MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 11, Nº 1-2, 1982, pp. 115-127

MONOTONY OF WEIGHT-MEANS OF HIGHER ORDER

by
CONSTANȚA MOCANU
(Cluj-Napoca)

1. Introduction. For a > 0 we denote by L[0, a] the space of Lebesgue summable functions on [0, a] and by $L^+[0, a]$ the subset of nonnegative functions in L[0, a].

Let g be a real-valued function defined on [0, a], which satisfies the following conditions: (i) g is continuous on [0, a], (ii) g is continuously differentiable on [0, a], (iii) g(0) = 0 and (iv) g'(x) > 0 for all $x \in [0, a]$. Such a function will be called a weight-function.

If $f \in L[0, a]$, we define the *weight-mean* of f, (of weight g), as the function $F = A_g(f)$ given by

(1)
$$F(x) = \frac{1}{g(x)} \int_{0}^{x} f(t)g'(t)dt, \text{ for } x \in [0, a], \text{ and } F(0) = f(0).$$

The weight-mean of order n of f is defined by $F_n = A_g(f) = A_g^n(F_{n-1})$, $F_1 = F$. The main result of this paper states that if $f \in L^+[0, a]$ and f is continuous and strictly increasing on a neighborhood of the origin, then F_n is increasing on [0, a] for sufficiently large n. Some particular cases are considered.

2. Preliminaires. The operator $A_g: L[0, a] \to R^{[0,a]}$ defined by (1) is linear, positive and $A_g(1) = 1$, i.e., it is an averaging operator. In the particular case g(x) = x, $A_g = A$ is the well-known Cesàro operator. If $g(x) = x^{\gamma}$, $\gamma > 0$, the operator A_g , denoted by A_{γ} is the so called generalized Cesàro operator.

Since the weight-function g is strictly increasing on [0, a], we can define the function $\varphi: [0, a] \times [0, 1] \rightarrow \mathbf{R}$, by

(2)
$$\varphi(x, u) = g^{-1}[ug(x)], x \in [0, a], u \in [0, 1].$$

It is easy to check the following properties of this function.

(i) $0 \le \varphi(x, u) \le x$, for all $x \in [0, a]$ and $u \in [0, 1]$;

(ii) $\varphi(.,u)$ is continuous and strictly increasing on [0, a], for all $u \in [0, 1]$;

(iii) $\varphi(x, \cdot)$ is continuous and strictly increasing on $[0 \mid 1]$, for all $x \in [0, a]$;

(iv) $\varphi(0, u) = 0$, $u \in [0, 1]$ and $\varphi(x, 0) = 0$, $x \in [0, a]$;

(v) $\varphi[\varphi(x, u), v] = \varphi(x, uv)$, for all $x \in [0, a]$ and $u, v \in [0, 1]$. Making the substitution $t = \varphi(x, u)$ in (1) we obtain

(3)
$$F(x) = \int_{0}^{1} f[\varphi(x, u)] du, \quad x \in [0, a].$$

We note that the image by A_g of a function in L[0, a] is not necessarily in L[0, a]. In the case g(x) = x a simple counter example is given in [2]. We also remark that F is well-defined even in the case $fg' \in L[0, a]$.

If $fg' \in L[0, a]$ the function F = A(f) is absolutely continuous on [0, a] and differentiable a.e. on [0, a]. Moreover if f is continuous at 0, i.e., $f(0^+) = f(0)$, then from (3) it follows that F is continuous at 0, hence F is summable on [0, a].

PROPOSITION 1. If f is increasing on [0, a], then $F = A_g(f)$ is increasing n [0, a]. Moreover, if f is continuous and strictly increasing on [0, a], then F is continuous and strictly increasing on [0, a].

Proof. Let $0 \le x_1 < x_2 \le a$. If f is increasing, from (3) we deduce

$$F(x_1) = \int_0^1 f[\varphi(x_1, u)] du \leq \int_0^1 f[\varphi(x_2, u)] du = F(x_2).$$

If f is continuous and strictly on [0, a], then the above inequality is strict.

PROPOSITION 2. If $f \in L[0, a]$ and $f(0^+) = f(0)$, then $F = A_g(f)$ is increasing on [0, a] if and only if

$$(4) F \leq f, \text{ a.e. } [0, a].$$

Moreover if f is continuous on [0, a] then F = A(f) is increasing (strictly increasing) on [0, a] if and only if $F \le f$ on [0, a], (F < f) on [0, a]).

