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Criteria on the continuity of real-valued convex functions defined on
non-empty convex subsets of topological linear spaces have been well
known for a long time (see, for instance, pourBakT N.[1, p. 60], LAURENT
P.-J. [7, pp. 333—336], coBzass. and MUNTEAN 1. [5]), but so far
very little has been done in order to extend these results to convex
mappings taking values in an ordered topological linear space. This is
surprising, all the more since during the last years there has been a
considerable expansiont in the field of convex analysis in general, and in
the study of optimization problems concerning mappings with values in
ordered topological linear spaces in particular.

BRECKNER W. W. [2] has dealt with continuity properties of real-va-
lued rationally s-convex (respectively s-convex) functions defined on
non-empty convex subsets of topological linear spaces. These two classes
of functions arise in problems of functional analysis and are wider than
the class of convex functions. The main purpose of the present paper is
to make a similar study for rationally s-convex (respectively s-convex)
mappings with values in an ordered topological linear space. In this way
not only the want of a systematic study of the continuity properties of
convex mappings with values in ordered topological linear spaces will be
supplied, but also a more general theory will be obtained.

The paper is divided into three chapters. In chapter 1 we summarize
the terminology used concerning ordered topological linear spaces and intro-
duce the rationally s-convex mappings as well as the s-convex mappings.
Some properties of these mappings are also pointed out here. Chapter 2

devoted to mappings which are locally majorized, precontinuous and
upper semi-continuous, respectively, at an interior point of their domain.
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In chapter 3 the continuity of ratiomally s-convex mappings is characteri-
zed by means of these three properties. T'wo kinds of criteria are obtai-
ned: on the one hand, local criteria for the continuity of a rationally
s-convex mapping at an interior point of its domain, and, on the other
hand, global criteria for the continuity of a rationally s-convex mapping
on the whole interior of its domain. When the range space is taken to be
the field of real numbers, the results stated by BRECKNER w. w. [2] are
recovered.

Throughout the paper the following notations are used: N denotes
the set of natural numbers, R denotes the set of real numbers, K deno-
tes either the set of real numbers or the set of complex numbers, int M
denotes the interior of a set M, cl M denotes the closure of a set M , and
sis any real number belonging to the interval 10,17,

CHAPTER 1
Rationally s-Convex Mappings

In this introductory chapter we summarize the terminology used
with respect to ordered topological linear spaces and introduce the ratio-
nally s-convex mappings with values in an ordered linear space.

1.1. Fundamentals ofi Ordered Topological Linear Spaces. In this
section some basic definitions and results from the theory of ordered topo-
logical linear spaces are recalled. For detailed information on ordered topo-
logical linear spaces we refer the reader to jammson . [6] and to
WONG Y.-C. and NG K.-F. [10].

By an ordered linear space Y we mean a real linear space Y on which
there is defined a binary relation < such that for all % ¥, 2 €Y the
following conditions are satisfied :

i) % < x;
(i) x <y and y < z imply x < z;
(iii) x <y implies x 42 < y - z;

A

(iv) x <y implies ax < ay for all real numbers a > 0.

The conditions (i) and (ii) express that < is an ordering, while (iii)
and (iv) express the compatibility of this ordering with the linear stric-
ture of Y. Sometimes we write y > x instead of x < y.

The simplest examples of ordered linear spaces are function spaces
with the natural pointwise ordering. If Y is a real linear space of real-
valued functions defined on a non-empty set T, and the linear opera-
tions are the usual pointwise ones, then the pointwise ordering of Y is
defined by

-

x < yif z(t) < y@) for all t € T.

The positive wedge of an ordered linear space Y is the set Y, of all
elements » € Y such that o < %, where o denotes the zero-element of Y.
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It is easily seen that Y, is a wedge, i.e. a non-empty convex set closed
under multiplication by non-negative real numbers.

If ¥ is an ordered! linear space and x and Yy are elements of Y,
the set -

[x»yJZ{ZeYIszandzsy}

is called the order-interval between x and y. Clearly, [x, y]is non-empty
if and only if x < 4.

Let M be a subset of an ordered linear space Y. If there exists y € ¥
such that x < y for all x € M, then M is called majorized. M is said to
be order-bounded if it is contained in some order-interval, M is said to
be full (or order-comvex) if [x,y] < M for all %y € M.

An ordered topological linear space (respectively an ordered normed
linear space) is defined to be an ordered linear space which is also a real
topological linear space (respectively a real normed linear space). It should

,be noted that no relation is postulated between topology and ordering

except that arising indirectly through their mutual relationship with the
linear structure of the space. In most naturally arising examples of ordered
topological linear spaces there are stronger direct relations. For instance,
frequently the positive wedge is sequentially closed or has a non-empty
interior. Ordered topological linear spaces with these properties will he
also used in our considerations. T'wo other types of ordered topological
linear spaces whose topology and ordering are strongly linked and which
will be of frequent occurrence in our paper are those which are locally
full or have the boundedness property. ’

An ordered topological linear space is said to be locally full (or locaily
order-convex) if it admits a neighbourhood base at o consisting of full
sets. It can be proved that an ordered normed linear space Y is locally
full if and only il there is an equivalent norm [|]l on ¥ which is mono-
tone, i.e. for which ||x]| < llyll whenever o < x < v.

