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Introduction

The present paper completes the results of our notes [12] and [13]
which have appeared as preprints.

Let X be a normed vector space and M an arbitrary subset of X.
The metric projection on M is the mapping Py : X — 2M  defined by :

Pylx) = {m e M: ||x —m]| = d(x, M)},

where d(x¥, M) is the distance from x to Af. If card Py(x) = 2, for all
% e X M, we say that the metric projection is ftotally multi-valued
and in the special case when card Py(x) = o for all x « X\ M we
say that the metric projection is countably mulii-valued. For some résults
on countably multi-valued metric projections see [11]. '

The set M is called proximinal if Py(x) # % for all » « X\ M
If P, is a totally multi-valued metric projection, then the set M will
be called strongly pmxémmal. It is clear that every proximinal set js
closed and every strongly proximinal set is proximinal, hence closed.

§1. Countably multi-valued metric projeetions.

In this paragraph we shall construct a normed space X containing
a bounded ‘strongly proximinal set M with P, countably multi-valued.
First, concerning strongly proximinal sets we have:

proPOSITION 1. If M is a strongly proximinal set of the Banach space
X, then:
card Pyux) = ¢,

for all x « X M.
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Proof. We denote by B(x, r) the closed ball of center x and radius
r. Tet M be a strongly proximinal set of the Banach space X. Then
M is a closed set and P, (x) = M N B(x, d(x, M)) is a closed set too,
as an intersection of two closed sets. We will show that if ¥ & X\ M,
then P, (x) does not contain isolated points.

We suppose, on the contrary, that m, e Py(x) is an isolated point
of P,(x), for a given ¥ = X ~ M. Then there exists an ¢ = (0, 1) such
that Bmg, ed(x, M)) N Py(x) = {n}.

Tet x, = (¢/3) x+ (1 — ¢/3) m,. We have:
= Bl = 1% — (ef3) & — (1= (e/3) mo] = (1 — (<fB) || % = mo| =

= (1 — (¢/3)) d(», M) < d(x, M).
It follows that %, « X~ M. On the other hand Q.
|20 — moll =11 (e/3) x + (1 = (¢/3) mo — moll= (e[3) || x —moll =
= (g/3) d(x, M).
From this follows d(x, M) < (¢/3) d(x, M). Let m = M. If m & Py(x)
we have :

g —m|l 2| llx —m| — [lx, — x| | = ||¥ —m| — %, = %[>
> d(x, M) — || %o — || = d(x, M) — (1 — (¢/3)) d(x, M) = (¢/3) d(x, M).
It is clear now that m g Py(xy). I m e Py(x)\{mo we have:
|2y — m |l 2 [|{me —ml| — [[my — 2|l | > ¢ d(x, M) — (¢/3) d(x, M) =

= (2¢/3) d(x, M) and m & Py(%,).

Then, for all m # m, m e M, we have m & Pu(%,) and it follows
that Py(x,) = {m,} and this coutradi_cts the fact that M is a strongly
proximinal set. It follows that Py(x)is a closed set, dense in itself, i.e.
a perfect set in X for all x = X\ M. But every perfect subset of a
complete metric space has the cardinality at least ¢ (theorem 6.65, p. 72,
[5]). Hence card Py(x) > ¢, for all x & X\ M. _ ]

In the precedent proposition, the condmon”,,X is a Banach space
cannot be improved by X is a4 normed space’’, N .

Example. Let X be the space of all real sequences x = (x,)n—1 having
only a finite number of nonzero terms. With the norm:

)] = max {Iz,}},
X is a noncomplete normed vector space. Let M Dbe the set
M={x X x, {0, 1/2"}.

We will show that P, is a countably multi-valued metric projection,
ie. card Py(x) = ¥, for all x e X\ M. Let be ¥ e X M. Then the

terms of the sequence x = (x,)i-1 will be of the form:

x, = 1/2°, if n =1y, Hy ..., %
X, < R\{O, 1/2”} if n = Rppt, ooy Py
x, = 0 in rest.

piv}
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Let m9 = (my)r-y the element of M defined by

12*if m=my, ..., n,
My = or if # e {my, ..., n} and |x,|>|x, — 1/2"],
0  in rest.