Proof. The function f is differentiable a.e. on [0, a] and

(5)
$$F'(x) = \frac{g'(x)}{g(x)} [f(x) - F(x)], \text{ a.e. on } [0, a].$$

If F is increasing then $F'(x) \ge 0$ a.e. on [0, a] and from (5) we deduce (4).

Suppose that (4) holds and let $0 < x_1 < x_2 \le a$. Since F is absolutely continuous on $[x_1, x_2]$ we get $F(x_2) - F(x_1) = \int\limits_{x_0}^{x_2} F'(t)dt \ge 0$, hence F is increasing on [0, a]. Since $f(0^+) = f(0)$, from (3) we get $F(0^+) = f(0) = F(0)$ and we deduce that F is increasing on [0, a].

If f is continuous on [0, a], then F is differentiable on [0, a] and (5) holds for all $x \in [0, a]$. The second part of Proposition 2 immediately follows.

In the case g(x) = x some behavior properties of the Cesàro means have been examined in [1], [2] and [3].

3. Weight-means of higher order. Let $f \in L[0, a]$ and let $F_1 = A_g(f)$. Inductively we define the *weight-mean of order n* of f on [0, a] by $F_n = A_g(F_{n-1})$, provided, of course, that F_{n-1} is summable on [0, a].

Definition. The function $f \in L[0, a]$ is in the class $M_g[0, a]$ provided f possesses weight-means of all orders on [0, a].

We note that if $f \in L[0, a]$ and f is continuous at 0, i.e., $f(0^+) = f(0)$, then $f \in M_{\mathfrak{g}}[0, a]$.

If $f \in M_g[0, a]$ and n > 1, then $F_n = A_g(f)$ is differentiable on [0, a] and we have

$$F'_n(x) = \frac{g'(x)}{g(x)} [F_{n-1}(x) - F_n(x)], \text{ for all } x \in [0, a],$$

which shows that F is continuously differentiable on [0, a].

We shall use the following integral representation of the weight-means of higher order, which generalizes that gven in [2] for the case g(x) = x.

PROPOSITION 3. If $f \in M_g[0, a]$, then

(6)
$$F_n(x) = \int_0^1 f[\varphi(x, u)] k_n(u) du, \quad x \in [0, a], \quad n = 1, 2, \ldots,$$

where φ is given by (2) and

$$k_n(u) = \frac{(-1)^{n-1}}{(n-1)!} (\ln u)^{n-1}.$$

Proof. For n=1 one obtains formula (3). By induction we have

$$F_{n+1} = \int_{0}^{1} F_{n}[\varphi(x, u)] du = \int_{0}^{1} du \int_{0}^{1} f[\varphi(\varphi(x, u), v]k_{n}(v) dv =$$

$$= \int_{0}^{1} du \int_{0}^{1} f[\varphi(x, uv)]k_{n}(v) dv = \int_{0}^{1} du \int_{0}^{u} f[\varphi(x, y)]k_{n} \left(\frac{y}{u}\right) \frac{dy}{u} =$$

 $= \int_{0}^{1} f[\varphi(x, y)] dy \int_{y}^{1} k_{n} \left(\frac{y}{u}\right) \frac{du}{u} = \frac{(-1)^{u}}{u!} \int_{0}^{1} f[\varphi(x, y)] (\ln y)^{n} dy =$ $= \int_{0}^{1} f[\varphi(x, u)] k_{n+1} (u) du.$

PROPOSITION 4. [2]. The kernel k_n , n = 1, 2, ... has the following properties:

(i) $k_n(u) \ge 0$, n = 1, 2, ...

(ii)
$$\int_{0}^{1} k_{n}(u)du = 1$$
, $n = 1, 2, ...$

(iii) $\lim_{\substack{n\to\infty\\ [\varepsilon, 1], \varepsilon>0}} k_n(u) = 0$. The convergence is uniform on every interval

(iv) $k_n(u)$ is nonincreasing on]0, 1[for each n.

THEOREM 1. If $f \in M_g[0, a]$ and $f(0^+)$ exists and is finite, then the sequence $F_n = A_g^n(f)$ converges uniformlyy to $f(0^+)$ on [0, a].

Proof. Let $x \in [0, a]$ and $\varepsilon > 0$. We choose $\delta > 0$ such that $0 < u \le \delta \Rightarrow |f[\varphi(x, u)] - f(0^+)| \le \varepsilon$.