We shall say that 4n ordered topological linear space Y has the hous-
dedness property if every order-bounded subset M of Y is bounded, i.e,
for each neighbourhood ¥V of o there exists a real number @ > 0 such
that M < aV. Obviously, an ordered topological linear space has the
boundedness property if and only if every order-interval is bounded. In
particular, every locally full ordered topological linear space has the boun-
dedness property. The converse of this assertion is not true (see BRECKNER
w. w. and orRBAN . [3]). However, any ordered topological linear space
Y with the boundedness property and with int Y, # @ is locally full.

1.2. Rationally s-Convex Mappings. Throughout this section we denote
by X a linear space over K, by M a non-empty subset of X, and by Y
an ordered linear space,

Definition 1.2.1. Let M be a convex set. A mapping f: M —Y
1S said to be ralionally s-comvex (respectively s-comvex) if, for all rational
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(respectively veal) numbers a=> 0 and b> 0 with a 4 b = 1, the Jollowing
inequalily holds ST R ' '
(1.2.1) L flax R by) < @f(x) + BA)
whenever x, y € M.

For s = 1, the s-convexity of a rr'lappinzc;,r f:M -V coincides with the
usual property of f to be convex. Any additive mapping f: X =Y is ratio-
nally 1-convex.

It is obvious that every s-convex mapping is rationally s-convex
’I.‘he converse of this property fails to be true.' However, under some addi;
tional assumptions rational s-convexity implies s-convexity as the follow-
ing theorem shows: ' ! ol i o '

THEOREM 1.2.1. Let X be a topological linear space, M a convex set,

and Y an ovdered topological linear space with Y. sequentially - closed. Then .

any continuwous rationally s-comvex wmapping f: M —Y is s-comvex

Proof. Let a> 0 and 5> 0 be real numbers with a +b=1, and
let %, v be elements ol M. Choose a sequence (,),«y of rational numbers
in the interval ]0, 1[ which converges to a. |Since

flax + (1 —a)y) <af(x) + (1 —a)f(y) for all < N,
we conclude fror_n the continuity and closedness assumption that (1.2.7)
holds. Hence f is s-convex. §
Some useful properties of the rationally s-convex mappings are given
by the following propositions, which are anilogous to results stated for
s-convex mappings by BRECKNER w. w. and oxpAN G, [4].

PROPOSITION 1.2.2. If M 4s a convex sct andif f: M—Y is a ragionally
s-convex mapping with s < 10, 1, then f(x) = o for all x M.

Proof. If x is in M, then

i 1 1
F0) =[5 % 4 5w < 2 F) + L) =27 f(x)
implies 0 < (2'* — 1)f(x). Since 2= — 1> 0, we obtain f(x) > 0. [B

PROPOSITION 1.2.3. Let M be a comvex set, and let f:M—Y be a ratio-
nally s-comvex (respectively s-comvex) mapping. If x, and x are elements of
X such that x, — x and x, 4 x belong to M, then we have

(1.2.2) =@ f(xg — %) — 0(s)f(x,)] <
< f(%o + ax) — f(x,) <
< @[f(%o + %) — 6(s)f(x,)]

Jor cvery rational (respectively real) number a < [0, 11, where

0 if_sE_]O, 1[

(1.2.3) ’ 0(s) = : ool
if s=1.

T4

[o74
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.. Proof. Suppose f is rationally s-convex and a is any rational number
belonging to [0, 1]. Taking into consideration, thati ; :
| %o ak = dlx, + %) + (1 — @),
we have -. 'I ey I i
(124)  f(vo + ax) — f(x0) < @f(xo + %) + [(1 — @) — 11f(xo).
Since ' | - o
[(1 — @) — 11f(x0) < —a*0(s)f (),
the inequality (1.2.4) implies ' y
(1.2.5) f%y + ax) — f(x) < @[f(%o + %) — 0(s)f(x0)].

On the other hand, because of the representation
a : L
Xy = Ko — X) + Xy + ax),
o = (g = 2) H e (5 + a)

it follows that

fleo) < (ot flma — ) + (o Ao + am)

This inequaﬁty yields
(12.6)  —aflxy — #) + [(1+ af — 11f(x0) < f(xwo+ ax) — f(%0).
Since :
@' 0(s)f(xe) < [(1 + @) — 1]f(x,),
we get from (1.2.6)
(127) =@ [flxo — #) — 8()f(xa)] < flxo + ax) — f(xo).
The relations (1.2.5) and (1.2.7) give together (1.2.2).
If f is s-convex, then the above considerations are obviously valid

for any real number a = [0, 1]. Consequently, in this case (1.2.2) holds _ -
for all real numbers a € [0, 1]. &

CHAPTER 2

Locally Majorized Mappings, Precontinnous Mappings
and Upper Semi-Continuous Mappings

In this chapter we present three classes of mappings taking values
in an ordered linear (respectively ordered topological linear) space, each
of them being defined by a local condition. Furthermore, we investigate
whether a rationally s-convex mapping satisfying one of these conditions
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at an interior point of its domain satisfies the same condition at every in-
terior point of its domain.

