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1. The goal of this paper is to construct some simple procedure for
the approximation of the solutions of a given nonlinear equation, with
practical facilities and with a good efficiecy.

Let /:Q =R, with QCR be a given function and one considers the
equation

(1) f(x) =0, x= Q.

Let, also, F: D —R*, where D Q" be an approximation method, a
F-method, of the solutions of the equation (1) and

(2) Koy X1y ov vy Xty x“; LA

with x,= F(%;_,,. .., %), the sequence generated by F, for a given (%,,...
ey x”_l) < D.
If x*<=Q is a solution of (1), the number p = p(F) with the property
that
* — F(x TP
fim 2T iz B _ o,

i—+00 (x* = x‘)i’

where C is a comstant, is named the convergence order of F and C is the
asymptotic error.

A F-method depends of some informations about the function f. Usually,
these information are values of the function f and certain of its derivatives
at some previous approximations. Next, will be considered only this case.

Let v, = v,(F) be the evaluition number of f® and C, = C,(f) the
number of arithmetic operations for oa: evaluation of f19, if f®is a rational
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function or the number of arithmetic operations for the approximation
of the function f¢) with a given error, if it is not rational.

The wvalue [5]

where C{(F) is the combinatorial cost, is named the complexity of the me-
thod F. '

The value
) E(F; f) = 2&2@

~ CP(F;f)

where p(F) is the convergence order of I is named the efficiency of F.

It is also important to merition that for large classes of functions the
methods with a good efficiency are the simple methods, as the Newton
like methods, the secant method etc.

Next, will be studied such simple methods, generated by the inverse
interpolation of Birkhoff type procedure.

2. Let x*=Q be a solution of the equation (1) and V (x*) a neighbour-
hood of x*. One supposes that the function f has an inverse g = f~' on
V (x%).
( Now, if y, = f(x,), where x,€ V (x*), k=0,1,...,m, are approxi-
mations of %, »,€ N and I, = {0,1,...,7,}, 2 =0,1..., m, then if there
exist g7 (y,), €I, k=0,1,..., m, one considers the Birkhoff type in-
terpolation problem: to determine the polynomial P of minimum degree
which satisfies the conditions :

Pi(y,) = giy,), je I, k=01, ..., m.

It is known [3] that, if the functionals gi)(y,), j€ I,, & =0,1,..., m
possesses the interpolation property, thenfthe interpolating polynomial P
exists and it is unique. Let B, be the corresponding interpolation operator,
with # the degree of the interpolating polynomial.

We have

n

BB =3 b))

E=0j<1,

where b,; are the fundamental interpolating polynomials, i.e.
b%b')(yv) = O: k#v, PE Iv

b(kj;) (yh) = Spj, pe I,
for 2, v=0,1, ..., m, j<I,.
We also have the corresponding interpolation formula

®) g =B.g+ Rg
where R,g is the remainder term.

PRACTICAL APPROXIMATION 43

()

_Ulsingf E:l}lle I()iroperty that B,4 = &, for any A< P, — the set of all poly-
nomials ol the degree at most #, it follows that for p= Cr+1[}(0Q
V0) = (V") 4TI e
(Rig) )= { olt; )/ () at
v(0)
where

"

ot;0) =Ly 01—

n!‘

by () [(y — t)l];}lyk ’

k=0 5T,

Taking into account that x* = g (0) = (B,g) (0 R.g) (0
defines a new approximation to x*. H(ergce (5:8) ) + (Re) (), (B.) (©)

(6) F(xg, oo, %) = (B.g) (0)

1s an approximation method for x*.
Next, we consider some particular cases.
Case 1. m = 1,7, =1, r, =0, I, = {1}, 1, = {0}.
The interpolation formula (5) becomes

8(y) = (Bug)(y) + (Rg)(y),

where

(Bi&)(y) = (¥ — 51) &'(30) + &ly1)
and for y, <y, i

() (Rag)(9) = 5 (v — 3)(y + 30 — 2a)g" (n)

Wit.h ME [¥o, ¥1], for any y € [y,,5,]. In this way, we obtain the method F
defined by :
Fo(xg,%) = _ S .

o) = m =20

THEOREM 1. Let

1) f(xe) <0 < f(x) :

i) f' () exists, it is finite and f' (x) > O for x< [%g, %[ .

ii) f"' (%) exists, it is finite and f'(x) <O for %, < %< %,.
Then '

1) the equation (1) has a umique solution x*, with x, < x* < %,.
2) the sequence (x,) defined by the method Fy, i.e.