From (6) and Proposition 4 we deduce

$$\begin{split} |F_n(x) - f(0^+)| & \leq \int_0^1 |f[\varphi(x, u)] - f(0^+)| \, k_n(u) du \leq \\ & \leq \varepsilon \int_0^\delta k_n(u) du + k_n(\delta) \int_\delta^1 |f[\varphi(x, u)] - f(0^+)| du \leq \\ & \leq \varepsilon + k_n(\delta) \int_\delta^1 |f[\varphi(x, u)] - f(0^+)| du. \end{split}$$

Since $\lim_{n\to\infty} k_n(\delta) = 0$ and the last integral is bounded, as a function of x, there exists an $n_0(\epsilon)$, independent of x, such that

$$x \in [0, a], n > n_0 \Rightarrow |F_n(x) - f(0^+)| \leq 2\varepsilon$$

and Theorem 1 follows.

For g(x) = x Theorem 1 was proved in [2].

4. Increasing weight-means of higher order. We shall show that if the nonnegative function f is summable on [0, a] and it is continuous

and strictly increasing on a neighborhood of the origin, then $F_n = A_g^n(f)$ is increasing on [0, a], for sufficiently large n. More precisely we have the following result

THEOREM 2. Let $f \in L^+[0, a]$ and suppose there exists an $\varepsilon \in]0$, a such that f is continuous and strictly increasing on $[0, \varepsilon]$. Then the weightmean of order n of f, $F_n = A_g^n(f)$, is increasing on [0, a] for all $n \ge n_0$, where

(7)
$$n_0 = n_0(\varepsilon, a) = 1 + \frac{M}{m} \ln (1/\delta),$$

(8)
$$M = F_1(\varepsilon), \ m = \min_{x \in [\varepsilon_1, \, \varepsilon]} [F_1(x) - F_2(x)]$$
$$\delta = \frac{g(\varepsilon)}{g(a)}, \ \varepsilon_1 = \varphi(\varepsilon, \, \delta).$$

Proof. By Proposition 1 we deduce that $F_1 = A_g(f)$ is continuous and strictly increasing on $[0, \epsilon]$ and Proposition 2 shows that

$$f(x) - F_1(x) > 0$$
, for all $x \in [0, \epsilon]$.

By induction we get

(9)
$$F_{n-1}(x) - F_n(x) > 0$$
, for all $x \in]0$, $\varepsilon]$ and $n = 1, 2, ..., (F_0 = f)$.

Since for n > 1 the function F_n is continuous on [0, a], by using Proposition 2, we deduce that F_n is increasing on [0, a] if and only if

(10)
$$F_{n-1}(x) - F_n(x) \ge 0$$
, for all $x \in [0,a]$.

By noting (9) we see that it suffices to show that (10) holds for all $n \ge n_0$, and all $x \in [\varepsilon, a]$.

Let $x \in [\varepsilon, a]$. From (6) we deduce

(11)
$$F_{n-1}(x) - F_n(x) = \int_0^1 f[\varphi(x, u)][k_{n-1}(u) - k_n(u)]du$$

Since

$$k_{n-1}(u) - k_n(u) = k_{n-1}(u) \left[1 + \frac{\ln u}{n-1} \right]$$

formula (11) can be written as follows

(12)
$$F_{n-1}(x) - F_n(x) = \int_0^1 f[\varphi(x, u)] k_{n-1}(u) \left[1 + \frac{\ln u}{n-1}\right] du.$$

Let
$$\delta = \delta(\varepsilon) = g(\varepsilon)/g(a)$$
, i.e., $\varphi(a, \delta) = \varepsilon$. We have

(13)
$$x \in [\varepsilon, a], u \in [0, \delta] \Rightarrow 0 \leqslant \varphi(x, u) \leqslant \varepsilon.$$

We shall write (11) in the form

(14)
$$F_{n-1}(x) - F_n(x) = \int_0^8 f[\varphi(x,u)][k_{n-1}(x) - k_n(u)]du + \int_0^1 f[\varphi(x,u)][k_{n-1}(u) - k_n(u)]du.$$