Throughout the chapter X denotes a topological linear space over K,
M a non-empty subset of X, and Y an ordered linear space.

2.1. Loecally Majorized Mappings. We start with the following defi-
nition.

Definition 2.1.1. A mapping f: M —Y is said to be locally wmajo-
rized (vespectively locally ovder-bounded) at x, = M if there exists a neigh-
bourhood U of x4 contained in M and such that the set {f(x): x « U} is majo-
rized (vespectively order-bounded).

It is easy to verify that a mapping f: M -V is at %y € M :

1° locally majorized if and only if there exist a neighbourhood U of
%o and an element o « Y, such that

U< M and f(x) — f(x,) < « for all x € U:

2° locally order-bounded if and only if there exist a neighbourhood
U of x4 and an element o« € Y, such that.

U < M and f(x) — f(x,) € [—a, «] for all x & U.

The following result demonstrates the equivalence of these concepts
for rationally s-convex mappings.

THEOREM 2.1.1. Let M be a convex set. Then for any rationally s-convex
(vespectively s-comvex) mapping f: M —Y and any x, = M the Sollowing
statements arve equivalent :

1° f 4s locally majorized at x,.

2° There exist a ncighbowrhood W of the origin of X and an element
« €Y, such that xy + VW < M and

@.1.1) f(x0+ ax) — f(xg) = @ [—a, a]
Jor every rational (vespectively real) number a = [0, 1]and everyx = W,
3° f is locally order-bounded at x,.

Proof. Assume f is locally majorized at x,. Then there exist a neigh-
bourhood U of x, and an element «, = Y, such that :

U< M and f(x) < a, for all x € U.

Choose a balanced ncighbourhood W of the origin of X, such that x, -
+ W < U, and put « = o, — 0(s)f(x,), where 0(s) is the number defined
by (1.2.3). We have then x, - W < M and
o — 2) = 06)f(xe) < 7l + %) — O(s)f(x) < o

for all x € W. According to (1.2.2) it follows that (2.1.1) is valid for every
rational (respectively real) number a € [0, 1] and every x = W. Thus
1° implies 2°,

The implications 2° = 3° and 3° = 1° are trivial. So our proot is
complete. J

The next theorem will be useful in our further investigation on the
continuity of rationally s-convex mappings.
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THEOREM 2.1.2. Suppose M is a convex set and f: M — Y is a ratio-
nally s-convex mapping locally majorized at & point x, € M. Then f is
locally majorized at every interior point of M.

Proof. Tet y, be any interior point of M. We shall show that f is
locally majorized at y,.

Since f is locally majorized at x,, there exist a neighbourhood U,
of x, and an element a €Y, such that

Uy € M and f(x) € « for all x = U,,.
Notice that

(2.1.2) lim [yo + : (o — xo)} =Yo:

n—+c0 n
Hence there exists # « N, such that
1
Y =%+ :(yo — %p)

belongs to M. Put

1
U=-" U,
n 41 Y + n+1 %
By the convexity of M we conclude that U is contained in M. Further-
more, the set {f(x):x U} is majorized.

Indeed, if x is in U, then there exists # = U,, such that

n 1
X = un.
n+1y+n+l

Therefore we have

1 < (25100 + () 10 < (=) tesor + al

741 n+1 "+ 1

Hence {f(x):x = U} is majorized, as claimed.
On the other hand, U is a neighbourhood of ', because we have -
1
n -1

U=y, + (Up — %)
Hence f is locally majorized at y,. |
2.2, Precontinuous Mappings. In this section we assume that Y is
an ordered topological linear space. )
Definition 22.1. A mapping f: M —Y ds said to be preconti-
nuous at x, < M if, for each neighbourhood V of the origin of Y, there exist
a neighbourhood U of x, and a veal nwumber a > 0, such that U < M and

(2.2.1) S(x) — f(xo) = aV for every x = U.
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PROPOSIJION 2.201.- Let xy bean Yiterior: point of M, and let fo M =Y
‘be' @ mapping for ‘which® there' exisls a 11mgkbmrﬁffmd U of %, contii-
ned in M and such tkat tke set {f(”b’ ,t & U} 18 hm&mh’d T/Len 1 is precon-
dinuous aboxy. il

Proof. Since {f HEAS U} is bounded /(%) — flxg): = U} is alo
«bounded. Thus, for cach neighbourhood V- of the origin ‘of Y, there exists
a real number a > 0, such that:(2.2.1) holds. Consequently, f is precon-
tinuous at x, BB

Remark. The' converse of ploposmon Z 21 is not true, not even for
linear mappings. Indeed, 1et Y be the real linear space of all real- valted
continuous functions x: [0, +ow0| — R, eqmpped with the topology induced
by the family (p,)uen,: whue $.,: Y = R'is the semi-norm defined by -

P.(%) = max {|x(¢}|"t =0, n]},

and with the pointwise oidering' The linear mapping f: Y — Y defined
by f(x) = x for all x € Y is obviously continuous, and therefore precon-
tinuous at all points of Y. However there exists no neighbourhood U/
of the origin of Y such that {f(x): x € U} is bounded, because the origin
of the space Y possesses no bounded nelghbourhoods

THEOREM 2.2.2. Let M be a comvex set, Y a locally full ordered topo-
logical linear- space, cand f: M =Y -a: mtwnally s-convex smapping which
15 precontinuous at a point xy =M., Then fiis precontiriuons at every tnle-
rior point of M.