(7) Xny1 = Irl (xO)xn)) n = 1)21' ..
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converges to x*. Furthermore, we have
(8) x* < %4y < %, 0= 1,2,

Proof. The existence and the uniqueness follow immediately from
the assumptions 1) and ii).

By induction, first we prove the inequalities (8). Indeed, we have x* < x,.
Suppose that x* < x,. Then, using the remainder expression (6), one obtains

X — Xut1 = (ng) (O) T é f(%") [f(xn) - 2f(x0):| [.jfc”;(;;)]a

and, from the inequalities f(x,) = 0 (x, = &%), f(%,) <O, f'(x) > 0, f""(x) <
<0 for x € Jxy, x,[, it follows that x* — x,,; <0, ile &% < x,,,.

From (7)it also follows that

Xy — X, = — }f%))ﬁ <0, ie %,y < x, and (8) is proved.
Yo
From (8), we have that the sequence (x,) is decreasing and bounded,

so it is convergent. T.et x* be its limit. Then (7) implies

tim L% tim (x,,, —x,) =0
n—co f'(ﬂig) H—+00
hence lim f(x,) = f(x*) =0 and %, < x* < x,. From the uniqueness

H—+C0

of x* it follows that x* = x* and the theorem is completely proved.

The utility of the method F; grows up if it is combined with Newton’s
method.

COROLLARY 1. In the assumptions of theorem 1, the sequence

xo, X1, ooy x,;y e
generated by the iteration
9) Ny = gyg — 270 19
F(# o)
FFgw_y)
10 KXoy = Xon_ ————,%:1,2,...
( ) 2041 2 1 f’(x%_Z)

converges to x*. Furthermore, x*< [x,_,, x,] for any n < N.

Indeed, the iteration (9) is just Newton's method, which in the given
conditions satlsfy the inequalites x,< %, < 2%, # =0,1,..., while by
theorem 1, we have x%*< x,,, < %, # =12,

Remark 1. The combined method (9)—(10) has the advantage
that both components need the evaluation of the first derivative f’ at the
same point.
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Remark 2. A more simple combined method is obtained from
(9)—(10) for x, fix, i.e.

Yo = Xgyg — &2”;2); = 1;2;-
S (%)
Sy
“/\”24.‘1 = You—1 — ( = 1) , = 112' P
f{w)

which uses the evaluation of the first derivative only at x,.
This last method is very useful for the probleimns with a large cvaluation
cost of f’.
_ Case 2. m =2, ro =1, r, = 1, Iy = {1}, I, = {0, 1}. The interpo-
Iation formula is
8) = (Bag) (o) + (Rog) ()

with
11 B ol (v 1y n, o P (y —y)=y + 29y —3)
(11) (B2g) (3) —2(}/0 — 8 (yo) + gly)+ e — ) g'(31)
and
¥
(Reg) (3) = | o (y;0) g (0) dt
Yo
where
, e I (R T A A 8 (5, — £)?
olyit) = = ) ==
) 2 200 — 72) = 2
As ¢ does not change the sign on [y, y;] we obtain, for ge C3 [yo,\'I]
(12) () (y) = — (3’ — ) 2y + 20— Bve)g (n)
with 3, < 71 < y,.
Thus, we have the method F, defined by

(13) Iy () = o — —I [ D=2 . ﬂ)-]

2[f) — f(u)] ') "(u)
and

* 1 2 rrr

(14) 8= Fylu) = = f2) [f (v) — 37 (w)1g"" ()

where %’ is in the interval defined by # and ».

THROREM 2. If f satisfies the assumptions of theorem 1, g (y) < 0 for
yE Vyﬁ, ] and (x,) is the sequence generaled by Fy wilh //zr initial valzm
Xy, %, 1.e.

