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Abstract

This report presents the Boundary Element Method applied to the
solution of Iaplace’s equation and the problems of plane elastostatics.
The characteristics of the method are presented together with an indi-
cation of how it can be applied in a wide varicty of problems for which
many are referenced.

1. Introduetion

Many problems in mathematical physics and engineering can be for-
mulated ‘as inteégral equations, although not all have been traditionally
posed in this way. It is usual to seek an integral equation in which the
integrals are taken over the boundary of the regiomn. The boundary is
discretised as in the finite element method, this enabling the integral -
equation to be approximated by a set of algebraic equations which can
be solved numerically. Such, in essence, is the technique of solution known
as the Boundary Element Method.

" Phe transformation to an integral equation is usually from a differential
equation and is effected by the use of an appropriate reciprocal identity
(e.g. Green's identity for Laplace’s equation) together with the use of a
sihgularity function. Such a procedure has properties that make it the
equivalent of satisfying the governing equation throughout the region of
applicability and determining some approximation to the boundary con-
ditions. This is in contrast to many approximate techniques, including
some applications of the finite element method, which approximate the
governing equations but satisfy exactly the boundary conditions. There
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are alternative ways of determining the transformation to an integral
equation (e.g. Weighted Residual Methods), but in each case it is the
boundary conditions which are approximated.

Because a singularity solution is used in the transformation procedure,
the resulting equations are singular integral equations, Provided adequate
care is taken not too much difficulty is encountered in the numerical solu-
tion of these integral equations. The real advantage, however, of the Boun-
dary Element Method, is that the dimension of the original problem is
reduced by one as compared with, say, the Finite Element Method because
the integral equation is restricted to the boundary. By way of disadvan-
tage, the determination of unknowns at interior points requires further
integrations and where one would expect sparsity in matrices in other
methods it is the case that in the Boundary Element Method the matrices
(although smaller) are dense. It is also very critical to be aware of sin-
sularities on the boundary which could be caused by discontinuity of the
given data or irregularity of the boundary.

Exploitation of these techniques was made by Jaswon and Ponter (1),
Jaswon (2) and Symm (3) for applications governed by Laplace’s equation
—.applications using reciprocal work theorems or their equivalent in elas-
ticity were developed by Rizzo (4), Cruse and Rizzo (5) and Cruse (6, 7)
Subsequent to these papers there have been many publications together
with applications in diverse fields (see e.g. 8, 9, 10).

The objective of this paper is to present the Boundary Element Method
in as straightforward manner as possible. Indications of how the method
has been applied to a variety of situations are given. A detailed account
of the method, approached by weighted residual techniques, is given in
the book by Brebbia (11).

2. Laplace’s Equation

By way of detailed exposition, the technique of solution will be app-
lied to Laplace’s equation. Consider

Vi =0 u < Q, (2.1)
where Q is the interior of a domain bounded by I. Suppose that

U = i, u = Pl
Ouil il gyl and (2.2)
on

where I' = T, UT, (I Ty, =) and # is the direction of the outward
normal to I'.

Green’s theorem states that
2, B 5 v I %

on
Q e
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Suppose that v satisfies the equation
Vi = — 8% (2.4)

where 8% == §(7% — #) is the Dirac delta function and »* < Q. Call the
solution of (2.4)v%, and substituting »* for v in (2.3) gives

dv¢ 5 Ot -
S-(—ua« — peryu)dQ = S(% v a—n’ d].“.. (2.5)
Q T
It # satisfies (2.1), then (2.5) becomes
Ov% ou i
#=\|u— —ov* | dl. 2.6
- _S(M on ) 0%) g (2.6)

i i g i f Q to be determined
This equation enables the value of # at any point o ' be
iII; ter1?15 of the values of # and v* (and their normal derivatives) at the

boundary T'. '
If, in equation (2.5), 3* is chosen so that
=3 —7) =28, rel (2.7)
then, provided thé boundary is smooth, it can easily be Ishown that
Lighencn a_i)’i A 10_1:‘:d]:‘ 2.8
—E.t'_g(%an v(%' ’ (2:8)