For every m = (m,),.i= M we have:

|2 —m|| =max {|x, —m,} > max {|x, —m,|} >
neN ne{” u,}
k+1
> max  {min(|x,|, |x, — 1/2"|)} =
"E{"k-{»l’“ ‘) ”r}
= max {lx, —ml} = max {|x, —ml|} =
”E{”k+1:- 355 ”r} ne{n,,. N n,}
= max{|x, —ml|} = |[x —mO|.
n=N
This implies that m° < Py (x) and then d(x, M) = ||x — m°|| > 0.

TLet Ny € N be such that 1/2" < ||x — m0 ||, for all # > N,. Let
N; =max {n;, #,, ..., n,} and N, =max {N,- 1, Ny -} 1}. Let
My, = {m® + (1/2") e}nsn,
where ¢, = (0, ..., 0,1, 0, ...).

N
H

It is clear that M, is a countable subset of M and if m! = (m; s M,

then :

|| — m!|| = max {]x,— m}|} = max {max|x, — ml|, max|x, — ml|} <
NEN n= Ny H<N,
< max{l/2%,||x —ml ||} = [|x — mO|.

We have that ||[x — m!]| < ||x — m° || and since m® < P,(x), it follows
that m! e P, (x) for all m! e M,. -

Finally, if x € X\ M we have proved that card P,(x) > card M, =
= N,y and card Py(x) < card M = W, This implies that P, is a coun-
tably multi-valued metric projection.

§2. Normed spaces with bounded or eompact strongly proximinal sets.

As it was shown in § 1, if X is a Banach space and M ( X is
a strongly proximinal set, then card P,(x) » ¢ for all % « X\ M and
this property is not true in a general normed space. By a result of
8. B. STECKIN [15], if M is a subset of a strictly convex normed space
then we have card Py(x) <1, for x in a dense subset of X. On the
other hand, if X does not be a strictly convex normed space, then there
exists a hyperplane H in X with card Py(x) > ¢, for all x e X\ H.

Accordingly, the normed space X contains a strongly proximinal
subset M, if and only if, X is not strictly convex.
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S. V. KONJAGIN [8] posed the problem of finding the Banach spa-
ces X which contain bounded or compact strongly proximinal sets. {Ie
calls a strongly proximinal set, a set with the anti-uniquenness property.
S. V. Konjagin has observed that in a finite dimensional space there
exist no such sets. For some concrete spaces he have obtained the fol-
fowing results : .

a% If A is a complete metric space and A, is a closed nowhere dense
subset of A, then the Banach space of real bounded and continuous
functions f on A with f/4, =0, endowed Wllth the sup norm, o

1) contains a bounded strongly proximinal set if and oaly if card
f] 2 b’: ; . . . . .

2) 0Contains‘ a compact strongly proximinal set if and only if card
A = e and 4, # D .

bL) O'H' (4, }‘? ) is a positive measure space and L'(4, Z,’u) is the
Banach space of integrable (classes of integrable) functions on the space
(4, 3, p) then LA, %, p) contains a bounded strongly proximinal set
if and only if the measure p is non-atomic. ! o

We shall give in this paragiaph necessary and respectively sufficient
conditions in order to a normed space contain compact and respectively
bounded strongly proximinal sets. _ ‘ _

i Let X* b?e' t}I:e set of all continuous hqear iuncltlonals on X.‘We
say that a* =« X* is a suppori functional (exposiing functwm_al ) for *a given
set M (- X, if there exists an m, « M so as to have e1L}71Ve; x*(mg) =
> x%(m) (respectively x*(m,) > x*(m)) for CvEny P e M \1{4”?0}, or
x*(mo) < x*(m) (respectively x*(m,) < x*(m)) for every m < ! \{’,”3}'

