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L. Let there be given m < N, m > 1 and the points:

(X) 1 , O:x0<x1< xmzlr
(Y) O:yO! Y - oy Ym ER
‘We suppose that. Aj(y) =9, — 51 #0,i=1,2 ... m,

s. w. YOUNG [1] has proved the existence of a polynomial P satisfying
the following two conditions:

(1) Px)=uw,1=0,1, ..., m
(2) P(x)A(y) >0, x e %1, %[, 1 =12 ..., m

Such a polynomial is named comonotone interpol’ating polynomial

An estimate of the degree of comonotone interpolating polynotmials
can be found in [2]. Other estimates have been established [3], [4] 5],
[6], [7], only for the particular cases: :

(3) yi<yi+1; t=0,1, ..., m—1; or v,'> vy, 1 =0, 1, ,m—l
and i v it IR IR T T T
|(4) O=%< ... <2=12<%n<... <%, =1,

129> ... 5p=0<nu<...<y, <L
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The purpose of this note is to show how we can continue, from a
constructive viewpoint, the proof of Young’s existence theorem, for to
obtain estimates of the degree of comonotone interpolating polynomials.

After, we show that Nikolcéva’'s estimate [4], [5] for the particular
case (3) can be adapted for the general case.

2. To prove the existence of a polynomial which satisfies (1) and (2),
Young constructs the following convex cone of polynomials :

5) D={Q 21Q%) " Ay) >0, x e]xer, %[, 0 =1,2, ... ,m

and he considers the function F defined on the [0, 1] — integrable rea
functions set, with values in R”:

x
i

(6) F(f):(gf(x)dx>l<i$»lel{m-
0

It is obvious that F/(D) C R™is a convex cone.

After, he shows: y = (vy, va, ..., ¥) & F(D).

For, he obhserves that
) y =2 180) Iy
where A, = (0,0, ..., 0, 6, ..., 6,)¥ « R”" has the first j — 1 compo-
nents null, and o, = sign A,(y).
Because Ay, %g, ..., Ayisabasefor R”, a, = [A(y)| > 0,7 =12, ....m,

and e F(D), j=1, 2, ..., m, a new base for R": A, Ay ..., A, =
e F(D) can be found such that

(8) yZZ(al—f—al)xI' a1+a/>01 ]:1) 2: ---me‘
7=1

and consequently y e I'(D). Let Q « D be such that y = F(Q), then P(x) =

x
:S Q(x)dx is the required polynomial.
0
Let us denote by 4 and 4 + A the matrices having Ay, Ay ..., Ay,
respectively A, Ay ..., A, as colums. If we put

a:(IAl(y)l’ sty |Am(y)l)1t a+d: (a1+d1: S} am+am)T

then the systems (7) and (8) can be written under the following form:

(7') y=A4da, a>0
(8) y=(4+ d)(a + a).
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A first problem on the systems (7') and (8') is that of determining
the delimitation for the norm of the perturbation 4 under which (8"
has a positive solution a -+ g.

To solve this problem we observe that
a=A"YA + A)(a + a)
or, equivalently @ = (I 4+ A-'4)(a 4 a), and we infer from this that
9) ad=—(I + A-14)-1(4-4a).

The existence of the inverse (I + A-14)-1 follows from a well known
C. NEUMANN ‘s theorem (see [10], theorem 2, p. 69) if the following con-
dition holds :

(10) A4 || < 1.
Moreover, in this case, we have
(11) I+ A-2d)-1 ) « —

1—jla-1a)
From (9) and (11) we obtain

= s A4
(12) llal] = max|a,| < LA
1sj<m 1 — |l 4-14)|
If we put « = ||a|| = max g, and B = min a, > 0,
1<i<m I<j<m

then a sufficient condition in order to have @ + @ > 0 is that lla|| < B
In virtue of (12) the last relation takes place if : ' '

[|A—1A]|
_—I—_ o < B;
1— |44

from where we finally get

(13) 14~ < £
. a4 B
We remark that the relation (13) assures (10).

~ Thus (13) is a sufficient condition in order that (8) has a positive solu-
ton a + a (whenever (7') has an unique positive solution a).

~ Remark. The anterior result has been directely proved, without
using C. NEUMANN ’s theorem, in [7] (see also [4]). o
' 3. The second problem on the systems (7) and (8') is that of construc-
ting approximations A, e F(D), of the vectors NeFD),j=12 ...,m,
1n a such way that (13) will be satisfied.
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:,- If Q = D dseafixed . polynonual and;s; are the functlons

(14) gulie  psise B« s,(a&) 7 10,n @ e [, 2] i ‘
c,, xe[x, 1, x} R i
x]» f s N : el i fpuse
where ¢; = 1/ S 10 [(%)dx, j =31, 2, ..., m
2 ; .7 -1 . ) [y
then we see that o N ..
(15) N=FsQ), =12 ..0 m

