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The category we shall refer to in this note will be denoted by Con,.
Let X be a locally convex space over the field R of real numbers.

DEFINITION 1. K < X will be called a cone n X if:
1. K s a closed subset of X

2.2,y K, 0, p20=>0ax+py €K

3. KN (—K) = {0} (0 being the zero element of X).

DEFINITION 2. The cone K = X is called full if int K #@.

The objects of Cony are the pairs (X, K) where X is a locally convex
space (over R) and K < X is a full cone in X. The morphisms from (X,
K,) to (X,, K;) are those linear and continuous functions f: X; » X, for
which f(K,) € K,.

The composition of morphisms and the identities are defined usually.

In order to establish our central theorem, let’s recall some well —
known results of functional analysis, as they are to be found in [2]. Let
X be a topological vector space over R.

PROPOSITION 1. If Y < X is a convex set, then for every x € Y and
y €Y and every o« € [0,1[ we have ax | (1 — a)y € int Y.

COROLLARY 1. IfY = X 4s a convex set, then int Y s also a
convex set.

THEORME 1. (Hahn—Banach). If Y < X s an open, non — empty
convex set and Z < X is a linear subspace with Y (\ Z =@, then there is
a linear and continuous functional x*: X — R for which x*(z) =0, Ve € Z
and x*(y) >0, Vy €Y.

We now establish two lemmas which will be helpful to the proof of
the main theorem.
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ILet X Dbe a locally convex space oOver R X # {0}. Then t}%erg? (i)s
®(0) a basis of the neighbourhoods of the origin of X, each set ?y, : (_)
being convex, absorbent and equilibrated. Then, for every x < X, (x), =
— {x + B}B’E H(0)} is a basis of the neighbourhoods of x, each B
= H(x) being convex. ' B

f{l'.,e)t’s ch%ose arbitrarily %, = X, B’ = &(x,) and denote Ry = {A =
= Rjx» > 0} . t

a1 ReB = {au|d = 0,0 = B} is a comvex set.

Proof. We choose )y, Ay 2 0, t#,, 4, B and o < [0,1]. B

a) If ar = (1 — a)hy =0, then a(May) + (1 — o) + (Rths) =
=0 = R B’

b) If ak; + (1 — @)Ay >0, then we have

afMuy) + (1 — o) (Agtha) = 24

kg % MLZ_%)
= [ary + (1 — o) he] |2 o T S

and this element belongs to Ry B’ because B’ is convex. . ’
revMA 2. IfK < X, isaconeand 6 & K + B’ then 0 & i (I];)—l—I{};L_Bc)1
: ; i ont . be a neighbourhoo
voof. Supposing the contrary, K - R, B would : h
@ ePrso(ff thatl'lgheregis B, = &(0) with Bi_ S K+ IL,__B . Let's : (:):I;oosi
e XN {6}. B, being absorbent and equilibrated, the}‘e is o> 51:10,
?c)hat z ;my e B, and —z € B, But B, = K + R.+B’, sothat t ef:
are %y, %g € K, My, Ay 2 0, %y, %y = B’ with z = %, + M\#, and —z=
— %, + Agty. From here it follows :

(1) 0 = (%, 4 %a) + Aty A Agthy
. , —
Id h A= Ay =0, it W,ould_follovv that % + %, ,
SO fo—WixSlh OXS % a:: ElK anzd K is a cone, it follows that %, = 0, so
P L s

2 = 0, which is not true. Thus Ay~ As> 0 and (1) implies:

1 M Ay,
@) 0=7xl+7\2(x1+x2)+7\1+7\z Fontn |

As K is a cone and B’ is convex, (2) leeds to 0 = K 4 B/, which

is contrary to our hypothesis. ]
We a};e now able to formulate our main result.

canorEM 2. The category Comy has a coseparaior. (

%ng_ Ewe show that gthe object (R, [0, ) s a c?sep’arato‘gc 11}{)(323‘{6
Let (X', K') and (X, K) be objects of Cony _q.nd f, g: (:7{ ; Ki) - ( ——’f(x') ¥
distinet morphisms of Cony. Then there is %, = X" with xlq A
— g(x) # 0. Thus X # {0}, 'FI,:?] the preceeding lemmas are applia -

situations are possible: v

E)wzc&iﬂ?{t.m'i}heu, aIs) %, # 0 and K is a cone, we have %, & (- K).

But (~-K) is a closed set, so that there 1s B’ e'®(x,) with

(3) B'N (—K) =9.
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Supposing 6 € K + B’, it would follow that there are ¥ € K and
v € B’ with 6 = x + %, so that # = —x € B’ (N (—K), which contra-
dicts (3). Thus 6 & K + B’. Applying lemma 2, we have 0 & int (K+
+ R: B).

b) xy & K. K being closed, there is B « &(x,) with B" N K =@.
(—K) being also a cone, we obtain in .the same manner as in the a) case
that 0 & int ((—K) 4+ R; B”).

As we are in the a) or b) case we denote Y = int (KX + R, B’) or
Y =int ((—K) 4+ Ry B”). Due to lemma 1 and corollary 1, Y is convex

(K is evidently convex). We saw before that 6 & Y, so taking Z = {6} we
have ZNY =4@.

Denoting B = B’ (in the a) case) or B = B"” (in the b) case), B
is a mneighbourhood of x, thus %, = int B < int (R, B) < Y, the last
inclusion following from 6 € K. So Y #& and Y is clearly open.

All the conditions of theorem 1 being satisfied, there is a linear and
continuous functional x*:X — R with x*(y) >0, Yy €Y.

If we are in the a) case we put » = x* and we have A(int K) =
= x*(int K) < x*(Y) = 10, o[.

If the case is b), we take # = —x* and similarly we have 4 (int K) =
= —x*(int K) = #* (int (—K)) = #*({Y) < ]0, o [.

Thus, in both cases 4 (int K) < 10, 00[ and %4: X — R is linear and
continuous.

K being a full cone, there is z, € int K. We show that A(x) > 0,
Vy € K.

It x = K, proposition 1 implies ax 4 (1 — )z, = int K, Ye = [0,1].

Thus A(ex 4 (1 — a)zg) > 0, or ah(x) 4+ (1 — a)k(ze) >0, Ve = [0,1].

Taking the limit when o —» 1, we obtain A(x) > 0.
As a conclusion, & € Homeey f((X, K), (R, [0, o).
A hittle before we had %, = Y, thus x*(x,) > 0.

So A(x,) # 0, that is A(f(xg) —g(xg)) # 0, er hof# hog, which com-
pletes the proof.

REFERENCES

[l1]Herrlich, Horst and Strecker, George L, Category Theory. An Intro-
duction, Allyn and Bacon Inc. Boston, 1973.

2] Munteanu, Ioan, Curs si culegere de probleme de analizd functionald I (litografiat),
Universitatea Babeg-Bolyai Cluj-Napoca, 1973.

Received 2.VI.1981.
Universitatea Babes-Bolyai
Facultatea de matematicd

Str. Kogdiniceanu ny. 1
Cluj-Napoca

5 — L'analyse numérique et la théorie de l'approximation — Tome 10, No. 2. 1981.