On the other hand we have

(15)
$$\int_{0}^{u} f[\varphi(x, v)dv = u \int_{0}^{1} f[\varphi(x, ut)]dt = uF_{1}[\varphi(x, u)]$$

and

(16)
$$k'_n(u) = -\frac{1}{u} k_n(u).$$

Integrating by parts, and using (15) and (16), we obtain

$$\int_{0}^{\delta} f[\varphi(x, u)] k_{n}(u) du = \delta k_{n}(\delta) F_{1}[\varphi(x, \delta)] + \int_{0}^{\delta} F_{1}[\varphi(x, u)] k_{n-1}(u) du,$$

hence

$$\int_{0}^{\delta} f[\varphi(x, u)][k_{n-1}(u) - k_{n}(u)]du =$$

$$= \int_{0}^{\delta} f[\varphi(x, u)] - F_{1}[\varphi(x, u)]k_{n-1}(u)du + \frac{\delta \ln \delta}{n-1} k_{n-1}(\delta)F_{1}[\varphi(x, \delta)].$$

From (9), by using (13), we deduce

 $f[\varphi(x, u)] - F_1[\varphi(x, u)] > 0$, for all $x \in [\varepsilon, a]$ and $u \in]0, \delta]$. Since $k_{n-1}(u)$ is nonincreasing, using (15), we get

(18)
$$\int_{0}^{\delta} f[\varphi(x, u)] - F_{1}[\varphi(x, u)] k_{n-1}(u) du \ge$$

$$\ge \delta k_{n-1}(\delta) \{ F_{1}[\varphi(x, \delta)] - F_{2}[\varphi(x, \delta)] \}.$$

Let

$$M = \max_{\mathbf{x} \in [\varepsilon_1, a]} F_1[\varphi(\mathbf{x}, \delta)] = \max_{\mathbf{x} \in [\varepsilon_1, \varepsilon]} F_1(\mathbf{x}) = F_1(\varepsilon)$$

and

7

$$m = \min_{x \in [\epsilon, a]} \{ F_1[\varphi(x, \delta)] - F_3[\varphi(x, \delta)] \} = \min_{x \in [\epsilon_1, \epsilon]} [F_1(x) - F_2(x)].$$

where $\varepsilon_1 = \varphi(\varepsilon, \delta)$, i.e., $g(\varepsilon_1) = \delta g(\varepsilon)$.

Since F_n is continuous, from (9) we obtain m > 0. We also have M > m.

From (17) and (18) we deduce

$$\int_{0}^{\delta} f[\varphi(x, u)][k_{n-1}(u) - k_{n}(u)]du \ge \delta k_{n-1}(\delta) \left[m - \frac{M}{n-1} \ln \frac{1}{\delta}\right].$$

Hence the first integral in (14) is nonnegative if $n \ge 1 + \frac{M}{m} \ln \frac{1}{\delta}$. On the other hand, from (12) we obtain

$$\int_{\delta}^{1} f[\varphi(x, u)][k_{n-1}(u) - k_{n}(u)]du = \int_{\delta}^{1} f[\varphi(x, u)]k_{n-1}(u) \left[1 + \frac{\ln u}{n-1}\right] du \geqslant$$

$$\left[1 - \frac{\ln (1/\delta)}{n-1}\right] \int_{\delta}^{1} f[\varphi(x, u)]k_{n-1}(u)du,$$

which shows that the second integral in (14) is nonnegative if $n \ge 1 + \ln(1/\delta)$. Since M > m we deduce that the inequality (10) holds, that is, F_n is increasing, for all $n \ge n_0$, where n_0 is given by (7). This completes the proof of Theorem 2.

Remarks. 1) In Theorem 2 condition no f to be strictly increasing on a neighborhood of the origin is essential. Thus, if we take g(x) = x, i.e.,

$$F(x) = \frac{1}{x} \int_{0}^{x} f(t)dt, \quad x \in]0, \ a], \ F(0) = f(0), \ a > 1$$

and consider the function

$$f(x) = \begin{cases} \{1, \ x \in [0, \ 1] \\ 0, \ x \in]1, \ a], \end{cases}$$

than

$$F_n(x) = \begin{cases} 1, & x \in [0, 1] \\ \frac{1}{x} S_{n-1}(\ln x), & x \in [1, a], \end{cases}$$

^{9 -} Mathematica -- Revue d'analyse numérique et de théorie de l'approximation, tome 11, nr. 1-2/1982

where

$$S_n(y) = 1 + \frac{y}{1!} + \dots + \frac{y^n}{n!}$$

For $x \in [1, a]$, we have

For
$$x \in [1, a]$$
, we have
$$F'_n(x) = -\frac{(\ln x)^{n-1}}{(n-1)!x^2} < 0,$$

which shows that F_{\bullet} is decreasing for all n.