Proof. Let v, be any 1nter1or pomt of M. We shall Show that fis
precontinuous at y,. ¢

Let V be any nelghbourhood of the o11g1n of Y. Since Y is locally full,
there exists a full neighbourhood V, of the origin of Y, such that V,; V.
Take now a balanced neighbourhood Vy of the origin of Y with the pro-
perty VitV V. Since f isiprecontinuous at x, there correspond
to V, a balanced neighbourhood W of the origin of X and a real number
a > O such that x, + W < .M and ]

2022y e fxg H x):~.f_(xﬁ.);{c"-~czV1= for eVery x'e W

On the other hand, there exists in view of (2.1.2) a natural number #
such that &

Y
Z=YyqF W (v-.um- -*’-o)

it follows: that
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»

belongs to @Vy,-where 6(s)-is the number defiried by (1.2.3). The set U =

‘=% + OW s a neighbourhood of: yo, and by the Convexlty of M we

have

U 5y 4 b = Ly ;.j;;jf 1(x+ Wy <,
We wish to show that ;
(2.2.3) ) = f(y) =2V ot cverinm k-

If vy is in U it must be of the" 101111 Y=y + b for a su1tab1e
x € W. By prop051t10n 12 3, the followmg rel'lt1011 holds

(2.2.4) ( )[f( — bet) — 0/99)] < f0) — /60
< (2] Ul + bom)— 05ty )]

But, from the equal1t1es
Do — by ="{1 = bo)a - bo(, — ),
o0 bex =L bo)z o B, +x) gt

F(yo = box) < (1 — bo)f(2) + Bif(xo — =),

(o + 60) <1 = 0o 1)+ B flota + 2.

Hence (2.2.4) implies

2:2.5) . =V [f (w0 i) = f(Xe) ] Sf(&)- i (50) il
- L SPUE A+ D) — f50)] + o

However accordmg to (222) a;nd ‘to th

: cho1ce of b'- we ha’ve

- b [f{wg — 2 f(x'on —ae a’—-abs-v '—J aVy < afWy e

Blfra+ ) — f(1)] ¥ o € WV, F AV, € alVy 4 V) € ol

Since al, is full, (225) 1mphes f( ) — f(yo)' = aV = aV Hence (223)
is proved. Therefore [ is precontinuous at y,. @@

2.3, Upper Semi-Continuous Mappings. Throughout this sectiof .iwe
assume that Y is an ordered topological linear space whose positive wedge

“has ‘interior points. It- should be noted that then the followmg equahty

holds
(2.3.1) C LY, eint 3R = {6t Yy



24 W. W. BRECKNER and GH. ORBAN 10

€

Another property which will be used in the sequel and which is easily
proved asserts that o =intY, if and only if the order-interval [—a,a]
is a neighbourhood of the origin of Y. _

Definition 2.3.1. 4 mapping f: M —Y s said to be upper semi-
contsnuons at xo < M if for each o = intY, there exists a neighbourhood
U of x, contained in M and such that

(2.3.2) f(x) — flxy) < a for every x € U.

PROPOSITION 2.3.1. For any x, & M and any mapping f: M —Y the
Jfollowing statements are equivalent :

1° f is uwpper semi-continuous at x,. :
2° For each o = int Y there exists a neighbourhood U of x, contained

in M and such that
(2.3.3) o 4 f(x,) — f(x) € int Y, for every x = U.

3° (xg,29) € int E(f) for each ay € f(x,) +int Y., where E(f) is defi-
ned by

(234) E(f) ={(noe) € X X Y:x =int M, « € f(x) + int Y, }.

Proof. Suppose that statement 1° is true. Let « be any interior point
of Y, . Since (1/2)« belongs also to int Y, and f is upper semi-continuous
at x, there exists a neighbourhood U of x, contained in M and such
that

%a + f(x,) — f(5) € Y, for every x « U.

Hence we obtain
a + f(%e) — f(x) = [% a + f(x,) ——_f}(x)] + —;~ «aeY, +int Y,

for all x € U. Thus (2.3.3) holds, in view of (2.3.1). Hence 1° implies 2°.

Suppose now that 2° is true. If «, lies in f(x,) + int Yy, then a =
= (1/2) [¢o — f(%0)] belongs to intY,. Therefore there exists, by the
hypothesis, an open neighbourhood U of x, contame'd in M and such
that (2.3.3) holds. Since « 4+ f(x,) = ¢y — «, (2.3.3) implies

(2.3.5) oy — o — f(x) € intY, for every x € U.
We show now that
(2.3.6) U X [ag — a, ay + a] € E(f).

If (%,B) is in U X [ay — a, @, + ], then we have x = int M and
B—oay+ <Y, By (2.3.5) it follows that

B—fx) =B —ap+ a) + [0p—a—flx)] €Y, +intV,.
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According to (2.3.1), B — f(x) is then an interior point of Y, . Hence (%, 8)
belongs to E(f). *So (2.3.6) is proved,

Notice that [ag — o, ag+a] = apt-[—a, «]. Since [—a, «] is a neigh-
bourhood of the origin of Y, it follows that [o, — «, %y + «] is a neigh-
bourhood of «, Therefore (2.3.6) implies (¥, «,) <= int E(f). Hence 2°
implies 3°.