o
which 'i§ an integral equation relating values of # on the boundary I

Ju . 1 3 N and
) > — 1s k 1 at each point on I', an
only. From (2.2) the value of u or 5.1 known, T

i 1 . I,
thus the equation determines the value of # or = wlnlchevei 18 u?ﬂmown
at that point. Thus the solution to (2.1) and (2.2) will be ob‘tameydl‘b}f
solving the integral equation (2.8) and then using (2.6) to determine values

of % in Q. . . ' i
For ease of illustration, Q is restricted to a two dimensional region

and T' is a closed contour. In this case the solution of (2.4) is -
- Y= — El— log 7 (2.9)

where # = |7 — #%|. Fquation (2.8) can be thus rearranged as
L i 0t ] '7)dP=~—Sia—MlogrdP (2.10)
EW—’_SH@A 27 8 y P21can
and 7 = |[r — #|. Nolte that (2.10) is a singular integral equation, and
‘e sin iti inci is taken. In order to
that where singularities occur the Pr1nc1pa1 value is AR
solave (2.10), thge boundary I' is divided into _d1screte e?lemfznts E, (0=
== 1 ... N) and the simplest such arrangement is shown in figure 1.
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Figure 1

, 3}
The values of # and 51 are regarded as constant throughout the element
n

E, and are those taken at the mid-point of the element.

N
Equation (2.10) is approximated by taking I' = | J E, and using the
constant mid-point values in each E,. Thus equatio:l(Q.lO) becomes
TR N S R T S v Gu)i 1 :
s sz:lws L ( - logr,)dl ~Z‘;;] S_ ~logrdl' (i=1...N)
K.

j=1 ce
t) Ey

where 7, represents the distance from the mid-point of Element E,, and
(2.11) can be written as

uy . A Ou \§ .
S X g =ZY,,5-Z—) G=1,...,N) (2.12)

J=1 =1

where

(2.13)
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Orthogonality of » and # demands that S X (— 2L log r'.) dl' = 0 and thus
n ™
E.

é, G=1...N) (2.14)

Xy =
Y, = — SZL log 7,dT', and assuming the length of element E; to be 2,
ks

i

I,
S S log 7 dr (2.15)

0

— b1 —10g1y). (2.16)
™

In this particular formulation the singularity in the determination of X
vanishes and is non-existent in Y,,. The remaining integrals can be deter-
mined numerically, hence producing the matrices X and Y.
Returning to (2.12) — at any value of j either #/ or %M—JJ are known
n
from (2.2) (but not both) and so (2.12) gives a set of N linear simulta-

neous equations in N unknowns. In solving them, the values of #* and
Z—u ' are known for all 4, which means that (2.6) is approximated to give
n

the following result for values of # € Q
N

“__ ;0 (1 ¢l utl ou i
u* = ;ES{M = [Zn log r) - logran)}dI‘ 2.17)

where 7 is the distance from 7% the internal point in Q. Noting that #’
and % )' are constant within E,, integrals of the same form as (2.13) are
n

required to evaluate . All these integrals are probably best calculated
using Gaussian Quadrature, and a useful resource for such formulae is. -
the text by Stroud and Secrest (12).

Although the integral equation (2.8) is written in notation convenient
for the particular approximate technique above it is worth noting that
it could have been written as

L) =S (w(s) L (s, £) —v(s, #) "’“ﬂ) is (2.18)
2 ) l on on -

where s measures arc length along T' as also does £ The solution above
therefore represents a collocation technique using the midpoints of the
elements E, as collocation points. An alternative method could have cho-
sen the N collocation points to be the extreme points of the elements,
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although care would have to be taken in dealing with integrals on the
two adjacent elements which define any particular node. Other solutions
could be constructed using the various approaches for the numerical solu-
tion of integral equations (see (13)).

