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Abstract

The computational length of an algorithm for pattern recognition by
absolute comparison is a random variable, whose features depend on the
probability distribution © < R* of the k classes to be discriminated. The
TEuclidean distance from the uniform probability distribution to any other
distribution = is proportional to the greatest lower bound of the total
variation of the mean computational length of algorithms used to recognize
classes with distribution w. This result is reached by first finding a suitable
basis of R* which allows simple representations of probability distributions
and of the functions under study. Furthermore, using the same basis, the
Schwartz inequality easily gives an upper bound of the total variation of -
the mean computational lengtll.

1. Introduction

The computational length v of an algorithm for pattern recognition
by absolute comparison, as introduced in another paper [1], is a random
variable which takes up integral values in {1, 2, ... &}, where k>3 is
the number of classes to be discriminated. The mean computational length
E(v) has a s nallest value Enn and a greatest value Ena. such that En, +
+ Eoux = k + 1, furthermore they depend on the probability distribution
®= (py, Puw .., Ps) of the classes to be discriminated.
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The ftotal variation V(n) = Eppx — Eyi of the meanj computational length
is

B
(1) Vi) =k+ 123 po"
i=1
where « & G, is a permutation such that
@) 1 <j= o > Pop for all 4, j = {1, 2, ... B}.
f1'1 the present paper we point out two inequalities concerning V(r), which

are independent of any permutation « G,.

2. Domain of 7

Let Q C R* be the set of the probability distributions of % classes.
If = (p1, po, ... %) = Q is known and with reference to any permu-
tation ¢ < G,, we define a new probability distribution ¢ *  in the follo-
wing way

3) O* T = (Do, Poy -+ Do)
i*‘or a fixed © < Q let « be such a permutation that (2) holds and let
d=axm=(8, 9, ...3,),
then
8 2%, 6=1,2 ... k—1).
Definition (3) implies that
Y* (%) = (y* o) % w, for all Y, 6 G, © e,
and in particular
(@o=1) * (6% ) = (a0~lo) * t = a * 7, for all o G, e Q.
From the above results and from definition (1) of V, it follows
4 V(e *x) = V(n), for all ¢ « G, m e Q.

Therefore we may start analyzing the function V(r) in the domain
Q¥ C Q of the non-increasing probability distributions :

Q*:{WE@I»pZ:"-Pk) GQ:p1 ?ﬁz? Zﬁk}

Now, definition (1) becomes
B

(5) Vim) =k +1— 23 b, for all = Q,
i=1

whic]} is simpler than (1), because (5) is a permutation-independent ex-
pression.
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Let T' = {y®, y@, .., y®} be a family of % vectors of R* defined in
the following way: .
(6a) Y = (v, vi... y),
(6b) (B = , 6=1,2, ... k),
VB
0 if ©<j,

(6c) =1 (k— )i if i =3,
—v! ti>j =12 ...k7=12...k—1),

(6d) vy =Ak—5k—7+1), (=12.. k.
We can easily verify that T' is an ortonormal basis of R*. Every non-

-increasing probability distribution = < Q* is represented as a linear func-
tion of the vector in the basis I':

k
(7) n =31yl = m(7),
j=1
where T= (T, Ty ... ) e RA

From (6) we obtain
LA 0 if 7 <k,
=1
= L/k it j =&
Then, (py, pg ... #) = w(r) being a probability distribution, it holds

k k& , k k i —
=3 =5 o = 5348 —
i=1 i=17=1 i=1 =1
so that
1
@8) =
For the other parameters it must first hold
(9) 20, (=12 ...k—1).

In fact, if (9) does not hold and e.g. (p,, ... #,) = n(t) with
T <0, Ty >0,
for a particular index % < k, then we verify that
Py < w41 and =wn(r) & Q*.
Secondly the condition p, > g4y, by (6) and (7), implies

-1 ™ ) i ) B
— E ' v; 11‘, + (k — 't 2 w2 ]T, + (& — 1 — Doiihivi
j=1 7= :

(=12 ... k—2),

1
k
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which is equivalent to

(10) VigrTipr ST, (=1,2, ... kB — 2).
Finally the nonnegativity condition, p; > 0, becomes
k—1 1 1
(11) E Vi Ty < —k_ .
=1

Conversely every vector © = x(r) « R%, defined by (7) as afunction ofa
vector © < R* for which conditions (8) to (11) hold, is a non-increasing
probability distribution, © < Q*, : :

Let us indicate by T the set of all vectors © < R* such that conditions- (8)

o (11) hold.

We notice that, if = e 7, by (10) it holds

(12) h<h om=0=m.=0 (G=1.. k—h—1;
therefore, if m™ = (p1, P2 --- i), We obtain

(13) W<k =0 nm=nmr(t)=p =P 1= .- = .

3. Permutation-independent lower bound

We prove that

(14) Vir) 2 Vid(r, w)), for all = = Q,
where
(15) Vi{t) = vit, ! =1},
1
e —— ) = (O,
(16) U, 7 (B =

1 is the Huclidean distance in R* and y®, v, are defined by (6). #;
is the uniform probability distribution. We first prove (14) for n = Q*CQ,

ie. for the vectors 7 = n(r) with v e T. Computation of V(r(r)), by
(5) and (6), gives:

Al *
=k +1-—-2 ETIE’L‘Y,JJ[—T zw,-‘—
=1 i=4 i=
kzl ._1 o e k .
(17) =4§}m[wﬂn—zﬂ=
= e
kE—1

== 21},‘5“_ fOI‘ all T & T.
¢

=1
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On the other hand, from (7) and (16) we derive

k=1

() = u, - 21‘,’(”’, teT;

J=1
therefore, since the basis I' is an ortonormal one, it holds
e T ‘
ZTJY(” = VE v forallt 7.
j=1 i=1