L% WY YOUNG: [F] indicates the Weierstvass’s: approxlmatlon thEorem
for tazapproximdte <,,un1formly rthe:functions: s,, by positive polynomlals

s,; thus his approximations of the vectors A, are A, = F(s;Q). * £

Clearly to construct A, it is not neccesary to approximate ’ umforml'fy’l’,i’

x

s, it suffices to approximate unt[ormly the funct1ons S s,{t )Q( )dt by como—

notone polynomials. Th1s idi done by M NIKOLCEVA and G. ILIEV [4]
{51, [6], [7] under the assumption (3) (in [6], [#] the case (4) is also studied).
In the general case this idea permits to M. rvaN [8] to avoid the use
of Weierstrass’s theorem in'-the. proof of the ex1stence Young'’s theorem,
but no estimates are made,

Next we show that the N1kolceva s estnnates on the degree of monotone
interpolating polynomials can be adapted :for the getieral rcdse;

TEMMA (M. leolceva) If m, k e N, n>0 are such that 1<k <

< /(21n w)ithen there existsa ;bolynomml A,, b of deg%’e < 2n whwh satﬁs-

fws the following three conditiows ™ BeEg e

(16) Apa() 20, x e [—1, 1],
(17) Ay n(x) < 2etn=%40, )\k,jal.p ol <1, Ma=kn"llnw
My PRy (PO BT S——
(18) \ Aws(mdx > 1. __
i, T, o b R 1)

e P/z<mma( P R Lo & L S,
dnd’let u¢"dénotd™ " |, Saers bsabivn, 35 oy e
e ' dj2 ' ) ' g -I L
20 g =1 (Anle{i S b
f K '“sw— i ' . I_-..., __ s

21—48
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:We look: for the comenotone, intérpolating polynoiig

form : 111 the ; f0110wmg

a4

= :l mdr{‘a})jd Ank‘t ks __l

J

(21)

Therefore, the elements of A + A = (@ )1« jem ‘are

b o oA | P AT
I - A »

' i .';"'*"
A j

(22) . _S + ¥ sifed
"= dA"' b= #)Q(t)dt, 1<, j<m.

0
Now, if we' obsérve:that .A-1 =!(sj)isi e whete "
s e o . O'Jlf’b9é]and@;é]+1
A S o i N G,']" — U “ lf 1 “A'] I .

—o, if 1= ] + 1,
then by (22) it follows" that the eIements of 1 + A=14 =

&, ;
o e e \

(Bil)l<i, j<m Aare

W FE

SdA”(t—_ = ‘“’)lgltgdt 1 <.i-,j<n;.

*_1 awlh A

(23) B,

We shall determine such that (13),

Will b tisfi _ .
¥ishall “establish ' the following : 17 be satisfied. More precisely

it

THHOREM. Let Q €D, n.k aN, n>0. Ifk 3, ¢, » are such that:

(24) g 'lék\' 2111%)} 5 [
(25) 2fn='lnn <8< min A (%) I
l<ism : 3 ko i

(26) 0 <y % 1@1()foranyxew[*l.f”__§ A's=.+~x;_.+a]
i 9 ' E

i=1 2 9
(27) Inn > (2f 4 1) ln.(% f_ﬁ_ Llei m)
q

thentherearea,—]—a >0,;5=1, 2,

<oy m, such that the polynomial P.
given by (21) satisfies (1) and 2), and polynomial P, ,

(28) degree P,,,‘ < % + 1 + degree Q.
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Proof. Let us give estimates for By, 1 <4, § < m. We begin with
the case i = j; wejhave

A‘(s)lz !
Bu= § ddoslo)(s+ 22 at =
Ayl
—8/2
= 4y o0 QU1 + =) at 4
~B,)2
8/2 LW
+ § ddn@io + 2= a+ ( ddaaiolfs + 2=t o
—3/2 o2 ,

and hence, since by (20) the second term is equal to 1, we have on using
lemma and (25), ‘

[B — 1] <1Qdi(Ay(x) — 3)2e8n—2r+1,

From (20), (26) (25) and (18) we see that d; < 1/g and so
(29) | B 1] < 12 gpny -z,
g

To give such estimates for B;; when 4 # j let write B; in the following
form : ; '

%= (%1t )2
(30) B= | a2t

x'-_l—(x,-__1+zj)l2
If £ >4 we have

8/2 < A.-_l(x)/2 =X — ———— € Xj_g ————%

Therefore by (30)

(31) By < 120 gptp-2rp1,
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If ¢ <j we have

—3/2> —Aua(%))2 = %, _% > x, _"_f—lzﬂ=

¥j—1 +
=X — % + Ay(x)

and consequiently the estimates (31) are also true.
Now (29) ‘and (31) yield

(32) ||A-1ﬁ|| < lQn QeAn—2k+1 . 4.
g

Lastly let us observe by (32) that to have (13) it sufices to have (27). This

completes the proof.
Remarks. It is obvious that we can take Q e D such that degree

@ will be equal to the number of monotony changes of (y).
We obtain Nikolcéva’s results when (y) satisfies (3) and therefore

Q=1.
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