Tf x* « X* is a non-zero support functional (exposing functional)
for M C X, it is clear that xx*(A # 0) is a support functional (exposn}g
functional) for M. In the sequel by support functional (exposing functi-
onal) we understand such a functional of norm one. »

)The set of support functionals, respectively exposmg_'functlgna&]%s 1(JOf
norm one) for the set 3 will be denoted by S(M) tflﬁespec‘tivl(ih‘rC y 5(1 i
If for some 7, e M there exists a functional ¥* = X* such tha tx (mo) =
> x*(m) (respectively x*(mo)> x%(m)), then mq 18 cahet‘:lha s?pp(g (ri?gs%zcﬁ
tively an exposed) poini of M. We denote by U(X) the closed un
Of X' - . . 0
tEMMA 1. If X 4s a normed space and M 15 a strongly proximinal
subset of X, thew:

[S(U(X) N (3] U [8(M) N 8(UK)] = 2

Proof. Suppose that M is a strongly proximinal subset of X, and
BUX) N 8(M]U B(M) N 8(UX))] # @. Then either

a) there exists x* < §(U(X)) N &M) or

b) there exists #* < (M) N 6(U(X)). .

First, we consider the case a). From a) it follows that there exists
my = M such that either c) x*(mo) > x%(m) for every m e M, m # m,
or d) x¥(m,) < x*(m) for every m = M, m # m, It is enough to discuss
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only the case c). It follows from a), that there exists %, = U(X) such
that x*(x,) < x*(w), for all x « U(X). (If we suppose that (%) 2 x*(x)
for all x e U(X), then x*(—zx,) < 2*(x), for all % < U(X), and —x,
will be the element which we need). '

Consequently
— ¥*(%o) = x*(— xo) =sup |x¥(x)| = ||#*|| =1, so that ¥ (%y) = —1.
reU(X)
But from 1 = |x*(x,)| < |[#%]| - || %] = [l 2o]] < 1,it follows || %o =
= 1. Let now: %, = m, — x,. We have:
2, —ml]l = [#%x, —m)| = | x*(m; — m) — ¥ (%) | = x¥(my — m) +
T 1> 1=l =%l = || % —m]l,

for every m <= M, m # my Then ||x, — Myl | < ||y — m|l|, for every
m e M, m # m, It follows that P, (x;) = {mo} and by hypothesis this
tmplies that xy = m,, i.e. %, =0, in contradiction with || %o]] = 1.

We consider now the case b). There exists m, = M such that ')
«¥(mg) > x*(m) for all m = M. Suppose that there exists %y = U(X)
such that x¥(x,) < 4%*(x), for every x e U(X)~ {#o}. Then as in the
case a) we have x*(x,) = —1 and ||| = 1.

Let wy=my— 2%y and m = M, m # m, It x*(my) > x*(m) then
with the same proof as in the case a) we have

[l %, — m%” > |l %y — my|.

If x*(m) = x*(m,) then, x*(x; — m) = x%(x, — m,) = 1, and from X%y —
— M # X — My = — x,, it follows that x, — m & U(X), since, if con-
trary, 1 = x*(—x) > x%(x; —m), ie. x*(x; —m) < 1.

Heace ||xy —m|| > 1= || — xo|| = || %, —myl|, m « M, m # Mg
Then for every m < M, m # m,, if x%(mg) > x*(m) we have

% —mil > |ix, — my |,

and Py(x)) = {my}. It follows that x, = m, i.e. xy = 0, in contradiction
with || x,]| = L. Then, from cases a) and b) it follows that [$(M) N}
N 8(U(X))] U [B(U(X)) N 8(M)] = o.

