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1. Introduetion. For 2 > 0 we denote by L{0, 4] the space of Lebes-
gue summable functions on [0, @] and by L*[0, a] the subset of non-
negative functions in L[0, a].

Let g be a real-valued function defined on [0, a], which satisfies
the following conditions : (i) g is continuous on [0, a], (ii) g is continuously
differentiable on [0, a], (iii) g(0) = 0 and (iv) g'(x) > O for all ¥ « [0, a].
Such a function will be called a weight-function.

If f = L[0, a], we define the weight-mean of f, (of weight g), as the
function F = A4,(f) given by

X

(1) F(x) = 5 Sf(t)g'(t)dt, for ¥ = 10, a], and F(0) = f(0).
g(x
0

‘The weight-mean of order n of f is defined by F, = A,(f) = Az(F.—1),
F,=F. The main result of this paper states that if f e L*[0, a] and
f is continuous and strictly increasing on a neighborhood of the origin,
then F, is increasing on [0, a] for sufficiently large »n. Some particular
cases are considered.

2. Preliminaires. The operator A4,: L{0, a] - Rl defined by (1)
is linear, positive and 4,(1) =1, i.e, it is an averaging operator. In the
particular case g(x) = %, A, = A is the well-known Cesaro operator. If

g(x) = «¥, v > 0, the operator 4,4, denoted by A, is the so called genera-
hzed Cesaro operator.

Since the weight-function g is strictly increasing on [0, a], we can
define the function ¢: [0, a] X [0, 1] =R, by

(2) & ex w) =g ug(x)], x « [0, a], w [0, 1].

“
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It is easy to check the following properties of this function.

(i) 0 < o¢(x, u) <%, for all x « [0, a] and » = [0, 1];

(i) e¢(.,#) is continuous and strictly increasing on [0, a], for all
we [0, 17;

(iii) ¢(x.,) is continuous and strictly increasing on [0 1], for all
xe [0, al;

(iv) o0, ) =0, u = [0, 1] and ¢(x, 0) =0, x = [0, a];

(v) ele(x, %), v] = ¢(x, uv), for all ¥ [0, 2] and #, v [0, 1].
Making the substitution # = ¢(x, #) in (1) we obtain

1

(3) F(x) :Sf[cp(x, w)ldu, x < [0, al.

0

We note that the image by 4, of a function in L[0, a] is not nece-
ssarily' in L[0, a]. In the case g(x) = x a simple counter example is
given in [2]. We also remark that F is well-defined even in the case
fg' < L[0, al.

If fg' e L[0, a] the function I = A4 (f) is absolutely continuous on
[0, @] and differentiable a.e. on [0, a]. Moreover if f is continuous at
0, ie., f(0*) = f(0), then from (3) it follows that F is continuous at O,
hence F is summable on [0, a].

PROPOSITION 1. If f is increasing on [0, a), then F = A,(f) 1s tncreasing
n [0. a]. Moveover, if [ s continuous and strictly imreasing on [0, a],
then F 1s continuous and strictly tncreasing on [0, al.

Proof. Let 0 < x, < x, < a. If f is increasing, from (3) we de-
duce

1 1

F () = flola, #)1du < flo(n, u)ldun = P(z)
0 0

If f is continuous and strictly on [0, @], then the above inequality is
strict.

PROPOSITION 2. If f e L[0, a] and f(O+) = f(0), then F = Ay (f) ts
increasing on [0, a) if and only if
(4) F < f, ae [0, al
Morveover if f is continuous on [0, a] then I = A (f) is increasing (strictly
increasing) on [0, a) if and only if F < fon [0, a], (F < f on [0, a]).