Assume 3° is true, and let « be any element of int Y, . By our hypo-
thesis, we have then (x,, «,) = int E(f), where ay = « 4= f(%,). Thus there

exists a neighbourhood U of %, such that U X {a,} < E(/f). Consequent-
ly, we have U = M and

ay € f(x) +int Y, for all x = U.

The latter relation yields (2.3.2). Hence f is upper semi-continuous at x,.
So the implication 3° = 1° is proved. @

Obviously, any mapping f: M — Y which is upper semi-continuous at
a point x, = M must be locally majorized at that point. This remark
enables us to establish the following theorem concerning the upper semi-
continuity of a rationilly s-convex mapping f: M — Y on the whole inte-
rior of M.

THEOREM 2.3.2. Let M be a convex set, Y an ordered topological linear
space with the boundedness property, and f: M —Y a ratonally s-convex
mapping which is upper semi-continuous ata point x, = M. Then fisupper
semi-continuous at every tmterior point of M.

Proof. Tet y, be any interior point of M. We shall show that fis
upper semi-continuous at y,.

Let o be any interior point of Y, . Since f is locally majorized at x,,
it follows by applying theorem 2.1.2, that fis locally majorized at y, too.
In view of theorem 2.1.1 there exist then a neighbourhood W of the origin
of X and an element «, € Y, such that Yo+ W € M and

(2.3.7) Jo+ay) = f(o) = a*[—ap a]
for every rational namber a = [0, 1] and every y < W.

On the other hand, [—«, «] is a neighbourhood of the origin of Y.
Since Y has the boundedness property, there exists a natural number #
such that (1/n)[—ag ag]l S [—a«, «]. From (2.3.7) we conclude then
(2.38) o+ £9) = J(20) = [—a «] for all y < 7.

n

The neighbourhood U = y, 4 (1/n)W of v, is contained in M, and one has,
according to (2.3.8)

f(y) — f(ye) < « for all y e U.

In other words, f is upper semi-continuous at y,.

3 —- Mathematica — Revue d'analyse numeérique et de théorie de 1'approximation, tome 11,
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CHAPTER 3

Continuity of Rationally s-Convex Mappings

In this chapter we give results dealing with the relationship between
the property of a rationally s-convex mapping of being locally majorized,
precontinuous, and upper semi-continuous, respectively, and its conti-
HUI'CYAS in chapter 2, we denote by X a topological linear space over K,
and by M a non-empty subset of X. .

3.1. Continuity of Locally Majorized Rationally s-Convex Mappings.
In this section we continue the discussion of locally majorized rationally
s-convex mappings which was begun in section 2.1. s

THEOREM 3.1.1. Lel M be a convex set, xy a point of M, Y anzprderfed
topological linear space with the boundedness property, and f: M —Y a ratio-
nally s-convex mapping which 1s locally majovized at x,. Then f 1is conti-

1 xg. .

nuou}z)of OBy theorem 2.1.1 there exist a neighbourhood W of the origin
of X and an element « €Y such that x, + W < M and also such that
(2.1.1) holds for every rational number @ € [0, 1] and every x € W.
© If V is any neighbourhood of the origin of Y, we can find a natural
number # such that (1/#)°[—«, «] = V, since the order-interval [—«, «]
is - ubonded. From (2.1.1) we conclude
(3.1.1) £ %o +}x) — f(xo) € V for all x « W,
The neighbourhcod U = %, + (1/#)W of %y is contained in M, and one
has f(x) € f(x,) + V for all x = U, in view of (3.1.1). Hence f is conti-
nuoul’s?;;af]g. theorem 3.1.1 the hypothesis that YV has the boundedness
property cannot be dropped as shown by the following example. Take
X = R and Y = C¥([1/2, 1]), where C%*([1/2, 1]) is the ordered normed
linear space of all twice continuously differentiable functions «: [1/2, 1]—R
with the norm

el :;max {io®@®): 2 = [1/2, 1]}

and with the pointwise ordering. Y does not have the boundedness property,
since the order-interval between the origin and the function «,: [1/2, 1]—-R,
defined by a4(f) =1 for all ¢ € [1/2, 1], is not bounded. Put M = [—1, 1].
The mapping f: M —Y, defined by

(f(2) () = AN
0 if x=0
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for all t = [1/2, 1], is convex. Since f{%¥) < o, whenever x e M, it follows
that f is locally majorized at x, = 0. But J is not continuous at this point.
This assertion is a simple consequence of the inequality

x 4 (%) __ @(xo) Lig b ni3
I76) = Sl > |20 1) — e ) | g 5 8
which is wvalid for all x = [—1/2, 1/27\.{0}.

The following corollary generalizes results of Lopus PINTO A J. B.
[8, Theorem 8.1] and VALADIER M. [9, Proposition 9] on the continuity
of convex mappings,

Corollary 3.1.2. Let M be a convex set, Y an ordered topological
linear space with the boundedness property, and f: M —-Y a rationally s-
convex mapping which is locally majorized at pownt %y = M. Then f is
conbinous at cvery interior point of M.

