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1. Introduction

In the theories of the dynamical behavior of continua, there are
several ways of describing the dissipative effects. The oldest way emploied
a viscous stress, as is dome in the theory of Navicr-Stokes fluids. It is
undoubted the fact that, this theory is appropriate for the mechanical
behavior of many real fluids.

However, the experiments (see for example [1] §116 or [2] §1) have
shown that it is not sufficient to predict all the phenomena which may
be observed. In order to remove this inconvenience, many researchers
have proposed and studied various concepts of a fluid, each more general
than its predecesors. One of the most general of them, is that of a simple
fluid [1] §32, [2], §7, [3] II §4.14 and so on.

The aim of this work, is to present a general study of the accelera-
tion waves, propagating through a such fluid. As a-simple fluid is a special
case of a simple material, some of our results could be obtained by specia-
lizing of those from [4], but we have found that for fluids it is easier
and more instructiv to start again from first principles. In section 2 we
give the basic equations and the smooth assumptions upon the constitu-
tive functionals. In the sequel it was presented different aspects with
respect to singular surfaces, compatibility conditions and acceleration
waves. The last two sections are devoted to the study of acceleration
waves propagation in simple fluids.
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2. Basic equatios and smooth assumptions

The constitutive equation of a simple fluid, as it was deduced in
[1] §32 is

2.1) T = — P(e)l + % (G(s); ¢

where T is the stress tensor, G(-)=F*(-)TF¥(-) — 1 with F¥(s)= F(f — )" the
history of the relative deformation gradient, p is the density, p is a hydro-
static pressure, 1 is the unit tensor and ¥ is a response functional which

must satisfy the isotropy relation
(2.2) Q® (Gls): 00" =& (QG(s)QT; ¢)

identically in G, ¢ and the orthogonal tensor Q.

Some special classes of simple fluids are those of integral type? [1]
§37. The constitutive equation of the fluids of the integral type of the
first order is (for its finding it was used (2.2) too)

(2.3) = "_ P(o) + S Ap, §) tr G(s)ds] 14- S wle, S)G(s)ds
1] 0
where 2 and p are material scalar functions.

If the fluid is incompressible?), the equations (2.1) and (2.3) must
be repled by

(2.4) T=— Pl +s§:o; (G(s))
and
(2.5) = — PL+ | u(s) Gls)ds

1]

Tn the next, we shall need of some smoothness hypothesis on the
constitutive functional % and on the function p. Such we shall assume
that 9% has for its domain of definition an open subset ® of a normed

1 Tt will be understood that p and T are functions of the patticle » and time ¢ and Ft(s)

depend also of #. ) ) n ..
2 Theit constitutive equations have been obtained as asymptotic approximations of those

of simple fluids. - ; .
‘spIn this case, the density p at a particle cannot, depend on time, and hence it can be

omited in the constitutive equation.
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space H and it is continuously Fréchet-differentiable throughout this
domain. As functions of p, ¥ and p are also assumed to be continuous
differentiable.

Finally, for later use, we give below the forms of the balance laws
(conservation of mass and balance of momentum)

(2.6) ot+pdiva—pfptr D=0
and : '
(2.7) . div T + pb = px, T = TT

where D = —;— (L + L7) is called stretching tensor [1] §24, L = grad x
and b is the body force.

#

3. Singular surfaces and compatibility eonditions

Let ¥ be a moving regular surface whose equation in the Cartesian
coordinate sistem x,, is

(3.1) S(x, £)=0

Its normal velocity U,is defined by [5] the relation (177.6) or [6]
Ch. XIT the relation 3, where the term of displacement velocity is used)

(3.2) Uy = — 872/ |grad 2| #»
ot

where

(3.3) n = grad 2/|grad %]

is the unit normal. The magnitude of the normal velocity
(3.4) U,,:U,,-n:_%fﬂgrad |

is just the rate of advance of the surface, as seen by an observer at
rest. The quantity (see [5] the relation (183.5) or [7] the relation (4.11))

(3.5) U:Un_)".n

which is a measure of the normal speed of the surface 2 with respect
to the material particles that are instantaneously situated upon it, will
be called local speed of propagation.

