t"g 

-Gaussi"n 
Quadrature, and a _useful resouice for such formulae is-

the text by Stroud and Secrest (12)'

Although the integral equation (2'8) is writteq in notation convenient
for the pariicular app-rorirúte technique above it is worth noting that
it could have been written as

! uØ: 
I it"t'l *,r(', ú) - u(s, o 

ôff)as 
:(2'18)2'r,

where s measures arc length along I as also does l. the solution above

therefore represents a collocation"technique using the.midpoints of the

"ilÃ""tt E, ^as collocation points. An alteinative method could have cho-

r"o th" N'collocation poirits to be the extreme points of the elements,

)'.i - r*",sr'd't (i:1' '¡/)
EJ

Iu' -rå,, j *(- *
Ej

x,! :å tu * I * (- * t"rro)d,t,
D"t

Y¿i: - I* bgrd.t
E¡

(2.r3)
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Within the element
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(3.1)

(3.2)

(3.3)

6

although care would have to be taken in dealing with integrals on the
two adjacent elements which define any particulai node. Othler solutions
could be constructed using the various apþroaches for the numerical solu-tion of integral equations (see (13)).

rnterpolation errors occur on the boundary as a result of tire fact
that u ona ! are constant over each element, and such errors will occu¡

Ôn

whatever discretisation is uscd for the boundary values of u and its nor-
nial derivative. 'rhe above solution has approximated the boundary by
straight line segments, and should the bounãary be a smooth curve 

-theí
errors will inevitably result. rn the above case, these errors could. have
been elirninated_by.integrating over the true bounclary and this is always
an option. In addition to these errors in the formulation of the discretisäd
problem, the quadrature and solution of the linear equations produce fur-
ther potential error.

Singularities due to the discontinuity of given bound.ary values in
terms of value or type are a particttlar hazard, as also is non-uniqueness
particularly wnen fris given everywhere on the bound.ary. Singularities
ca ticular solutions to take account ofth of care about non_unique_rìe r,vay, will usually prod.uce
tio

3. Further Refinements

The discretisation of the boundary values can easily be seen to be
the type of discretisation used in the finite element method in which the
next natural step is to consider more complex elements. So consider .ô/
straight line elements as before but iet there be a linear variation of
u nr.ð, ! within the element. The unknowns now become the values of

ôn

u and. Ø at eado end- of the element, and. in elernent E', the extreme
õn

u(E) : (vi, vL)(i:,,,)

ry:(çt,çå)
l'r:)'

(oui,)'.'

where

Equation (2.10) is now approximated by

n\: ,L, tt; - 1)

r'r: +ru¿ * 1)

where r, is the distance frorri ri. The integrals which have to be evaluated
afe

I u, + Ë I frt, rÐ !*(- *,t,r,,)(",,',,,,¡0," _ríi

! {*r, r¡ :;f +utr,)ar

points are rt aîd ri+l at which fine u anð, ! take valtes u¿,
õn

ôu
Ltí+ t

rJn
respectively. Because the boundary is closed rr arLd rv+r

represent the same node and so N f I is replaced by l.
It is convenient to use local coordinates for the element 8,, as in

figure 2.

Ï**fi {,q

l'.,f

F."l

and

\ {r0,, rL) (- * tog z,) ar.
Lj

It is worth looking to see what happens if i : j. The first integral will
vanish because the normai derivative is zero, and the second- integral can
be evaluated analytically and has no singularity at a7l. It is clear that
whilst straight elements are used, however complex, the normal derivative
term will always vanish ancl the second integral will be easily determined
analytically. However, when the elements are curved the normal deri-
vative will not necessarily vanish.

The simultaneous equations are assembled from (3,3) as before with
appropriate care if there are, in particular, mixed boundary conditions.

ôu\¿

ôt)
and

i+1

\={¿
'tr{-

Figure 2 Slernent S¡
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where C is the boundary and m is a srnall circle surrounding the point
[r. The radius of the circle rn is reduced to zero and the point [, is taken
to the bound.ary as in section 2, to give the following singular integral
equation

242

6. Dircct llethods in Elastostaties

As an illustration of direct methods, consider the method as applied
to trvo-din-Le¡sional elastostatic problems. The important physical variables
áie the clisplacernents and the stresses, and in terrns of these cluantities
on the bouidaries it is necessary to consider displacements and tractions.
The approach here is that based on Rizzo (4) aithough this is by no means

tfr" otìù approach. Ilsing the usual suffix notation, trrle equations Ïor'dis-
placeméntJ ìrnder uo body forces can be written