Proof. The function f is differentiable a.e. on [0, 4] and

(5) F'(x) = % [f(x) — F(x)], a.e. on [0, a.
g(x

If F is increasing then F'(x) > 0 a.e. on [0, ¢] and from (5) we deduce
(4).
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Suppose that (4) holds and let 0 < x; < %, < a. Since F is absolutely

X3

continuous on [%,, %,] we get F(x,) — F(x,) = SF'(t)dt > 0, hence F

is increasing on [0, a]. Since f(0%) = f(0), from (3)x°we get I'(0%) = f(0) =
= F(0) and we deduce that F is increasing on [0, «].

If f is continuous on [0, a], then F is differentiable on [0, a]
and (5) holds for all x = [0, a]. The second part of Proposition 2 im-
mediately follows.

In the case g(x) = x some behavior properties of the Cesidro means
have been examined in [1], [2] and [3].

3. Weight-means of higher order. Let f = L[0, a] and let F; = A,(f).
Inductively we define the weight-mean of order n of f on [0, a] by
F.=A,(F,_,), provided, of course, that F,_; is summable on [0, a].

Definition. The function f = L[0, a] is in the class M,[0, a]
provided [ possesses weight-means of all orders on [0, a].

. We note that if f « L[0, @] and f is continuous at 0, i.e., f(0+) =
= f(0), then f e M,[0, a].

If f « M,[0, a] and # > 1, then I, = A,(f) is differentiable on [0, a]

and we have

Fy(x) = 5’((")’ [Fu (%) — F,(x)], for all x < [0, a],
g(x
which¥shows that F is continuously differentiable on [0, a].

We shall use the following integral representation of the weight-
means of higher order, which generalizes that gven in [2] for the case
g(x) = «.

PROPOSITION 3. If f = M,[0, a], then

(6) F, (%) :Sf[(p(x, w)lk, (@)du, x = [0, a], n=1, 2, ...

wheve ¢ 1is given by (2) and

n—1
kﬂ(it) i ((_1) n!t (ln %)"71.

Proof. For # =1 one obtains formula (3). By induction we have
1 1 1
Fpp1 = SFﬂ[tp(x, u)]du = Sdu (f[cp(cp(x, u), vk, (v)dv =
0 0 0

1 1 I “

= \du \flo(x, w)Ik,)dv ~ | u( flo(x, )R, (%)Ly:

: u
0 0 0 0
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_ L 1 . i\ !
={ Flotx )1y | £, 2) % =L\ flalx, 5))(iny)dy =
L) u n!
0 3 ]

:S Flox, )kt (#)du.

0

PROPOSITION 4. [2]. The kernel k,, n=1, 2,... has the following
properties :
(i) k(w) 20, n=1,2,...
1
(ii) Sk,,(u)du =1, n=12...
0
(iii) im k,(u) = 0. The convergence 1is wuniform on every interval

Te, 1], ¢ > 0.
(iv) k,(u) is momincreasing on 10, 1 for cach n.
THEOREM 1. If f & M,[0, a] and f(O+) exists and is finite, then the
sequence F, = Ay(f) comverges uniformely to f(0%) on [0, a].
Proof Iet 2z « [0, a] and > 0. We choose § > 0 such that
0<u <3 =|fle(x, )] —fON)] < e
From (6) and Proposition 4 we deduce

|F,(x) — f(0)] < SIf[@(x, u)] — f0*) | k(w)du <
8 ’ 1
< e { Bdu+ ,(3) {1 /ol 0)] — f07)ldu <
0 8
< e+ ky(3) {1 flolx )] — 01w
S
Since lim %,(8) = 0 and the last integral is bounded, as a function of

#H—-00

x, there exists an #,(e), independent of x, such that
x < [0, al, n> ny = |F,(x) — f(0F)] < 2¢
and Theorem 1 follows.

For g(x) = ¥ Theorem 1 was proved in [2].

%, Increasing weight-means of higher order. We shall show that if
the nonnegative function f is summable on [0, a] and it is continuous
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and strictly increasing on a neighborhood of the origin, then F, = AN
is increasing on [0, a], for sufficiently large #. More precisely we hg
the following result

THEOREM 2. Let f « LT[0, a] and suppose there exists an ¢ < 10 !