2) If f is bounded below on [0, a] the requirement of being nonnegative can be removed by considering the sum of f with a suitably chosen constant.

COROLLARY 1. Let $f \in L^+[0, a]$ and assume there exists an $e \in [0, a]$ such that $f(x) = [g(x)]^{\lambda}$, $\lambda > 0$, for $x \in [0, \epsilon]$. Then $F_n = A_g^n(f)$, is increasing on [0, a] for all $n \ge n_0$, where

(19)
$$n_0 = n_0(\varepsilon, a) = 1 + \frac{\lambda + 1}{\lambda} \frac{1}{\delta^{\lambda}} \ln \frac{1}{\delta}, \quad \delta = \frac{g(\varepsilon)}{g(a)}.$$

Proof. The function g^{λ} , $\lambda > 0$, is strictly increasing and for $x \in$ $\in [0, \varepsilon]$ we have

$$F_1(x) = \frac{1}{\lambda + 1} g^{\lambda}(x), \quad F_2(x) = \frac{1}{(\lambda + 1)^2} g^{\lambda}(x).$$

From (8) we deduce

$$M = \frac{1}{\lambda + 1} g^{\lambda}(\varepsilon)$$
 and $m = \frac{\lambda}{(\lambda + 1)^2} g^{\lambda}(\varepsilon_1) = \frac{\lambda}{(\lambda + 1)^2} \delta^{\lambda} g^{\lambda}(\varepsilon)$,

hence

$$\frac{M}{m} = \frac{\lambda + 1}{\lambda} \frac{1}{\delta^{\lambda}}, \quad \delta = \frac{g(\epsilon)}{g(a)}$$

and (7) becomes (19). Corollary 1 follows immediately from Theorem 2.

COROLLARY 2. Let $f \in L^+[0, a]$ and assume there exists an $\varepsilon \in (0, a]$ such that g/g' is increasing on $]0, \epsilon]$ and f(x) = x + g(x)/g'(x), for $x \in$ $\in [0, \epsilon], f(0) = 0.$ Then $F_n = A_g^n(f)$ is increasing on [0, a] for all $n \ge n_0$, where

(20)
$$n_0 = \eta_0(\varepsilon, \ a) = 1 + \frac{\varepsilon g^2(\varepsilon)}{\varepsilon_1} - \ln \frac{g(a)}{g(\varepsilon)}, \quad g(\varepsilon_1) = \frac{g^2(\varepsilon)}{g(a)}.$$

Proof. The function f is strictly increasing, on $[0, \epsilon]$. It is easy to show that $F_1(x) = x$ for $x \in [0, \epsilon]$. If we let $h = F_1 - F_2$, then

$$h(x) = x - \frac{1}{g(x)} \int_{0}^{x} tg'(t) dt = \frac{1}{g(x)} \int_{0}^{x} g(t)dt, \text{ for } x \in]0, \epsilon]$$

By the mean-value theorem of Cauchy there exists a $\xi \in [0, x]$ such that $h(x) = g(\xi)/g'(\xi)$. Since g/g' is increasing, we deduce

(21)
$$h(x) \leq \frac{g(x)}{g'(x)}, \text{ for } x \in [0, \epsilon].$$

On the other hand we have

$$h'(x) = 1 - \frac{g'(x)}{g(x)} h(x)$$

and from (21) we obtain $h'(x) \ge 0$ for $x \in]0$, ε , which shows that h is increasing on $]0, \epsilon]$.

Therefore in (8) we have $M = F_1(\varepsilon) = \varepsilon$ and $m = h(\varepsilon_1) = 0$ and the transfer of the contract of the second state of the second $\frac{1}{g(\varepsilon_1)} \int_0^1 g(t)dt$, where $g(\varepsilon_1) = \delta g(\varepsilon) = \frac{g^2(\varepsilon)}{g(a)}$. Hence (7) becomes (20) and Corollary 2 follows from Theorem 2.