Let {¢(x, £) be now a continuous and differentiable function of x
and ¢ on each side of the moving surface 2. Its jump [¢] across X is
defined by

(36) 4] = ¢+ — 4~

where ¢+ and ¢~ are the limiting values of ¢ on the two sides of this
surface.
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DEFINITION 3.1. A singular surface with vespect to the function ¢ s
defined as a' surface across which [¢] # 0. :

If the function ¢ is continuous across X, but its partial derivatives
¢, are discontinuous, then the following geometrical conditions of com-

patibility®? [8] 1II §2)
(3.7) Y] = [ )],
are true. .
The corresponding kinematical condition has also the special form

8] II §3)

(3.8) [ %

DEVINITION 3.2. A singular surface' X for which [{] = 0 and at least
one of its partial dertvatives i, or a_k” s discontinuous, will be said to be
t

= — U, [nh,]

singular of order ome, velative to the function .

In the following we shall retain our attention upon singular surfaces
of second order.

4. Acceleration waves

Let us now consider a motion, whose velocity field is
(4.1) z = %(x, ?)

DEFINITION 4.1. A surface X is called an accelevation wave or a second
order wave with rvespect to our motion, if :

a) % s a continuous function of x and ¢ jointly for all x and t.

b) & and grad % have jump discontinwities acrvoss T but are continuous
% and ¢ jointly everywhere else.

c) the function t —G(x,-) has values in H and is continuously dif-
Sferentiable with vespect to its norm®,

For an acceleration wave the following geometrical and kinematical
conditions of compatibility ([5] §190 or [8] §5,6)

(4.2) i [%*, 7] = akum;, a* = [ninixk, if]
and
(4.3) : [#+] = Usa

can be easy obtained from (3.7) and (3.8).

4 In [5] § 175 it is given as Maxwell’s theorem.
® More precisely, G(,.) is a smooth function of ¢ with respect to the H-norm [9]§5. A
such condition limits the wildness of the past history of a point.
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DEFINITION 4.2. The wvector a, whose components are given by (4.2)
will be called the amplitude of the wave.

DEFINITION 4.3. An acceleration wave for which
(4.4) axXn=00ra -n=0

is called a longitudinal ov lransversal one.
In terms of a4 we can easy write the next two useful kinematical
conditions of compatibility

(4.5) [Ll=—-Ua®mn
and
(4.6) [D]=—2£(a®n+n®a), [tr D]=—Ua-n

Other restrictions on the possible discontinuities in the derivatives
will result from (2.6) and (2.7). Such conditions will be called dynamical
conditions of compatibility. In the assumption that the body force is a
continuous function of x and ¢, they are

(4.7) [6] 4 pltr D] =0
and
(4.8) [div T] = p[#]
Now, by combining (4.3), (4.8) and a simple consequence of (3.8)
(4.9) Uldiv T] = — [T
we attain to
(4.10) [TIn + o Usa =0

5. The veloeity and the amplitude of aeceleration waves

In order to characterize the two specific sizes of acceleration waves,
let us firstly derive (2.1) with respect to #9 '

G T=—oP 1+ 8 BEO); oo+ BHG); elGE)

This relation, together with ([10] the relation [1.3.15),)
Gls) = — "l_dG(s) — LG(s) — G(s)L — LT — L
S

¢ Here, the notation ,,/” is meant to inlicate the linear dependence of the functiona
pc¥ with respect to its last argument. '
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(4.5), (4.6), (4.7) and the definition (4.1) lead to  FEF 5
(5.2) 7] =9U[—§§1+ap:°/°~<6<s>; p>]a-n+

§=0
+2U8, T (G(s); o/CLS) a @ m
s=0
where C(s) = G(s) + 1(s) with 1(s) =1 for each s = [0, o0).
Now, introducing (5.2) in (4.10) it obtain
THEOREM 4.1. The amplitude a and the velocity w of an acceleration
wave traveling in the divection n of a simple fluwid of the type (2.1), must
obey the propagation condition
{(5.3) Q(n)a = u*a
wher e
ap 3
Qij(n) = Ll {1~ e 7?4:: (G(s); p)mm; —

e s=0

— 2 By, 5 (G1) 5 0ICi(5)mat

s=

Gem

are the components of the instantaneous acoustic tensor [4] §2.

Remark 5.1. The relation (5.3) tell us that any real right proper vector
a of Q(n) is a possible amplitude vector if its corresponding eigenvalue
is real and positive. Generally, Q(#) have not real positive eigenvalues
and than real proper vectors.

Following [1] §71 we can conclude that if

V- -Qnyw >0
for any unit vector V, than in a given direction #, there is at least one
real amplitude with positive velocity.
Furthermore, if a is a such real amplitude, then
U = (a - Qn)a) e
where a is the norm of the vector,a.

Remark 5.2. For fluids of integral type of the first order, the acoustic
tensor Q(xn) takes the simplified form

1

.