(1,! ¡t")u¡,¡i i ttu¡,¡¡ :0, (6.1)

where i, j e|c. run ffom I to 2. Hooke's I,arv gives an explession fOr

the stress tensor,
oü : lø¿,¡à'¡t t v(u¡,¡ I u¡,¡). (6'2)

Thus the traction, l;, on the boundary with outward normal ø, is given by

t¿: 6¡jtrj : )"u¿,n1x:; * Vn¡(u¡,¡ i u ¡'r)' (6'3)

The integral equations for the cornponents of displacement and. traction
are set rfr using Betti's reciprocal work theorem, whiclr states that

(tlt)utzt - l'\u!'t¡ds : 0 (6.4)

systems and thewhere t!'\, ul') and. t!'\ , ut') are twoself-equilibrating
integral is taken over the boundary C.

tonsider the stress/displacement system corresponding^lo a unit point
force in the direction oî the ør-axis. These are given by (18),

u\il- -, 1,*,'I, {ò,y'ogr¡Mr,rr,¡}, (6.5)
4:t¡r.(r * 2¡r) '

{tnl,r- 
}.4¡tMr,nr,¡f fr ttoeÒ+ (6.6)

I
' n(Zp,M - k)

Itnu? - u,t\i\1dc
c

(6.e)

A suitable discretisation on the boundary C is made and an approximate
numerical solution is obtained as before. The displacements at interior
points can be evaluated. from (6.8) applied to a general point

I hfi(logr),nn¡ - (1o$r),¡n¿tl

whe¡e h: 2tr' M: -À+F anð,ulrilanð'tli) represent the i'¿ com-
I*3p' 1+ 3{r

ponent of the displacement and boundary traction vecto¡s resulting from
the unit force in the, x¡ direction.

r : l(x, - Er)' I @, - tr)'l'P (6.7)

ancl (Er, [r) is the location of these forces, with all derivatives being taken
with respect to the coordinates ø,.

Betfi,s theorem (6,4) is appÍied with the above singularity system,
to give

\{"ntli) -tou\i)¡dc:o (6.8)
Clm

u¡
2n(2s.M - h)

Qouli) - untfi)¡ dc, (6.10)

ancl the stresses can thus be evaluated from (6.2) .

The corresponding method for three dimensions is given in Cruse (7)

- the technique is the sam.e as above, but the singularity functions are,
of couLse, different.

7. 'Other Applieations

It can be seen from sections 2 and 6 that provided there is some
appropriate leciprocal relation, a system oT partial differential equations
may be solved numerically using the Boundary Elernent Method. All
that is required is to be able to determine a singularity solution which
enables the integral equation on the boundary to be formed, Without
this, the method, of course, cannot be applied.

The solution of the problem of plane elastostatics assurned that there
\Ã/ere no body forces. Should body forces exist then the basic differen-
tial equations for the displacement would become

L! : I Q.1)

rvhere Z is a differential operator, ør the displacement vector and f a terní
cletermined. by the body force, Thã solution procedure would thãn follow
that of section 4, in which the resulting integral equations would have a
term involving an integral throughout the region. This situation also arises
in solid mechanics when complex forrns of deformation occul. Bxamples
in elastoplasticity by Cathie and Banerjee (19) and in inelastic defolmation
by Mukherjee (20) illustrate the technique in which the more complex
parts of the deformation can be made the mathematical equivalent of body
lorces,

The Finite Blement Method poses problerns when infinite regions are
under consideration, but because the Boundary Element Method is reduced
to boundary integrals which, if suitable ,,equilibrium" conditions occur, are

I
c

/i),í
À+3p

ar¡r(r -l 2r)
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the region. Although integrations rvill be required
there are ,,body forces" or their ccluivalent, these
using the appropriate quadrature formulae. IIowe-

ver, this giyes the potential ior hybrid techniques whereby the finite ele-

meát m"tËocl can bã used lor part of the finite legion and the boundary
element methocl for the remaining infinite region. Such approaches have
been rnade by Zienkiewicz et al (21

The general apProach to
the l,aplace Transform with
cing elliptic equations. These
tesults are transformecl back
niclue. Rizzo and cruse (5) used this technique ald a useful_paP"t y*þ
ref'erences to the problems'of numerical inversion is that of Beskos (23) .

B. lìurlher Conlments

,lhe sirrgularity method, which forrns the basis of the Boundary E1e-
ment Method, is well known and has
of porverful computers which h
intègral equations numerically.
is the discretisation of the bot
Nlethod special kitrds of basis funct
are cleterirrined. over the boundary, the methocl is going to be particu-

s on the boundary, and in the case of Neu-
be taken to ensule suitable conditions are

s of the solution. 'Ihere are clear benefits in
using the lSoundary Dlement Method, but these should not hide the fact
thai it is not alwáys advantageous to use it for every problem'
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