5. Some particular cases. 1°. Let $g(x) = x^{\gamma}$, $\gamma > 0$. In this case $\delta = \left(\frac{\varepsilon}{a}\right)^{\tau}$ and (19) becomes

(22)
$$n_0 = n_0(\varepsilon, a) = 1 + \frac{\lambda + 1}{\lambda} \frac{1}{\delta^{\lambda}} \ln \frac{1}{\delta} = 1 + \gamma \frac{\lambda + 1}{\lambda} \left(\frac{a}{\varepsilon} \right)^{\lambda \gamma} \ln \frac{\varepsilon}{a}$$

For $\gamma = 1$, we have

(23)
$$n_0 = 1 + \frac{\lambda + 1}{\lambda} \frac{1}{\delta^{\lambda}} \ln \frac{1}{\delta}, \quad \delta = \frac{\varepsilon}{a}$$

If we take in (23) $\lambda = \frac{1}{2}$, we obtain

$$n_0 = 1 + \frac{3}{\sqrt{5}} \ln \frac{1}{\delta} \,.$$

For $\delta = \frac{1}{9}$ we get $n_0 = 3.94...$ and from Corollary 1 we deduce that if $f \in L^+[0, a]$ and $f(x) = \sqrt{x}$, for $x \in [0, \frac{a}{2}]$ then $A^n(f)$, i.e., the Cesàro mean of order n of f is increasing on [0, a], for all $n \ge 4$.

For $\delta = \frac{2}{3}$ we get $n_0 = 2.48...$ and from Corollary 1 we deduce that if $f \in L^+[0, a]$ and $f(x) = \sqrt{x}$, for $x \in [0, 2a/3]$ then the Cesàro mean of order n of f, is increasing on [0, a] for all $n \ge 3$.

For $\delta = 3/4$ we get $n_0 = 1.99 \dots$ and from Corollary 1 we deduce that if $f \in L^+[0, a]$ and $f(x) = \sqrt{x}$, for $x \in [0, 3a/4]$ then the Cesàro mean of order n of f, is increasing on [0, a] for all $n \ge 2$.

If we take in (23) $\lambda = 1$, we obtain

$$n_0 = 1 + \frac{2}{\delta} \ln \frac{1}{\delta}$$
.

For $\delta = 1/2$, $\delta = 2/3$ and $\delta = 3/4$ we obtain respectively $n_0 = 3.77 \ldots$, $n_0 = 2.21 \ldots$ and $n_0 = 1.76 \ldots$ and the above conclusions remain valid if on the intervals [0, a/2], [0, 2a/3], [0, 3a/4] respectively we take f(x) = x.

If $\gamma = 1/2$ and $\lambda = 1$ from (22) we obtain

$$n_0 = 1 + \frac{1}{\sqrt{8}} \ln \frac{1}{8}$$

For $\delta=1/2$ we have $n_0=1.98\ldots$ and from Corollary 1 we deduce that if $f\in L^+[0,\ a]$ and $f(x)=\sqrt{x}$, for $x\in[0,\ a/2]$, then $A^n_{l_1}(f)$, i.e., the generalized Cesàro mean of order n of f, with $\gamma=1/2$, is increasing on $[0,\ a]$, for all $n\geqslant 2$.

2°. Let g(x) = x/(1 + x), $x \in [0, a]$. In this case (19) becomes

$$n_0 = n_0(\varepsilon, a) = 1 + \frac{\lambda + 1}{\lambda} \left(\frac{a}{\varepsilon}\right)^{\lambda} \left(\frac{1 + \varepsilon}{1 + a}\right)^{\lambda} \ln \frac{a(1 + \varepsilon)}{\varepsilon(1 + a)}.$$

If $\lambda = 1$ and $a/\epsilon = 2$, from Corollary 1 we deduce that if $f \in L^+[0, a]$ and f(x) = x/(1+x) for $x \in [0, a/2]$, then the weight — mean of order n, $F_n = A_g^n(f)$, with g(x) = x/(1+x) is increasing on [0, a] for $n \ge 1 + 2\left(\frac{a+2}{a+1}\right)\ln\frac{a+2}{a+1}$.

3°. Let $g(x) = \sin x$, $x \in [0, a]$, $a \le \pi/2$. In this case we have

$$\int_{0}^{\varepsilon_{1}} g(t)dt = 1 - \cos \varepsilon_{1} = \frac{\sin^{4} \varepsilon}{\sin^{2} a \left(1 + \sqrt{1 - \frac{\sin^{4} \varepsilon}{\sin^{2} a}}\right)}$$

and (20) becomes

$$n_0 = n_0(\varepsilon, a) = 1 + \frac{\varepsilon \sin a}{\sin^2 \varepsilon} \left(1 + \sqrt{1 - \frac{\sin^4 \varepsilon}{\sin^2 a}}\right) \ln \frac{\sin a}{\sin \varepsilon}.$$