Proof. Apply theorem 2.1.2 and theorem 3.1.1. BB

We give now an example which shows that the c wverse of theorem
3.1.1 is not true. Let ¥ be the ordered normed linear space Co([0, 17)
of all continuous functions x: [0, 1] = R that vanish at ¢ = 0, with the
norm

(3.1.2) | %]] = max {lx()]: ¢t = [0, 1]}

and with the pointwise ordering. Since the norm (3.1.2) is monotone, YV
is locally full, and consequently has the houndedness property. The map-
ping /: Y —Y defined by f(x) = x for all x = ¥ is lincar and continuous.
We prove that f is not Jocally majorized at the origin of Y. Suppose,
on the contrary, that it is locally majorized at the origin of Y. Then
there exist a neighbourhood U of the origin of ¥ and an element o « Y
such that x < « for all ¥ € U. This means that o is an interior point
of Y, . But, on the other hand, it is easy to verify that the positive wedge
of Y has no interior points. Hence fis not locally majorized at the origin
of Y. Moreover, by theorem 2.1.2, f is nowhere locally majorized.

The following 1esult implies, however, that continuous mappings
whose range space is ordered by a wedge with interior points are always
locally majorized.

THROREM 3.1.8. Let %, be an interior point of M, Y an ordered fopo-
logical lincar space with intY, # @, and JiM =Y a mapping which is
continuous at x,. Then f is locally order-bounded at x,.

Proof. 1et o be an interior point of ¥, . Since f is continuous at zx,,
we can find a neighbourhood U of x, contained in M and such that

)% = U < flog) + [—a, «] = [f(x,) ~ a, f(ze) + o).
Hence f is locally order-bounded at Xo B3

Corollary 3.1.4. Let M be a convex set, Xq an interior point of M,
Y an ordered topological linear Space with the houndeduess property and with
ntY, #@, and f: M —-Y a vationally s-convex mapping. Then, s con-
tnuous at x, if and only if it is locally majorized at this point.
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Proof. Apply theorem 3.1.3 and theorem 3.1.1. | |

3.2. Continuity of Precontinuous Rationally s-Convex Mappings.
The following theorem is the main result of this scction.

raporEM 3.2.1. Let M be a convex set, x, a point of M, Y a locally
full ordered topological linear space, and f: M —Y a rationally s-convex
mapping which s precontinuous at %, Then f 1s conlinuous at x,.

Proof. Let V be any neighbourhood of the origin of.Y. Sipce Y is
locally full, there exists a full neighbourhood V, of the origin of ¥ suc}}
that V, < V. Take now a balanced neighbourhood Vi of the origin of ¥
which satisfies Vy 4 V; € V,. In view of the precontinuity of [ at x,,
we can find a balanced neighbourhood W of the origin of X and a real
panber a > 0, such that x, + W < M and also such that

(3.2.1) f(x) — flxy)  aVy for all x € xy + W.

Choose a rational number b in the open interval J0, 1[ satisfying ab® <1
an(ci)ozs[l — 0(s)] f(#) V4, where 0(s) is the number defined by (1.2.3).
Put U — %, + bW. This is a mneighbourhood of x, contained in M. We
claim that
(3.2.2) f(x) — f(x,) €V for every v & U.
If x € U, it must be of the form x = x, + by for a suitable y= W.
Then, by proposition 1.2.3, the following relation holds
(3.2.3) —b [f{xo — ) — 0(s)f(x0)] < f(%) — f%0) <
< B [f(xo +3) — 0{s)f(%0)]-
But x, — ¥ and x, + v belong to x, - W. In view of (3.2.1), we conclude
that
—b [f(xy — ¥) — O(8)f (x0)] = —0'[f(¥o —¥) = flx)] —
— B[l —0(s)1f(xe) e —ab’V, =V, Vi + T, gﬁVo
PLf(% + 3) — 0(s)f(%0)] = & [f(%0 + 3) — (%) ] +
+ B[l — 8(s)1f(x) = ab’V, + VieVi+ VsV,

Taking now into consideration that V, is full, (3.2.3) implies

f5) — flzg) € Vo s V-
Consequently (3.2.2) holds as claimed. 1. i (
Since V was an arbitrary neighbourhood of the origin of Y, (3.2.2)
shows the continuity of f at x,. [
Remark. In theorem 3.2.1 the hypothesis that ¥ is locally full cannot

be dropped. Indeed, the mapping f considered in the remark after theo-
rem 3.1.1 is precontinuous at x, = 0, since

NF(@)] < % -1 <2for all x & [—4/2/2, y2/2].

But, as it has been shown, it fails to be continuous at %,.

15 GENERALIZED CONVEX MAPPINGS 29

Corollary 322 Let M be a convex set, Y a locally full ordcred
topological lincar space, and f: M —Y a rationally s-convex mapping which
18 precontinuous at a point xg € M. Then f is continuous at every tnlerior
point of M.

Proof. Apply theorem 2.2.2 and theorem 3.2.1. i

Obviously, any mapping from M into an ordered topological linear
space is precontinuous at each point x, € int M at which it is conti-
nuous. Thus corollary 3.2.2 provides the following result.