-Remarks. 1) If X is a finite dimensional Banach space then X
does not contain bounded strongly proximinal sets. Indeed, if M is a
bounded strongly proximinal subset of X, M is a closed set, so that it
is a compact set. Then &(M) = Fr U(X*). But, it is known that in a
reflexive Banach space every bounded, closed, convex set has an exposed
point and 8(U(X)) # @. Then &(M) N $(U(X)) = UX*) N 8(UX)) =
= 8(U(X)) # @, relation contradicting the condition of our lemma.

2) If in a normed space X, there exists a compact strongly proxi-
minal subset M, then U(X) contains no exposed points, If contrary,
then 8(M) M 8(U(X)) = U(X*) N 8(U(X)) = &(U(X)) # P and by lemma,

M is not a strongly proximinal set.
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The next proposition contains a sufficient condition in order to exist
a bounded strongly proximinal set in a normed space. As usual, m is an
extremal point of M means that m is not the midpoint of any segiment
of positive length contained in M.

PROPOSITION 2. The unit ball U(X) of a normed space is strongly proxi-
minal if and only if U(X) does not contain extremal points.

Proof. a) Tet %y « X NU(X) and let y, = xo/[[ %,]]. It is clear

that ||, — %1 = || %6 — %oll = |l %]l —1=21>0, for all x U(X).
Since U(X) hasn’t extremal points, it follows that there exist y;, ¥, &
= {J(X)» Y1 # Yy such that y, = (31 + ,)/2 and ||y il = lly2ll = 1Yol

Denote by « = ||y1 — 3.1 /2. Then o= |[) — o 112 < (Il +
4 v 11)/2A< 1. If B = a(min {1, A}) then 0 < B <1 and P < ad < A
I zo =y, + B(¥1 — ¥,)/2 then we have:

-

Nzoll = llyo — Blys — 92)/211 = 11 (y1 + /2 + By — 22)/21 = 111 +
+ Blya/2 + (1 —B) 22211 < 1,
hence z, e U(X). On the other hand we have:

[| £ — 2ol = || %0 — Yo — B(yr — ¥2)/211 = Il 2o — By — 2221 =
= || My; +22)/2 — Bly, — ¥ /21 = I (XA — B) »1/2 4 (A 4 B) 32 =
= M| (A= B) yi/2)+ (A + B) 322 <

A

From this, it follows that zy =y, -+ B(y1 — ¥5)/2 € Pu(x,). But
B#0 y.—5#0 implies 2z, # yo. Then Py (xg) D {yg, 2o} and since g,
was an arbitrary element of X\ U(X), it follows that U(X) is a boun-
ded strongly proximinal set in X.

b) If we suppose that ¥ e U(X) is an extremal point of U(X) then
||2]| = 1. Suppose that U(X) is strongly proximinal. Then for y = 2x
we have |ly|| =2, ¥ & U(X) and for all z & U(X):

ly —zll=ll2% —~z||=2Hx—§ >2(||x||_’_i;¢'):

:2(1—”72”]>2(1—~;~)=1= 2l = Ily — =]l

Hence % e Pym(y). Let x; be an element of Py (y), % # %. Then
|24 — %, || = ||22x — x]|=1 and it follows that 2% — x, « U(X). But
%, e UX), 2x — %, e U(X) and 2 # 2% — %3, accordingly % = (%, -
+ 2% — %,)/2. Then x isn't an extremal point. It follows that U(X) is
pot a strongly proximinal set. Q.E.D.

In particular, if we demote by (A4, X, w) a positive measure space
it is well known (see for instance r. B. HOLMES [6] p. 118) that U(LY(4,
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3, u) contains an extremal point if and omly if X contains at least an
atom. If A, is an atom of X then f= o4 X, [p(4,), where y4 is the
characteristic function of A, is an extremal point of U(L*(4, Z, y)).
Then if X does not contain atoms, then U(L'(4, X, p)) contains no
extremal points and hence by the preceding proposition U(LY4, Z, p))
will be a convex, bounded strongly proximinal set. On the other hand,
the unit ball of a dual space is not strongly proximinal. Indeed U(X*¥)
is in the weak* topology a compact convex set and contains (by the
Krein-Milman theorem) an extreme point.