Tup1 = Fy(xg,x,), n=12...
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hen ;
1° #* < %y <%, n=1,2 ...
2°004F xy =y wy = %, then x4 < x,<x*, m=1,2, ....
3°. lim x, = x*.
n—00

Proof. It follows easy by induction. Let us consider in detail the
case 1°. We have x* < x;. Suppose that x* < x,. Then, from (14), one
obtains

1 117 4
XK — Kpy1 = 1_2f2(x") [f(x.) — 3f(x0)1g’""(n,) <0, fe. 5% < 2.

From (13), we also have

: Slx) flr) — 2lxg) |, fl)
15 g1 — %, = — [ + <0
(15) i 20f(xa) — Il S () (%)
for any =1, 2, .... Thus 1° is proved. On the same way can be

proved 2°, To prove 3° we also consider first case 1°. Then, the sequence

(x,) is decreasing and bounded, hence convergent. Let x* be its limite
From (15) we have

. f(xﬂ) f(xn) . Zf(xo) f(xn) M
lim =lim (%, — %,41) =0
w0 20f(x2) — flwg)] [ N f'(xo)] Pl +)
ie. lim §,f(x,)= 0 with 3, > O for any » =1, 2, ... . Hence lim f(x,)=

=0 =f(x*). As x*< ]v, #,[, it follows that x* = x* x* being the
unique solution of the equation (1) in this interval.
In the case 2° the proof of 3° is analogous.

Remark 3. The cases 1° and 2° can be combined to approximate
x* from both parts.

Case 3. m =2, ro =0, r, =1, I, = {0}, I, = {0,1}.
In this case we have a Hermite interpolation problem. The inter-
polation formula is

(16) g(y) = (Hqg)(y) + (Re£)(y)
where

— oy — ) 2y — y —
(Hag)(g) = W20 gy 4 W 20@n =9 =90 gy 4
(Yo — y1)* (Yo — ¥1)? -

+ O -5y — )
Yo — N1

g' (1)

and

(Reg)(y) = iy—“—y");u)— g (), Yo <M € Y
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Let Fy be the iteration method generated by (14), i.e.

ol ) S fxg)
17 Fx,x—x—[—*x_x“
U7 Faloe &) = = | T B T ()
and
(18) w* — Fylto, ) = — 2008 gy ),

6

THEOREM 3. If f satisfies the conditions of theorem 1, g"’(y) = 0 for
¥ € [¥o ¥1] and (x,) is the sequemce gemerated by _

Xpp1 = Fy(tp_1,%,), n =1, 2, ...

then x* belongs to the interval defined by two consecutive approximations, i.e.
(%% — 2,)(x* — %,01) <0 for any n =1, 2, ..., and lim x, = x*.
fi—+00

Proof. By (17)—(18) and the hypothesis of theorem, it follows
that x, < %, and x, < x*. As f(x,) <O (f(x,) =0 means that x* = x,)
and f(x,) > 0, (17)—(18) imply that x; > x, and x* < x,; Let now sup-
pose that x,_, < #* < x,. Then f(x,_;) <0, f(x,) > 0 and it follows that
Zny1 € %, and %, < x¥, hence the first conclusion is proved. To prove
that lim %, = x*, we observe by the construction of F that x,< ]x,, %,

for any » = 2, ..., i.e. the sequence (x,) is bounded, hence it contains
a subsequence (x,) with x, —x* as & —oo. Thus, %,  — %, —0 as
k — oo and from (17), we have lim f(x,,) =0 = f(x*), with x* € Jx,, %,[.

k— 0
Also, the uniqueness of x* implies x* = x*,

COROLLARY 2. If in theovem 3 the condition g'’ >0 is changes by g""’ <0
then :

1°. 3f (x,) is defined by the formula
(19) K1 = Fplx,, %,), n =1, 2,...
then
Cx¥ < Xy € X, B=1,2,...

2°. if (x,) ts also generated by (19) but with x4 : = x, and %, : = x,,
then

3° in each cases, im x, = x*,
n—+00

The proof is a simple verification based on the relations (17)—(18
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