If $a = \pi/2$, we have

$$n_0 = 1 + \frac{\varepsilon}{\sin^2 \varepsilon} \left(1 + \sqrt{1 - \sin^4 \varepsilon} \right) \ln \frac{1}{\sin \varepsilon}.$$

For $\varepsilon = 0.79$ we get $n_0 = 1.997$... and from Corollary 2 we deduce that if $f \in L^+[0, \pi/2]$ and $f(x) = x + \operatorname{tg} x$, for $x \in [0, \varepsilon]$ with $\varepsilon \ge 0.79$, then $F_n = A_g^n(f)$, with $\dot{g}(x) = \sin x$, is increasing on $[0, \pi/2]$ for all $n \ge 2$.

6. Increasing weight-means of a given order. If n_0 is given and we require F_n to be increasing for $n \ge n_0$, provided f satisfies conditions of

Corollary 1, then equation (19) determines ϵ . We thus obtain the following result.

THEOREM 3. Let $n_0 \ge 2$ and $\lambda > 0$ be given If $f \in L^+[0, a]$ and $f(x) = [g(x)]^{\lambda}$ for $x \in [0, \epsilon]$, with $\epsilon \ge \epsilon_0 = \varphi(a, \delta_0)$, where δ_0 is the root of the equation

$$(n_0-1)\lambda\delta^{\lambda}+(\lambda+1)\ln\delta=0.$$

then $F_n = A_g^n(f)$ is increasing for all $n \ge n_0$.

To illustrate Theorem 3 we consider only the case $n_0 = 2$, $\lambda = 1$ and give some simple examples. In this case equation (24) becomes

$$\delta + 2 \ln \delta = 0$$

and we get $\delta_0 = 0.70346...$

11

1°. If $g(x) = x^{\gamma}$, $\gamma > 0$, we obtain $\varepsilon_0 = \delta_0^{1/\gamma}$ a. For $\gamma = 1/2$ we obtain $\varepsilon_0 = ka$, where $k = \delta_0^2 = 0.49866...$

2°. If $g(x) = \ln (1 + x)$, then $\varepsilon_0 = (1 + a)^{\delta_0} - 1$ and we have the following values of ε_0 for certain values of a:

а	1	2	3	4	5	6
ϵ_0	0,628	1,165	1,651	2,102	2,526	2,930

3°. If $g(x) = x + \alpha x^2$, $\alpha \ge 0$, we have $\varphi(x, u) = 2ux(1 + \alpha x)/(\sqrt{1 + 4\alpha ux(1 + \alpha x)} + 1)$, hence

$$\varepsilon_0 = \frac{2\delta_0 a(1+\alpha a)}{\sqrt{1+4\alpha\delta_0 a(1+\alpha a)+1}}$$

Putting $\varepsilon_0 = ka$, we remark that $\delta_0 \le k \le \sqrt{\delta_0}$ for all a > 0 and $\alpha \ge 0$. In our particular case $(n_0 = 2, \lambda = 1)$ we have $0.70346 \ldots \le k \le 0.83872 \ldots$

 4° . If $g(x) = \sin x$, $a \in]0$, $\pi/2]$, then $\varepsilon_0 = \arcsin(\delta_0 \sin a)$ For $a = a = \pi/2$ we get $\varepsilon_0 = \arcsin\delta_0 = 0.78026...$ Since $\varepsilon_0 < \pi/4 = 0.785...$, in this particular case Theorem 3 yields the following result: If $f \in L^+[0, \pi/2]$ and $f(x) = \sin x$ for $x \in [0, \pi/4]$, then $F_n = A_g^n(f)$, with $g(x) = \sin x$, is increasing on $[0, \pi/2]$ for all $n \ge 2$.

5°. If $g(x) = \operatorname{sh} x$, we have $\varphi(x, u) = \ln[u \operatorname{sh} x + \sqrt{1 + u^2 \operatorname{sh}^2 x}]$ hence $\varepsilon_0 = \ln[\delta_0 \operatorname{sh} a + \sqrt{1 + \delta_0^2 \operatorname{sh}^2 a}] = \varepsilon_0(a)$. We remark that $\lim_{a \to \infty} [a - \varepsilon_0(a)] = \ln(1/\delta_0) = 0.35173 \dots$

6°. If
$$g(x) = x/(1+x)$$
, we have $\varphi(x, u) = ux/[1+(1-u)x]$, hence (25)
$$\varepsilon_0 = \varepsilon_0(a) = \delta_0 a/[1+(1-\delta_0)a].$$

For a = 1, we get, $\varepsilon_0 = 0.54257$ If we require $\varepsilon_0 \le a/2$, then $a \ge a/2$ $\geq (2\delta_0 - 1)/(1 - \delta_0) = 1,37231$...