We shall give in the sequel a generalization of the notion of exposed
point.
The point %, « M is called a k-cxposed point of the set M if there

exist the linear independent functionals #7, %3, ..., i « U(X*) such that:
x5 (xo) = #5(%) for all x e M
x25(%o) = %3(%) for all x e M N I,
wh_1(x0) = wii(%) forall x e M H, (N .- N Hie
xh(%o) > Xr(%) forall xeM N Hy N - N He-0 A{%0},

where H,; are the hyperplanes of equations #xi(x) = 2i(%g), 1 =1, 2, ..
h— 1. If k=1, then %, € M is l-exposed point if and only if it is aq
exposed point. If the dimension of X is at least & 4 1, then a poiyt
%, « M which is a k-exposed point is also a (k -+ 1)-exposed point, 1¢
is clear that a k-exposed point is an extreme point. On the other hand
there exist k-exposed points, which are not (b — I)-exposed points. Such
points will be called effectively k-exposed. We will give an example of a
2-exposed point which is not an exposed point. -
““~ If 'we consider in R® the convex body obtained from a cylinder com-
pleted with two semi-spheres it is‘ easy to see that a point $ of the
circle of contact of the cylinder with a semi-sphere is not an exposed
point but it is a 2-exposed Point. Here H, is the unique supporting
plane in the point p, to this convex body and H,, (x3(x) = x}(p))
is for instance, the plane containing the circle of contact passing
through 7. 2

Tor finite dimensional Banach spaces . AspLUND [1] has used another
notion of k-exposed point. In the finite dimensional case every k-exposed,
extreme point in the sense of Asplund is a point which is at most effecti-
vely (k - 1)-exposed in our selse,

Concerning k-exposed points and compact strongly proximinal sets
we have:

PROPOSITION 3. If the novmed space X contains a compact strongly
proximinal  set, then U(X) contains no k-exposed points, for all k « N.
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Proof. Let M be a compact strongly proximinal set of X. We sup-
pose that %, = U(X) is a k-exposed point of U(X), for a given & = N,
Then, there exist the functionals xfeU(X*), ¢ =1, ..., &, such that

%7(%¢) = %1(x) for all ¥ « U(X)
x5(xy) = x5(%) for all ¥ e U(X) M H}
xp(%0) > 2n(%) for all x « UX) N Hf N ... N HE_ N\{xg},

where H; are the hyperplanes xf(x)} = x3(x,), 1 =1, ..., & — 1. We have
Il %o |l = %;(%,) = 1. Since 3 is a compact set it follows that the sets
defined inductively by
My ={m e M: x(m) =inf xj(x)},
veM

M, ={m e M;: x3(m) = inf x3(x)},
t=M,

M, ={m e My_,: x3(m) = inf x4(x)},
¥EMp
are all nonvoid and compact.
Tet be my « M,. We have:

xi(my) < xy(m) for all m e M

H

Zp(my) < x5(m) for all m &M M H;

wi(mg) < wp(m) for al m « MV HY N ... N Hi-y.

Tet x, = my— %, and m = M, m % m, If x(m,) < x(m), then
xp(m — xp) = x{(m — my + x5) > x7(%,) = 1. Hence ||m — x| > | (m—
— x) | > 1= |lx]| = lImy— x¢||. In this case it is clear that m &
g Py(x). T x(me) = ai(m), then «i(m — x,) = xj(m, — %) = x7(%,)
and it follows that m — x; e Hy. If in what follows we suppose that

e

xy(mg) < x5(m) forallm < M M H' m#m,we have xy(m — %) > x5(my—
— %) = x,(%,) and since m — %, = Hf, we have again m — %, & U(X)
so that m & Py{x;). We obtain inductively that m & Py(x;) if at least
one inequality «7(m,) < xi(m) is sharp.