Interpolation errors occur on the boundary as a result of the fact

Ou ) 3
that # and — are constant over each element, and such errors will occur
L3

whatever discretisation is used for the boundary values of u and its nor-
mal derivative. The above solution has approximated the boundary by
straight line segments, and should the boundary be a smooth curve then
errors will inevitably result. In the above case, these errorscould have
been eliminated by integrating over the true boundary and this is always
an option. In addition to these errors in the formulation of the discretised
problem, the quadrature and solution of the linear equations produce fur-
ther potential error.

Singularities due to the discontinuity of given boundary values in
terms of value or type ate a particular hazard, as also is non-uniqueness

particularly when % is given everywhere on the boundary. Singularities
n

can be handled by introducing particular solutions to take account of
their local behaviour, see Wendland (14). Lack of care about non-unique-
ness, which can often be dealt with in a simple way, will usually produce
nonsensical and highly inaccurate solutions.

3. Further Refinements

The discretisation of the boundary values can easily be seen to be
the type of discretisation used in the finite element method in which the
next natural step is to consider more complex elements. So consider N
straight line elements as before but let there be a linear variation of

# and -g—“ within the elenient. The unknowns now become the values of
i n

u and 2 at each end of the element, and in element E; the extreme
"

points are #* and #*+! at which the # and % take values %)1 and
= =4 n "
’ it1 i ; AT
witl, 31_4) respectively. Because the boundary is closed 7! ‘and #¥+!
J N ~ ~

represent the same node and so N - 1 is replaced by 1.
It is convenient to use local coordinates for the element E,, as in

figure 2.
zg:'wﬁl. i (g;:g‘_
e g ot

~

Figure 2 Element HE;

ci g
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Within the element

N 7
CCRCIEO W
"_“)" (3.1)
i) . ]1la
J(;_f_):(@;’ ) aZ'm [
5

where

¢= i — 8

. (3.2)
p ot Loy
<P2 2[{ (1 + E)
Equation' (2.10) is now approximated by
PRy — 11— —1log7, ar
S+ ;;F.(W, @é)an( 5 log yt) (ui»u)
“J
[Oud
N B : (__ .
ZES(% ‘Pé)(—',,—log*’,-] on at, (i=1,...N) 33)
I=lE; . Bu i+l "
(6?;]

where 7, is the distance from #?. The integrals which have to be evaluated
are

; ) 1
S (9}, %)a_n (— ot log ri) ar
Ej
and

! 4 1
f og 7;| dl.
S(qﬂ @%)(——E;lgr)df‘

£

It is worth looking to see what happens if ¢ = 4. The first integral will
vanish because the normal derivative is zero, and the second integral can
be evaluated analytically and has no singularity at all. It is clear that
whilst straight elements are used, however complex, the normal derivative
term will always vanish and the second integral will be easily determined
analytically. However, when the elements are curved the normal deri-
vative will not necessarily vanish.

The simultaneous equations are assembled from (3.3) as before with
appropriate care if there are, in particular, mixed boundary conditions,
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These linear elements would expect to reduce the interpolation errors and,
incidentally, demonstrate why collocation at the extreme ends of elements
using constant valued elements would be pointless.

Further refinements lead to the use of quadratic and cubic elements.
Hermitian cubic elements have been proposed by Watson (15) and appear
to have computational advantages. The opportunities for complexity are
legion, but caution should be exercised as further complexity does not
necessarily lead to computational advantage,

4. Poisson’s Equation
Consider the eguation
v =p(%y), u<Q (4.1)

together with boundary conditions as in (2.2). This can be solved by fin-
ding a particular integral and thus reducing the numerical problem to
that of Laplace’s equation. Determining the particular integral can cause
problems and it is therefore necessary to solve the Poisson equation nume-

rically,
Choosing v as in (2.4), substitution into Green’s theorem (2.3) gives

due du
—u® — *dQ = \ 4 — — % — 2 .
u Qgpv S = aﬂ]dI‘ (4.2)
r

Proceeding as in § 2, the boundary integral equation becomes

1 i Ouf 1k n T o T (S NP, j
Su +§uaﬂ[ = 10g?’]dI‘—|—Spv m_s - Slogr D (43)
0 ‘ T

The only difference from Laplace’s equation is that there is an additional
term Spv‘dﬂ which is independent of the discretisation on the boundary