7°. If $g(x) = \operatorname{th} x$, we have $\varphi(x, u) = \frac{1}{x} \ln \frac{1 + u \cdot \operatorname{th} x}{1 + u \cdot \operatorname{th} x}$, hence

(26)
$$\varepsilon_0 = \varepsilon_0(a) = \frac{1}{2} \ln \frac{1 + \delta_0 \operatorname{th} a}{1 - \delta_0 \operatorname{th} a}$$

and we obtain the following values of ε_0 for certain values of a: The second of the second secon

а	= 31 33.33 23.52 L-{\$50.	201 200 1d	ena 3e e. e. Sidi në sedar	.:96.344 ale:	iach, 5:
ε ₀	120 3		500		0,874
	L			Chilly ville 3	138 39 60

8°. If $y(x) = \operatorname{aretg}(x)$, we have and y(x) = y(x) $\epsilon_0 = \epsilon_0(a) = \operatorname{tg}(\delta_0 \operatorname{arctg} a)$ (27)

and we obtain the following values of e for certain values of a: t lo reday and in your by the wall of religious

а	1-1-2	2	3	4	5
ε ₀	0,615	. 0,986	1,206	1,348	1,447

We remark that in cases 6°, 7° and 8° the function g has a finite limit as $a \to \infty$ and in (25), (26) and (17) $\epsilon_0(a)$ goes to a finite limit as $a \rightarrow \infty$. record to the property of the first of the second

More generally, suppose g is continuous on $[0, \infty]$, continuously differentiable on $]0, \infty[$, g(0) = 0 and g'(x) > 0 for $x \in]$, $\infty[$. We also assume there exists a finite limit $L = \lim g(x)$. Since $\varepsilon_0 = \varepsilon_0(a) = \varphi(a, \delta_0) = g^{-1}$ $[\delta_0 g(a)]$ we deduce the existence of the finite limit.

$$\varepsilon_0(\infty) = \lim_{a \to \infty} \varepsilon_0(a) = g^{-1}(\delta_0 L)$$

In this case, from Theorem 3 we obtain the following result.

THEOREM 4. Let $n_0 \ge 2$ and $\lambda > 0$ be given. Suppose f is nonnegative on $[0, \infty[$, summable on [0, a] for each a > 0 and $f(x) = g^{\lambda}(x)$ for $x \in [0, \infty[$ ε], where $\varepsilon \geqslant \varepsilon_0(\infty) = g^{-1}(\delta_0 L)$ and δ_0 is the root of the equation (24). Then $F_n = A_g^n(f)$ is increasing on $[0, \infty[$ for all $n \ge n_0$.

If g(x) = x/(1+x), from (25) we obtain $\epsilon_0(\infty) = \delta_0/(1-\delta_0)$ and for

 $n_0 = 2$, $\lambda = 1$ we get $\varepsilon_0(\infty) = 2{,}37231$...

If g(x) = th x, from (26) we obtain $\varepsilon_0(\infty) = \frac{1}{2} \ln \frac{1+\delta_0}{1-\delta_0}$ and for $n_0 = 2$, $\lambda = 1$ we get $\varepsilon_0(\infty) = 0.87413 \dots$

If $g(x) = \arctan x$, from (27) we obtain $\varepsilon_0(\infty) = \operatorname{tg}(\delta_0 \pi/2)$ and for $n_0 =$ = 2, $\lambda = 1$ we get $\epsilon_0(\infty) = 1.98932...$

REFERENCES

- [1] Beckenbach, E. F., Superadditivity inequalities, Pacific J. Math., 14 (1964), 421 - 438.
- [2] Boehme, T. K. and Bruckner, A. M., Functions with convex means, Pacific J. Math., **14** (1964), 1137—1149.
- [3] Bruckner, A. M. and Ostrow, E., Some function classes related to the class of convex functions, Pacific J. Math., 12 (1962), 1203-1215.

Received 14.I.1982.

13

Department of Mathematics Babes-Bolyai University 3400 Cluj-Napoca, Romania