Now, since both V(x) and V,(d(r, #,)) assume nonnegative values for every
7 « Q* we have only to prove the inequality

(18) dhh%m)=”nh%—mH:;

(19) Vir) = V3d(r, w,)), for all m = Q%
Setting
(20) Z(z) = Vi(n(r)) — Vild(r(z), m)) =

1

E— 2
. 2
= lzvﬂ':] — U
j=1

k—1
27_\ 1%,
e 'j
]:1

(19) becomes
(19" Z(x) 2 0, for all v & T

The quadratic form Z(r) is not positive semidefinite, then the inequality
(19') does not hold for all + « R* and Z (r) must be examined in detail

in the domain 7.
The special case for which v, =0 (i.e. =(r) = (pr, -+ Do) With Py 2 o =
—py = ... — py) yields

Z(r):z(ﬁ, 0,...0, ;/173,):0,

for all 7, > O feasible with conditions (8)—(11), i.e. for all 7, = [O, \/k_k_—l :
In this case, the inequality (19) is trivially verified. We note incidentally
that =, = d‘n(rl, 0, .. .O,%‘, u,,) . In general, if v,>0and 7= k—1or -
v; =0 for h <j <k —1, then by (10) and (20) it holds

j—1

h h
(21) Z(r) = ]; (v2 = v3)r? + 2;\2 vm] v, 2

i=1

j o1 "
« e N o
s ];2 (1 — vaj—z)v]?*rj? + Z]Z:_é gvfrf = ;iacjvf.vj?,
where
(22) c,=2j—1—v§v]?‘2,j=2,3,...k——1.
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If & = 3, then ¢, = 0 and from (21) we obtain

(23) k=8=Zt) 20, for all +  T.
Upon definition of the third degree polynomial
. 1
(24) Q9 =2(x =) (= H - (x = (b + 1),
the coefficients ¢, assume the form
(25) ¢, = [QU) —k(k — V)% (=2, 3, .. k—1).
It is easily verified that
(26) Q2) > k(k — 1), for all k> 3,
and consequently :
(26") ¢y > 0, for all k> 3.

By the fact that Q(k) = 0, Q(x) > 0, for % < x < k, and by (26), we see
that there exists a real number x* = x*(k) such that
Q(x*) = k(k — 1), 2 < 2* <k,

and x* is umnique.
Therefore by (25) we obtain

¢, 20 if 5 < 2*(k),
{c, <0 if 7> a*(k).

T,et us define the numbers

(27)

J
(28) s,~=z_\,c,, =23 ... k—1),

then from (26') and (27) we obtain

82 > O)

s, 2 S0 i § < 2%(R),
S, < S,_y, if § > a*(R).

(29)

Moreover it holds
(30) S_1==0, for all £ 2 3
Indeed, (28) and (22) give

(31) S = h(k — 1) [}’:—:—j’ = G(k)]:

! INEQUALITIES 181

k=1 k-1

(32) Gk =D 072 = 3, —

=2 i=2 (4 — 1)

Now G(3) é = 2 —2 and nothing that, by (32),
1
G(k 1) =Gk )
¢+ 1) =60+
it holds
_ k=2 2 T ae & 1y —
G() k—1=>G(k+ e k—1+k(k—1) R4 1) —
‘'herefore
(33) Glh) = “=2, for all & > 3.
o

Finally, (31) and (33) imply the truth of (30). From the relations (29)
and (30) it follows

(34) >0, (=2 ...k—2)

We are now able to prove inequality (19°). By (21), if v, > 0 and v, =
=0 (h<j<<k) or h=FkF — 1, we have

(35) Z(1) = spuird + E cpitt > Sguits + Ec]v

because s, > 0 and (10) imply s,vits > S,vits.
If we assume

h
Z(v) = 5, pE s+ e,
=
then the relations (34) and (10) yield

h
(36) Z{r) 2 spit 3+ 2 it
=it1
for all ¢+ <7 — 1.
From (35) and (36) we can conclude that, if 1, >0 and 7, =0 (A </ <
< k) or h=~Fk —1, it holds

Z(r) = spi = 0

hh

and (19') is proved, i.e. (14) is true for all n = Q*.
In order to extend the result all over Q, we have the following proof,
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If «=a(r) G, is such a permutation that (2) holds, then

a(m) * T < Q% for all T < Q,

and, by (4) and (19), we obtain

The proof

V) = Vi)« 1) > Vy[dlal) « m, )] —
= Vi(d(x, u,)), for all = « Q.

of (14) is completed.

4. Permutation-independent upper bound

We prove that

(37)

where
(38) Vy(m)

and
(39)

V(r) < Vy(rn), for all = = Q,

=~ 1] \/W_—lu\/ _n
—k(zﬁ - - d¥(m, u,) P

p* = p¥(w) = max {py, po, ... p.}.

Taking ® = rn(t), v « T, it holds

1 E—1
P*_;Z(k_l)”fl’fl:\/ P

and, upon substitution in (38), we find

(40)

Vatnls) = v oo+ |/ VB, =

for all ® =n(r), v « T, ie. © = Q*
By (17) we can write

k-1
V(T“(T)) =Vm+ 2”177
=

and the Schwartz inequality gives

(41)

k—1 k—1
V(in(r)) < vioy + \/Z;v; \/JZ; 70 =
A -

= oy + v, \/k‘Tz V&), w) — 2, for all ¢ < T.

|
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The last equality follows from (18).

The relations (40) and (41) say that (37) is true for all m < Q. Finally
(37) holds for all = « Q because of (4) and of the existence of a permuta-
tion « = «(x) such that a(n)* = = Q*, for all = < Q.

The proof of (37) is completed.
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