Corollary 323. Let M be a convex set, Y a locally full ordeved
topological linear space, and f: M —Y a ralionally s-convex mapping which
is continuwous at a point x, < int M. Then [ is continuous al cvery {inle-
rior pownt of M.

Theorem 3.2.1 provides also the following two corollaries, the first
of them being obtained in view of the remark preceding corollary 3.2.3.

Corollary 324. Let M be a convex set, xy an inlerior point of M,
Y a locally full ordered topological linear space, and f: M —Y a rvationally
s-convex mapping. Then, f 1s continuous at x4 if and only if it is preconti-
nuous at this point.

Corollary 3.2.5. Let M be a convex sct, xy an interior point of M,
Y a locally full ordered locally bounded topological linear space, and f: M —Y
a rattonally s-convex mapping. Then, f is continuous at x, if and ownly

if there exists a neighbourhood U of x, contained in M and such that
{f(x):x= U} 1s a bounded sct.

Proof. Suppose f is continuous at x,. Since Y is a locally bounded
topological linear space, its origin possesses a bounded neighbourhood V.
Then there exists a neighbourhood U of x, contained in M and such that
J(x) — f(xo) € V for every x = U. Consequently, the set {f(x):x< U}
is bounded.

Conversely, if there exists a neighbourhood U of x, contained in M
and such that the set {f(x):x € U} is bounded, then, by proposition

2.2.1, f is precontinuous at x, Applying theorem 3.2.1, it results that
[ is continuous at x4 i

Before deriving another corollary of theorem 3.2.1, we recall that
a topological space is said to be closure-sequential it for any subset 4 and
any x € cl AN 4 there exists a sequence in A4 converging to x.

The following result is due to Averbukh V. I. and Smolyanov O. G.
For its proof we refer the reader to vamamuro s. [11, p. 140].

PROPOSITION 3.2.6. Let X be closure-sequential, and let %y, (m, n = N)
be elements of X. If the following conditions are satisfied:

(1) (Xmu)men converges for each n € N to an clement %, € X ;

(1) (Xn)uen comverges to an element x, € X ;
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them theve ave in N strictly increasing sequences (my)ren and (Mp)pen such
that (X, )ren CORVEYEES to %, '
Using this proposition, we state the following result.
Corollary 327 Let X be a closure-sequential topological lLimear
space, M a convex sét, %y an inlerior point of M, Y a locally full ordered
topological linear space, and f: M — Y a rationally s-convex mapping. Then,
fis continuous at %, if and only if for each sequence (%n)nen i M con-
verging to %, the sequence (f(%,))uen 1S bounded.
Proof. Suppose f is continuous at xp. If (¥u)sen is a sequence in M
converging to %, then (f(%,))s=n converges to (o), and is therefore bounded.
Conversely, assume that for cach sequence (%,)ueyin M converging to
x, the sequence (f(%,))sen is bounded. We show first that in this case
f is precontinuous at %, If f is not precontinuous at %, there exists a
neighbourhood V of the origin of Y such that

{f(%) — f(xo): x € Up L uV for all n = N

whenever U < U, where AU denotes the family of all neighbourhoods of
x, contained in M. For each # € N we can choose x,(U) € U, where
U = U, such that f(%,(U)) — f(%) & nV. Introduce in U an ordering as
follows : U, < U,if U, <U;. For each n €N the net (x,(U)),_q converges
then to x,. Since X is closure-sequential, there is a sequence (¥um)mey i1
{x,(U): U €U} which also converges to x,. By proposition 3.2.6, there
are in N strictly increasing sequences (my)seyand (#4)ien such that (%, )re v

converges to x,. Since
(X)) — f(%o) & m,V for all k& € N,
we conclude that
{f.(xmknk) _f(xO) ke N}

is not bounded. Thus the sequence (f(#,,,.))rn is not bounded too. But
this contradicts our hypothesis. Hence f is precontinuous at x,. By theorem
3.2.1, it follows then that f is continuous at x, B
3.3. Continuity of Upper Semi-Continuous Rationally s-Convex Map-
pings. In this section we discuss the connection between the upper semi-
continuity and the continuity of rationally s-convex mappings.

THEOREM 3.3.1. Let M be a convex set, x, a point of M, Y an ordered
topological linear space with the boundedness property and with int Y, #@,
and f: M —Y a rationally s-comvex mapping which 1S upper semi-conti-
nuous at x,. Then f is conbinuous at x,. . . - =

Proof. Tt should be noted that f is.locally majorized at x,. Therefore
the resuit follows immediately from theorem 3.1.1. FH

Remark. In theorem 3.3.1 the hypothesis that Y has the bounded-
ness property cannot be dropped. Indeed, the mapping f considered in
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the remark after theorem 3.1.1is, as it has been shown there, not continuous
at x, = 0. But it is upper semi-continuous at x,. To prove this assertion,
let « be any interior point of Y,. Then we have «(t) > 0 for all ¢ =
e [1/2, 1], since if there were a point ¢, € [1/2, 1] with «(t,) = 0, the
sequience (ap)seny With

o,(t) = aif) — L for each ¢ « [1/2, 1]

would be in Y\Y, although it converges to «. Take as ¢ the smallest

of the numbers¥min {Voc(t):t e [1/2, 1]} and 1. The set [—e¢, €] is a

neighbourhood of %, contained in M and for every x €[—¢, €] one has
(f(x) 8) < #* < < aff) for all £ = [1/2, 1],

ie. f(x) < «. Hence f is upper semi-continuous at x,.