’

such that f is conttnuous and strictly increasing on [0, 1. Then the eight-
mean of order n of f, K, = A;(f), is increasing on [0, a] for all n > 7,

ave

-where
(7) o = tofs, @) = 1+ 1n (1/8),
(8) M = F(e), m = min [Fy(x) — Fy(x)]

x<€ [g,, €]
S — g(e)
gla)

Proof. By Proposition 1 we deduce that F, = A,(f) is continuous
and strictly increasing on [0, €] and Proposition 2 shows that

f(x) — Fi(x) > 0, for all x «]0, <.
By induction we get
(9) Fur(x) — F (x) >0, for all x €10, e]and =1, 2, ... (Fo=f).

Since for # > 1 the function F, is continuous on [0, a], by using
Proposition 2, we deduce that F, is increasing on [0, @] if and only if

(10) Fu1(x) — F,(x) 20, for all x «]0,a].
By mnoting (9) we see that it suffices to show that (10) holds for
all » > n,, and all x e |e, a].
Let ¥  [e, a]. From (6) we deduce
1
(11) Fyes() — F(0) = { FTo(, 0)] ki) — k() 1w

0

&= ¢(e, 9).

mqw—wmn=mqqu+““]

n—1

formula (11) can be written as follows

(12) ﬂ4m—ﬂm=VM%wm4mp+

Let & = 8(c) = g(e)/g(a), ie., @(a, 8) = . We have
(13) ¥ele,al, uesl0 8] =0<oqlx v <ec

Inun ]d%.
—1

»
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We shall write (11) in the form
' 5
(14) Fyoa() — F(1) = { Flo(w)] lona() — By(o) 14w +

+ Sf[cp(x, ) ]y () — Fo(3) 1.

5
On the other hand we have
(15) [lots, v)dv = u (flex, uldt = uFilels, )]

[} 0

and
(16) Ra(w) = — — k,(u).
Integrating by parts, and using (15) and (16), we obtain
3 8
Sf[@(% )1k, (w)du = 3k, (3)F1[o(x, 3)] +SF1[<P(% ) en s (1) dt,
0 0

hence
5

[ oz, 1)1 lfus(s) — hu(s) ] =
(17) o
S

- Sf[q;(x, 0)] — Fyo(t, #)] ks (@)du 4 22 kyi(3)Fa0(x, 3)1.

n—1

0

From (9), by using (13), we deduce

flo(x, w)] — Fylo(x, #)]> 0, for all x = le, ] and » <10, 3].

Since k,_(#) is nonincreasing, using (15), we get
3

(18) {flote, )] — Fulele, 9)]hi(o)du >

> Sku(8){Fale(x, 8)1 — Falo(x, 3]}
Let
M = max F,[e(x, 8)] = max F(x) = Fy(e)

%< [, a] %< [g, €]
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and

" = I}I[in]{Fl le(x, 8)] — Fyle(¥, 9L} = m[in ]["Fx(x) — Fy(2)1.
where ¢, = ¢(e, 3), i.e., g(e) = 3g(e).
)

Since F, is continuous, from (9) we obtain m > 0. We also have M 3>
> m.

From (17) and (18) we deduce

n

5
(et 911bs-s) — k(1w > 3t (B — Htn 1],
0 |
Hence the first integral in (14) is nonnegative if # > 1 +£1n%. On
m
the other hand, from (12) we obtain
1 1

Lot )1l — R 10 = fTo(x, 0 Thust 1 +
8

lnuldu>
n—1
8

1

[1 N h;(l/ﬂ] Sf[cp(x, ) 1Ry 1(u)dus,

w—1
8

which shows that the second integral in (14) is nonnegative if # > 1
+ 1n(1/3). Since M > m we deduce that the inequality (10) holds, that
is, F, is increasing, for all # > u, where n, is given by (7). This com-
pletes the proof of Theorem 2.