Suppose that «&f(m,) = xj(m) for ¢ ==1, 2, ..., k. This implies that
xi(m — xy) = xi(my — xy) = %/ (%), 1=1, ..., kB le. m—2x e H N
N H;N ... Hi. Now, since m # m,, it follows that m — %, # x,.
But xi(m — %) = xp(me — %) = w3(xe) > xi(%), for all x « U(X) N H} N
N .- N Hi-~{%g}. Hence m — x, & U(X), i.e. m & Py(x,;). Therefore
in all of the cases m # m, implies m & Pu(x,). Then Py (x;) = {m,} and
this contradiction shows that U(X) does not contain k-exposed points,

ic -

i
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Remark If A is a separable Hausdorff topological space and x;,
X, ... s a dense sequence of points in A, if C(4) is the Banach space
of) real bounded continuous functions defmed on A, normed with the
sup norm, then it is clear that the continuous linear functional on C(A)

given by
o0

wM(f) = 2. (512,

o ton
1=1

has the property that
x*(e) > 2 (f),

for all f # ¢, with [[fl| < 1. (Here ¢ stan_ds for the functi1on identically
1). This implies that ¢ is an exposed point of C(A) and by the prece-
ding proposition C(A) does not contain compact strongly proximinal scts.
The point m, e M is a wvertex of M if the sct of functionals which
ottain their supremum on M at m, is total over X . Recall that a subset
y*  X* is total over X if a%(x) =0 for all x* e__Y* implies ¥ = 0.
1t is known that a vertex is not always an exgosed point and conversely
an exposed point is not always a vertex. Lvery vertex is an extreme
point. h
prOPOSITION 4. If X is a normed vector space and U(X) has a vertex,
then X does mob comtain compact strongly proximinal sets.

Proof. Yet x be a vertex of U(X). Let
§ = {x* = UX*):a%(x) = || #] =1},

the set of support functionals of U(X) at x. By the Well_—ordering
o Zerm(ﬁo, there exists a well-ordered set I of indices such

theorem of > : S
Tet C be a compact set of X. Define by transfinite

that F = {x§ }eer-
induction ;

Ca:{x e (VCorxi(x) <2 (y), W= mCBﬂC}ﬂC, o EI'ﬂ

B<a f<o

If oo is the first element of I then Cy, = {x & C:xg(x) < %5}, Yy e
= gi CCis a non-void compact set of X. If we suppose that for all

p<a Cyisa non-void compact set, then the compact set Oa Cp 1s non-

B .
void. Indeed, it is clear that B, < By = Cg, 2 Cp, from the construction
of {C,}eer and if () Cg = @ then from F. Riesz’ condition of compactness

il

B<a

it follows that there exist oy, o5, ..., o, << o such that N Co, = 4.

i=1

7
But m Ca- — Cocj '—/‘_ @ VVhere %y = max {0('1’ Loy = vy oc"}'
i=1
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':Phen, supposing that for every B < g, Cg is a non-void compact
set, it follows that () Cg is a non-void compact subset of C , and from

; B<e
the construction of C, we have that Cq is a non-void closed (hence com-
pact) subset of O Cg. From the transfinite induction principle it follows
x

A
that C, is a non-void and compact set for all « < I. M . it
then C, D Cg. pat « = I. Moreower, if « < f§

Let Cy be the non-void compact set () C,. We will show that Cy
. i 7
consists of a single element of C. Suppose that there exist ¢;, ¢, = Cy and

¢ # ¢;. We have that ! (c,) < x2(c,) and «* (¢s) < % (¢;) for all & = 1.
Hence w.(e1—¢) =0, for all « = and sitce (%% Je=r 15 a total subset
of X* over X we have that ¢, = c,.

Then Co, consists of a single point ¢ e C. Let be y=rc¢— x We have:
|y —c¢ll = ||— x| =1. On the other hand if ¢ e C, we have;

ly=¢ll 2 5@ —¢)| =55 —¢) — 2 (%) =
=|xg(c —¢') — 1], for all «  I.