Corollary 3.32. Let M be a comvex set, Y an ordered topological
linear Espace with the boundedness property and with int Y, # O, and
f:M—~Y a vationally s-comvex mapping which is upper Semi-constnuous
at a point x, = M. Then f is continuous at every intevior point of M.

Proof. Apply theorem 2.3.2 and theorem 3.3.1

THEOREM 3.3.3. Let x, be an interior point of M, Y an ordered topo-
logical linear space with int Y, # @, and f: M —Y a mapping which
iS { COMBInUOUS at %o Then f is upper semi-conbInuous at %.

" Proof. If « is any interior point of Y, , then [—a, «] is a neighbour-
hood of the origin of Y. Therefore there exists a neighbourhood U of %,
contained in M and such that. y21

f(x) € f(xo) + [—«, o] for all x € U.

Hence we have (2.3.2). Thus f is upper semi-continuous at x,. @&

. Remark. Our concept of an upper semi-continuous mapping, intro-

duced by definition 2.3.1, is 'a natural generalization of the concept of
upper semi-continuity known for real-valued functions. Of course,
it is possible to generalize the latter concept also in another way
for mappings taking values in an ordered topological linear space Y. For
instance, we can call a mapping f: M — Y upper semi-continuous at x, €
e M if for each a €Y\ {o} there exists a neighbourhood U of %, contained

in M and such that (2.3.2) holds. But in this case a continuous mapping
is not necessarily upper semi-continuous. To show this, let Y be the Eu-
clidean space R? equipped with the coordinatewise ordering. The mapping
f:Y =Y defined by f(x) = x for all x €Y is then continuous at the
origin of VY, but for « = (1, 0) there exists no neighbourhood U of the
arigin of Y such that f(x) < o« for every x € U. P T
Corollary 834. Let M be a convex set, x, an interior point of M,

Y an ordered topological linear space with the boundedness property and with
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int Y, # @, and f: M —Y a rationally s-convex mapping. Then, f is con-
tinuwous at x, if and omly if it is upper semi-continuous at this point.

Proof. Apply theorem 3.3.3 and theorem 3.3.1. i

3.4. Final Conelusions. By using the results presented in sections
3.1—3.3, we are able to state the following two theorems. The first of
them gives local characterizations of the continuity of a rationally s-con-
vex mapping at an interior point, while the second gives global characte-
rizations of the continuity at the whole interior.

THEOREM 3.4.1. Let M be a convex set, x, an inberior point of M,
Y an ordered topological lincar space with the boundedness property and
with intY, # @, and f: M —Y a rationally s-convex mapping. Then the
following statements are equivalent :

(Ay) f is locally majorized at x,.

(A;) There exist a neighbourhood W of the origin of X and an element
w €Y, such that xg + W = M and (2.1.1) holds for every rational number
a <€ [0, 1] and every x = W.

(A,) f is locallv order-bounded at x,.

(A,) There exists a neighbourhood U of x, contained in M and such that
the set {f(x): x € U} is boundea.

(A;) f s precontinuous at x,.

(Ag) f s continuous at x,.

(A;) f is upper semi-continuous at %x,.

(Ag) For each o € intY, there exists 1 neighbourhood U of %4 con-
tained 1 M and such that (2.3.3) holds.

(Ay) (%o, @0) € int E(f) for cach ay € f(%,) + int Y,.

(Ayo) There exists an ay € f(x,) 4 int Yy such that (x,, a,) € int E(f).

THEOREM 3.4.2. Let M be a convex set, Y an ordered topological linear
space with the boundedness property and with intY, # @, and f: M =Y
a rationally s-convex mapping for which there exists a point %, € int M
such that ome (and hence all) of the statements (Ay), ..., (Ayo) n theorem
3.4.1 is true. Then the following (equivalent) statements hold:

(By) f is locally majorized at every interior point of M.

(B,) f is locally order-bounded at every interior point of M.
(By) [ is precontinuous at every interior point of M.

(B,) [ is continuous at every interior point of M.

(By) [ is upper semi-conlinuous at every interior point of M.

(Be) int epi f = E(f).

(B;) E(f) is open.

We notice that the set E(f) which occurs in the statements (Ay),
(As), (Be) and (B,) is defined by (2.3.4), while epi f which occurs in (Bg)
is defined as follows

epi f={(x, ) € X X Yia M, flx) <ah

19 GENERALIZED CONVEX MAPPINGS 33

Combining theorem 3.4.2 and theorem 1.2.1, we obtain the following
result.

Corollary 3.43. Let M be an open convex set, let Y be an ordered
topological linear space with the boundedness property, with int Y, # © and
with Y, sequentially closed, and let f: M—Y be a rationally s-convex map-
ping for which there exists a point x4 € M such that one (and hence all)
of the statemenis (A,), ..., (Ay,) in theorem 3.4.1 is truc. Then f is s-convex
and continuons on M.
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