Remarks. 1) In Theorem 2 condition no f to be strictly increasing
on a neighborhood of the origin is essential. Thus, if we take g(x) = #,

ie.,

x

F(x) = % S fydt, x <10, al, F0) = f(0), a> 1

0

and consider the function

{1, x = [0, 1]

f(x):{ 0, x =11, a],

then

1, x e [0, 1]
Fo(x) = %5»—1(111 %), x 11, a],

9 — Mathematica — Revue d'analyse numérique et de théorie de l'approximation, tome 11, nr. {—2/1322
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where
Sily) =114 Lederoh + L
1! n!
For x =11, a], we have
a F#) = — =2 g,
- (n = 1) 1x2

which shows that F, is decreasing for all #.

2) If f is bounded below on [0, @] the requirement of being non-
negative can be removed by considering the sum of f with a suitably
chosen constant. [

COROLLARY 1. Let f « L+[0, a]and assume there exists an ¢ <10, a]

such that f(x) = [g(®)P, 2> 0, for % = [0, €]. Then F, = A(f), is in-
creasing on [0, a) for all n > n,, where
A+ 1 llnl 8=g(a)

’

PO b gla)

(19) ny, = nole, a) =1+ —
Proof. The function g*, A > 0, is strictly increasing and for x
= [0, €] we have
1 1

_ A F _ AMx).
Fi(%) 78 (x), Fy(x) T (x)
From (8) we deduce
- L il A — A Ag A
M i 8 (e) and m PR gMeq) T g(e),
hence

Mgty s@
g(a)

and (7) becomes (19). Corollary 1 follows immediately from Theorem 2.
COROLLARY 2. Let f « L+[0, a] and assume there exists an ¢ =10, a]

such that glg' is increasing on 10, €] and f(x) = x 4 g(%)/g' (%), for ¥ =

<10, €], f(0) = 0. Then F, = Aplf) is increasing on [0, a] for all n > n,,

where

ny=1y(e, a) =1+

20
(20) gla) \gr)dt

0

Proof. The function f is strictly increasing, on [0, e]. It is easy
to show that Fy(x) = x for x < [0, €]. If we let 7 = F; — F,, then

g%
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By the mean-value theorem of Cauchy: tliere exists a-% & 70, 4

i . ‘auchy: sts a- & <= 10,4 'such
that %(x) = g(&)/g’(E). Since gfg’ is increasing, we deduce ] :
@) . < gor ko0, ¢

ol ; g'(w) e
On the other hand we have |

B(x) = 17— EEy 0y
&)

~and from (21) we obtain #'(x) > 0 for x e 10, €], which shows that A

is increasing on 10, ¢].
Therefore in (8) we have M = Fi(e)i=c and: m = h(z,) =

&1

= Sg(t)dt, where g(e;) = Sg(e) = £ ). Hence (7) becomes (20). and
gle )70 g(a). 2
Corollary 2 follows from Theorem 2., B

5.E SYome particular cases. 1°. TLet g(x) = 2", v > 0. In this case
3 :(;, and (19) becomes

(22) Ho=yle, ) =121 Ly L g ALy e
A0S 3 o s, Sia
For y =1, we have
(23) mo=142FL Ly 1y
A 3" 3 @

If we take in (23) A = l, we obtaiﬁ
2
3 1
1/],0 — 1 "J_ ‘\—/:S:h'l E .

] 1 ;
For § = 5 we get #o = 3,94 ... and from Corollary 1 we deduce that

if f e L*[0, a] and f(x) :\/5, for x [O, —ji then A*(f), i.e., the Cesaro

mean of order n of f is increasing on [0, a], for all » > 4.

o

For §== we get n, =248 ... and from Corollary 1 we deduce

that if f < L+[0, a] and f(x) =4/%, for ¥ e« [0, 2a/3] then the C
. : ) » 1 = [0, sa
mean of order » of f, is increasing on [0, a] fo[r all 1/’1, ]> 3. A
Ff)r 3 = 3/4 we get 7 = 1,99 ... “and from Corollary 1 we deduce
that if f = L+[0, a] and flx) =4z, for x < [0, 3aj4] then the Cesaro
mean of order # of f, is increasing on [0, a] for all # > 2.