_ If there exists an o« < I such that ¢ g Cy then let K be the non-
void subset of the well-ordered set 7, defined by o « K if and only if

¢ & C,. Let «; be the first element of K. Then we have ¢’ e C; and
x4, (¢ — ¢’) < 0. Then B

Iy =il 2 lxle—¢) =1 =1+ —0)>1=|ly—c]|.

;E'Ie11ce ¢' & Pg(y). If, by contrary, ¢’ = C, for all o = I it follows that
¢ =c Hence, [ly—c'|| > |ly—e|l =1 for all ¢ «C, ¢ #¢ and
Poy) = {c}; ¥y « X\C. Then C is not a strongly proximinal set and
the theorem follows.

Remarks. H P BOHNENBLUST and § KARLIN [2] proved that
the 1dent1ty’elemcnt of a Banach algebra is a vertex of the unit ball.
By Proposition 4 we have that a Banach algebra with unit does not
contain compact strongly proximinal sets. Particularly, the Banach algebra
C(T) of all real continuous and bounded functions on the Hausdorff topo-
logical space 7', with the sup norm does not contain compact strongly
proximinal sets.

Also, L(X) the space of continuous linear operators on the Banach
space X, does not contain compact strongly proximinal sets.

§ 3. Strongly proximinal sets and the Radon-Nikodym property.
__The real Banach space X has the Radon-Nikodym property (see [4])
if for every countably additive X — valued map F, defined on a sigma-
algebra, possessing finite variation |F| there exists a Bochner [F| inte-
grable function f such that F(4) = Sf d|F| for each 4 in F's domain.

A
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Let M be a subset of X. A point ¥ = M is called a strongly exposed
pownt of M if there exists an x* e X*, such that (1) x*(x) > x*(y) for
all y # x in M, (#) for any sequence (x,) in M with x*(x,) — x*(x),
¥, — % in norm. We call the above x* a strongly exposing functional.

R. kR, puBLPS [10] has shown that X possesses the Radon-Nikodym

property if and only if every closed, bounded, convex subset of X is
the closed convex hull of its strongly exposed points.
Huff and Morris observed that if X has the Radon-Nidokym property
then the set of strongly exposing functionals of a bounded, closed, con-
vex subset is a dense Gy set in X*. For a more general result see
K. 8 LAU [91

A wide class of Banach spaces possess the Radon-Nikodym property :
the reflexive spaces, the separable duals, L (p) with p purely atomic,
L) with ' an arbitrary set ete.

PROPOSITTION B, If the veal Banach space X possesses the Radon-Nikodym
property, then X does mnot contain bounded, conwvex, strongly proximinal
sets.

Proof. If we suppose that M is a bounded, convex, strongly pro-
ximinal set then M is also a closed set. By the result of Huff, Morris
and Lau there exist the dense Gy sets Gy and G,, in X* such that every
% = Gy is a strongly exposing functional of M and every a2} = G, is a
strongly exposing functional of T(X).

We have '

w [s] \ ea)
G,_ M G’a — (ﬂl G?) ﬂ (ﬂl Glzu == ﬁf:ll (G‘I‘ N G;';“),
with G} and G open dense subsets of X. From the Baire category theo-
rem it follows that G, (M) G, is a dense subset of X* I a* =G, (M) G,
x¥* # 0 then 2%/ || x*|| = 8(M) N $(U(X)) C 8(M) N $(U(X)). By Lemma 1
it follows that in every Banach space with the Radon-Nikodym property
there exists 1o bounded, convex, strongly proximinal set.

Moreover, there exist Banach spaces without the Radon-Nikodym-
property which does not contain any bounded, strongly proximinal sets.
If (4, X, p) is a positive ‘measure space such that X contains at least
an atom and p isn't purely atomic, then L (4, 2, p) does not possess
the Radon-Nikodym property and it does not contain bounded, strongly
proximinal sets, by Konjagin's mentioned result.
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