£
but dependent only on the node and requires an integral throughout
the region (. It is most unlikely that this integral can be determined
analytically and thus some form of twodimensional numerical quadrature
will be used for its evaluation. Having determined the value of the integral
for each #*, the solution proceeds as for Laplace’s equation.

5. Generalisations

Consider first the solution of (2.1) and (2.2) in three dimensions. The
appropriate solution to (2.4) is

v= o (5.1
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resulting in the integral equation

.u iusﬂ“ﬁ".[.}_)dp:slai‘dn (5.2)

2 n \4nr dny On
T

The surface T' is divided up into plane triangular (finite) elements E; in

which a linear variation fo % and ?f is assumed. Thus, with the usual
on

; ; du d ;
shape functions ¢, the values of # and — on I' are given in terms of
"

the nodal values by

i ‘
W= %-ﬂ
for bt (5.3)
du Ou
m Ei i ]

The shape functions ¢, are zero except in the elements which have the
node i as a vertex. Equation (5.2), when the nodes are made to be the
collocation points, becomes

St Séwm‘%(L ar = Sf:# cp;?f‘]jdf' (5.4)
T

dnr
18
T

where #; is the distance from node ¢. Singularities can only occur when
4 =74, in which case the integral on the left hand side vanishes as for
two dimensions. The integrals on the right hand side can be shown to
ele finite, and again no singularities occur. More complex elements may
be used to discretise the boundary and these are familiar in the finite
bement method. If it had been Poisson’s equation under discussion then
1 #Q would have been necessary.

41‘:?"'.

integrals throughout Q of the form S p

; Q

A number of problems in mathematical physics can, by suitable arran-
gements and manipulations, be formulated so that the unknown function(s)
have to satisfy Iaplace’s equation. Thus the Boundary Element Method
can be used. This approach represents the so-called group of indirect methods,
named particularly because the unknowns have no physical significance
and further calculations have to be made in order to find the physically
significant variables. An example of this in two-dimensional elasticity is
Symm and Bhattacharyya (16).

Furthet extensions can be made by using rather more general Green’s
formulae (see 17)) for the solution of general second order elliptic partial
differential equations.

8 — L'analyse pumérigue et la théorle de 'approximation — Tome 10, No. 2, 1981,
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6. Direct Methods in' Elastostatics

As an illustration of direct methods, consider the method as applied
to two-dimensional elastostatic problems. The important physical variables
are the displacements and the stresses, and in terms of these quantities
on the boundaries it is necessary to consider displacements and tractions.
The approach here is that based on Rizzo (4) although this is by no means
the only approach. Using the usual suffix notation, the equations for dis-
placements under no body forces can be written

(A )y + ptg = 0, (6.1)
where 4, j ete. run from 1 to 2. Hooke’s Law gives an expression for
the stress tensor,

Gy = 7\1«4/;,).84;]' -4- LL(H,‘)J‘ -+ %j,"). (62)
Thus the traction, £, on the boundary with outward normal #, is given by
ti = o;M; = Kuk,k%;- + (.L%j(%,’lj —+— w j','). (63)

The integral equations for the components of displacement and traction
are set up using Betti’s reciprocal work theorem, whiclr states that

S(tﬁ”uP’ — 1Pu")ds =0 (6.4)
C

where #9, 4" and P u® are twoself-equilibrating systems and the
integral is taken over the boundary C. ] ' _

Consider the stress/displacement system corresponding to a unit point
force in the direction of the x,-axis. These are given by (18),

) Lyl IR B s g My . 6.5
(T 2u){ dog 7+ Mr.z.sh i
O Atk 1S, MuMr,r,] - (logr
t‘ 4nu(7\+2ﬂ){[ syrpanl el o (6.6)

+ k[(logr),;my — (log 7).}
2L Y — _2F® ond #" and £ represent the * com-
A+ 3 A+ 3u f I
ponent of the displacement and boundary. traction vectors, resulting from
the unit force in the, x; direction.

r = [(#y — &P+ (%2 — g,) 112 (6.7)
and (E,, E,) is the location of these forces, with all derivatives being taken
with respect to the coordinates x,.