[9>]
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If we take in (23) A = 1, we obtain
o = 144 éln 18 .

For 8 = 1/2, 8 = 2/3 and 8 = 3/4 we obtain respectively #, = 3,77 .. .,
ny =221 ... and ny, = 1,76 ... and the above conpluswns remain valid
if on the intervals [0, @/2], [0, 24/3], [0, 3a/4] respectively we take f(x)=x.

If v = 1/2 and » = 1 from (22) we obtain

v 1 1
ny =1+ i In g |

For 8 = 1/2 we have n, = 198 ... and from Corollary 1 we deduce
that if f e L+[0, a] and f(x) = /%, for ¥ = [0, /2], then A5.(f), ie,
the generalized Cesaro mean of order n of f, with y = 1/2, is increasing on

[0, @], for all » > 2. :

2°. Tet g(x) = %/(1 4 2), x = [0, a]. In this case (19) becomes

a M1 +s)7\1n a(l + ¢)

Atlia
s’ 1+a e(l + a)

A

ng = ty(e, @) =1+

If A =1 and afe = 2, from Corollary 1 we deduce that if f « L*[0, a]
and f(x) = /(1 + x) for x < [0, /2], then the weight — mean of order

n, B, =A%(f), with g(x) = »/(1 + %) is increasing on [0, a] for #» > 1 +
a+ 2 a4 2
2 —.

+2(a+1.' nu+l

3°. Let g(x) =sinx, ¥ < [0, @], @ < w/2. In this case we have

€1

Sg(t)dt:1~c0551:- e
sinte
o e
Sin“a

and (20) becoimes

i [ ' int e si
Ny = nofe, @) == 1 - ”m_“.{l—}—\/l—m_n )ln LAY

sin?e

sinfe

If a == nf2, we have

e = 1 4 'e;(lﬁ—«‘/l—sin“s)ln 3

gin? sin €

For ¢ = 0,79 we get #, = 1,997 ... and from Corollary 2 we deduce that
if feL+[0, n/2] and f(x) = x4 tgx, for x « [0, €] with ¢ > 0,79,
then F, = A}(f), with g(x) = sin x, is increasing on [0, =/2] for all » > 2.

6. Inereasing weight-means of a given order. If #, is given and we
require F, to be increasing for » > n,, provided f satisfies conditions of
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Corollary 1, then equation (19) determines s. We thus obtain the follo-
wing result.

THEOREM 3. Let ny > 2 and % > 0 be given If [ < L+[0, a) and f(x) =
= [g(x)} for x = [0, e], with ¢ > ¢, = ola, 8,), where 8, 1s the root of
the equation
(24) (no — A 4 (A + D)In 8 = 0,
then I, = Ag (f) is increasing for all n > n,,

To illustrate Theorem 3 we consider only the case Ho =2, A=1
and give some simple examples. In this case equation (24) becomes

$+2Im3 =0
and we get 8§, = 0,70346 ...

1°. If g(x) = 2", v > 0, we obtain g, = 8/ a. For Y = 1/2 we obtain
€g = ka, where k = 32 = 0,49866 ... .