:11; S doMp, 8) trG(s)ds] 1 —
0

(5.4) Q(n) = {[

— (2nle,9) Gls)sn @ n — 2" (ule, 9) C(e)ds —
0 B 0

L (122, ) + wle )] C(5)ds
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If this tensor will be simmetric, ie. if
n®nG(:)=G() nQ@n
then its characteristic equation
10(n) — wl] =0

will have only real roots.

Remark 5.3. If the fluid is perfect then the corresponding acoustic
tensor

(5.5) Q) =Ln@mn
de

. ap
has only one real eigenvalue #? :d—p and

P

(5.6) I \/ 371
P

is just the acoustic propagation speed [6] XII the relation 32).
Turthermore, from (5.3) and (5.5). we find known result [6] II §8

(5.7) axn=0

ie., an acceleration wavc in a perfect fluid is necessary longitudinal.
Remark 5.4. If the fluid is incompressibil p is a constant, such that
Q(n) will take simplified forms. In the liniar case, for example

1)

(5.8) Q) = — 2 [ -l 4+ n@n] {u(5) Clsjas
Generally, from (4.6), and (4.7) it results

(5.9) a-n=20

ie., in incompressible simple fluids only transversal acceleration waves
are possible.

6. Homothermal acceleration waves
In this section we shall allow the stress to be affected not only by

the history of the strain, but also the histories of thermodynamic varia-
bles. Such, in view of [10] §1.3. we can write T under the form

6.1) T = — P(e}l + % (Ts)5 6, o)

where ,I* = (G, ,6, ,*) is the past history of ¥, 6 is the temperature,
g = FTg and g = grad 6. !
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The liniarized form of (6.1) (10] §1.3.) is

o]

T=—Pp)1+ [v(p. 0)8 + | v'(p, 5)0(s)ds +

0

0

+ §07\(p, s) trG(s)ds]l + Su(p, s) G(s)ds

0

The smooth assumptions upon the functional ¥ are an easy extension
of those of the second section and we shall suppose them to be tacit
satisfied. ’

DEFINITION 6.1. A singular surface ¢ with respect to a motion, characteri-
zed by the fields #(x, 1) and O(x, t), will be called an acceleration wave
if .

a) & and 8 are comtinumous functions of x and t jointly for all % and
z.

b)) % grad % and 6 have juimp discontinuities across ¢, but are com-
tinsous in x and t jointly everywhere else.

c) for each x, the function t— Dx, -) has values in H and is con-
tinuously differentiable  with vespect to its morm.

DEFINITION 6.2. An acceleration wave for which
(6.5).% (6] =0, [grad 6] =0

will be called a homothermal waye? [11] §3.

Now, derivating T from (6.1) 'and taking into account the precedent
relation of (5.2) and [10] the relation (1.3.15),)

(6.4) Bls)= — 2 g(s) — L7g7(s)
we attain to

o0

P =Ll 0, T (1) 0, Pe + 8 T (Ts); 6, p)6 —

(6.5) — 8 T (I"(s); 6, o/L7C(s) + C(s)L) — 3, i“o (T¥(s); 6, o/L7gH(s)) —

s=0

=3 (T 0, 0] £,1%9)

§=0

It is a well known fact that an acceleration ;'wave in a definite conductor of heat is
homothermal [4] § 6.

Z

oL
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From (6.5), (4.5), (4.6), and (4.7) it result that for a homothermal

wave

(1] =eu[ =2 48, T (I49); 0 o]a-n+

e

(6.6) + 208, i? (,T¥s); 0, o/C(s)a® n +

uloe T (105 0, ele @ 7]

Thils last relation together with (4.10) lead to

; ‘ /

THEOREM 6.1. The amplitude a and the velocity w of a homotherma

acceleration wave, traveling in the divection n of a simple fluid of \the type
(6.1) must obey the propagation condition

(6.7) Q*(n)a = ua
where

Q5 (n) = Ly — 3, T 1¥(5) 5 0, p)muny —
4] s=0

— 2 3, Bl (s) 5 6, o/Cyls))mum, —
e s=0

= L8, Ll T 0, /g (Sngm,
e s=

are the components of instantaneous acoustic tensor corresponding to
e, 0 and ,IM(-).

Remark 6.1. In the case of the linearized theory when T is given -
by (6.2), this tensor has the simplified form

[+ )

Q*(n) = Q(m) — [03,(p, 0) + {ov(e, 90(s)as|n @ n

while, for incompressible fluids
Q*(n) = Q(n)

Obviously, in each case Q*(n) is simmetric if and only if Q(») do
so.
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