Betti’s theorem (6.4) is applied with the above singularity system,
to give

where k£ =

S (it — t)dC =0 (6.8)

C+m
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where C is the boundary and wis ‘a small circle surrounding the point
£,. The radius of the circle m is reduced to zero and the point £, is taken

to.the boundary as in section 2, to give 'the following singular integral
equation

1 ) i
=— \ [t — utdC.
g\ k)S [tu uiti’ ]
(o}

(6.9)

A suitable discretisation on'the boundary C is' made and an approximate
numerical solution is obtained as before. The displacements at interior
points. can be evaluated from (6.8) applied to a general point

e : ORI
Uy = e ) — ) o, (6.10)
C

and the stresses can thus be evaluated from (6.2).

The corresponding method for three dimensions is given in Cruse (7)

— the technique is the same as above, but the singularity functions are,
of course, different.

7. ' Other Applications

It can be seen from sections 2 and 6 that provided there is some
appropriate reciprocal relation, a system of partial differential equations
may bhe solved 'numerically using the Boundary Ilement Method. All
that is required is' to be able 'to determine a singularity solution which
enables the 'integral 'equation on the boundary to be formed, Without
this, the method, of course, cannot be applied.

The solution of the problem of plane elastostatics assumed that there
were no body forces. Should body forces exist then the basic differen-
tial equations for the displacement would become

Lu=f (7.1)

where L is a differential operator, # the displacement vector and f a termi

determined by the body force. The solution procedure would then follow
that of section 4, in'which the resulting integral equations would have a
term involving an integral throughout the region. This situation also arises
in solid mechanics when complex forms of deformation occur. Examples
in elastoplasticity by Cathie and Banerjee (19) and in inelastic deformation
by Mukherjee (20) illustrate the technique in which the more complex
parts of the deformation can be made the mathematical equivalent of body
forces.

The Finite Element Method poses problems when infinite regions are
under consideration, but because the Boundary Element Method is reduced
to boundary integrals which, if suitable ,,equilibrium’’ conditions occur, are
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only in the finite parts of the region. Although integrations will be required
throughout the region if there are ,body forces” or their cquivalent, these
calculations can be done using the appropriate quadrature formulae. Howe-
ver, this gives the potential for hybrid techniques whereby the finite ele-
ment method can he used for part of the finite region and the boundary
element method for the remaining infinite region. Such approaches have
been made by Zienkiewicz et al (21) and Johnson and Nedelec (22).
The general approach to time dependent problems has been to take
the Laplace Transform with respect to the time variable, thereby produ-
cing elliptic equations. These can be solved as explained above, and these
results are transformed back using some numerical Laplace inversion tech-
nique. Rizzo and Cruse (5) used this technique and a useful paper with
references to the problems of numerical inversion is that of Beskos (23).

8. Further Comments

he singularity method, which forms the basis of ‘the Boundary Ele-
ment Method, is well known and has a long history, but it is the advent
of powerful computers which has given the impetus to solve the resulting
integral equations numerically. The particular peculiarity of the method
is the discretisation of the boundary borrowing from the Tinite Element
Method special kinds of basis functions. Because the integral equations
are determined over the boundary, the method is going to be particu-
larly sensitive to singularities on the boundary, and in the case of Neu-
mann problems care has to be taken to ensure suitable conditions are
satisfied to ensure uniqueness of the solution. There are clear benefits in
using the Boundary Element Method, but these should not hide the fact
that it is not always advantageous to use it for every problem.
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