2° If g(x) =1In(1 + x), then e, = (1 + @)% — 1 and we have the
following values of e, for certain values of a:

a | 1 | 2 | 3 4 | s |6 |
& r0,628...'1,165...|1,651... 2,102...]2,526... |2,93o...‘

=35 E g(x) =%+ ax?, « >0, we have o(x, u) = 2ux(l 4
+ ax)/(y/1 + 4aux(l 4 ax) + 1), hence

28q4a(l + aa)

Eq —
¢ JT T daa(l T wa) 11

Putting e, = ka, we remark that §, < & <\/[3—0 for all a> 0 and «
i 8.8§1§7§ur particular case (n, =2, A = 1) we have 0,70346 ... < &

4°. If g(%) = sin x, @ « ]0, m/2], then ¢, = arcsin(§,sin @) For a =
a = /2 we get € = arcsin §, = 0,78026 ... . Since gg < m/4=0,785 ...,
in this particular case Theorem 3 yields the following result: If f

s L+[0, /2] and f(x) = sinx for x < [0, 7/4], then F, = Aj(f), with
g(x) = sin x, is Increasing on [0, =/2] for all # > 2.

5°. If g(x) = sh x, we have ¢(%, #) = In[ush x 44/T + u?sh?x] hence
€9 = In[8¢sha + «/1 + 3fsh2a] = e4(a). We remark that lim [@a — eo{a)]=
= In(1/8,) = 0,35173 -

6°. If gx) = 2/(1 + %), we have ¢(x, u) = #x[[1 4 (1 — u)x], hence
(25) g9 = go(@) = S4a/[1 + (1 — 8g)al.

>
<

a
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For:a == liwesget. ey =.0,04257. - I wesrequirg ey a/2, then a.z
> (280—1)/(1—8)_137231 i MG I
l . u. th x
7 If g( )‘ thx we h‘avg (p(m u) = ln B
s l 1- 8, tha '
(26) S0 :?ef’.(?l) :,: 2, o = B tha

and we obtain the followmg v.-,ﬂnf_ nf <o for certam values\ of a:

l wil 2. '.:) A4 ia:'l‘-i-".;'n 3
‘! G H‘ T L TR e i i I-L S LT R
Ak I 0,598. .. i 0885.. .4 | 0867 ‘ 0,873. ‘ 0,874
v . — R T
s 8% TEug(x ); = aretg.x,” we haveijqg. .. ot ) ¥ X ¥ )
(27) gy = €ola ) = tg(& ardtg a) e R abwaw mi o
and ‘we obtafii' the follomng Values of €o f01 CETtd.ll’l values ofia: .
a- |1 __‘ 2 ! 3 ‘ 4 .'i -~.__5 »
co {0615, .. ) 0,986, , \; 1,206, ‘ 1,348, ‘ 1447 ’
I Bag : e

We remark that in cases 6° 7° and 8° the function g has a finite
limit as @5 oo ahd in (23}, {26)¥and" (17) ¢ ( ) goes to a fnnte 11m1t as
a — .

More generally, suppose g is contmuous on [O oo[ Contlnuously dlffe—

rentiable on 10, o |, g(0) =0 andg (%) > 0 for x < ], ©o[. We also assume

there exists a finite limit Ir = him’'g{x). -Since e, = go(a)= @(a, ,) = g1

A—=00

[34g(a)] we deduce the emstence of the. finite. 11m1t
(co) = linrey(@) =g~ (3,L):

a—o0

In this case, from ’Iheorem 3 we obzain the following result.

THEOREM 4. Leét'ny > 2 and N >0 be gwen “Suppose [ is Mownegatwe

n [0, o, summable on [0, a] for each a >0 and f(x ) = gM#) for xe [V,
Z] ?Ea'iwrc [s: > go(00) = g~ (8oL) and 3, is the root of the equat@oﬂ (24). Then

F, = A(f) s mcreasmg or [0, oo[for all m = ny!
o I g&f)) = «/(1 4 %), from (25) we obtain 00( ) = 8,/(1 = §;) and for
no =2, A =,1:‘>we get eo(q_o) = 2, 37231 oy ki i g 4 in 5
If g(x) ='th , from (26) we obtain go({0) = 5 la 1.’J:—:S"and f,o,-m“-; 2,
Azl we get go(o0 ) = 0,87413 .
If g(x) = az?ctg %, from (47) we dbtain e o{00 ) = tg(3,m/2) and for no
=2, A=1 we get gyo0) = 1,98932 ...
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