MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 12, No 1, 1983, pp. 5-10

ON A METHOD OF THIRD ORDER IN FRÉCHET SPACES

by M. BALÁZS (Cluj-Napoca)

Let X be a real Fréchet space with a quasinorm induced by an invariant distance d i.e. ||x|| = d(x, 0) (see e.g [4, p. 14]) and $P: X \to X$ a continuous mapping. We shall note by [x', x''; P] and [x', x'', P]x'''; P] the symmetrical divided difference of the first, respectively the second order of the mapping P in the points x', x'', $x''' \in X$. Let's consider the equation

(1) which is the first
$$P(x) = x - \Phi(x) = 0$$
.

If we have the sequence (x_n) in X, then the sequence (u_n) is defined by $u_n = \Phi(x_n)$, and $\Gamma_n = [x_n, u_n; P]^{-1}$ the inverse of the linear mapping $[x_n, u_n; P]$, if it exists. There exist the results concerning the existence of the solution of the equation (1) in Banach spaces $\lceil \overline{1} \rceil$, as the limit of the sequence given by

(2)
$$x_{n+1} = x_n - \Gamma_n [P(x_n) + P(x_n - \Gamma_n P(x_n))], \quad n = 0, 1, 2, \dots$$

The purpose of this paper is to generalize these results for the case of the Fréchet spaces.

Remark. In this paper we use the quasinorm of the linear mappings L having Liepschitz-property i.e. there exists M > 0 so that for every

$$x \in X, ||L(x)|| \leq M||x||$$

and

$$||L|| = \inf \{M > 0 : ||L(x)|| \le M||x|| \text{ for every } x \in X\}.$$

THEOREM. We suppose that there is a point $x_0 \in X$ and the numbers

(i) there exists
$$\Gamma_0 = [x_0, u_0; P]^{-1}$$
 and $||\Gamma_0|| \leq B_0;$
(ii) $||\Gamma_0|| \cdot ||P(x_0)|| = ||\Gamma_0|| \cdot ||x_0|| = \Phi(x_0)||x_0||$

3

HUDI KAMUN GRULAMM, BALÁZS HA — AZITAM URNAM ET DE THESEER DE CAPPROXIMATION

(iii) $\sup\{||[x', x''; \Phi]||: x', x'' \in \overline{S}\}\} \leq M$ and $\sup \{ ||[x', x'', x'''; P]|| : x', x'', x''' \in \overline{S} \} \le K;$

 $(iv) B_0|(||P(x_0)|| + ||P(y_0)||) \le d_0(1 + B_0KMd_0) = \eta_0$

where $y_0 = x_0 - \Gamma_0 P(x_0)$;

 $(v) h_0 = B_0 K(1+M) \eta_0 < \frac{4}{9}$

where $\bar{S} = \{x \in X : ||x - x_0|| \le r\}, \ r = \eta_0 \left(2 + \frac{5}{B_0}\right)$

In these conditions there exists the sequence (x_n) defined by (2) having the following properties:

following properties: (j) $x^* = \lim x_n$, $x^* \in \overline{S}$ exists and x^* is a solution of equation (1);

(jj) the rapidity of the convergence of the sequence (xn) to the solution x^* of the (1) is given by

$$||x_n - x^*|| \le \frac{9}{4} \left(\frac{5}{9}\right)^n \left(\frac{51}{25} h_0\right)^{3^{n-1}} \eta_0, \qquad n = 1, 2, \dots$$

Remark. The radius of \overline{S} and the numerical estimation in inequality (jj) are not optimal but they are chosen for the convenience of calculation.

Proof. We consider the mapping

$$F: X \to X$$
, $F(x) = x - \Gamma_0 P(x)$.

We have

$$F(x_0) = F(u_0) = y_0, \ [x', \ x'' \ ; \ F] = I - \Gamma_0[x', \ x'' \ ; \ P]$$
 and

and
$$[x', \ x'', \ x'''; \ F] = -\Gamma_0[x', \ x'', \ x'''; \ P]$$

therefore

therefore
$$[x_{\scriptscriptstyle 0},\;u_{\scriptscriptstyle 0}\,;\;F]=I-\Gamma_{\scriptscriptstyle 0}[x_{\scriptscriptstyle 0},\;u_{\scriptscriptstyle 0}\,;\;P]=0$$
 and

and

$$[x_0, u_0, y_0; F] = -\Gamma_0[x_0, u_0, y_0; P],$$

where I is the identity mapping of X. According to the definition of the divided differences [2] we obtain

$$[x_0, u_0, y_0; F](y_0 - x_0)(y_0 - u_0) = -\Gamma_0 P(y_0).$$

We have thus $P(y_0) = [x_0, u_0, y_0; P](y_0 - x_0)(y_0 - u_0)$ wich by

$$||y_0 - x_0|| = ||\Gamma_0 P(x_0)|| \leqslant d_0 \leqslant \eta_0 < r, \ ||u_0 - x_0|| = ||P(x_0)|| \leqslant \frac{d_0}{B_0} \leqslant \frac{\eta_0}{B_0} < r,$$

that means $y_0, u_0 \in \overline{S}$ and

$$(3) ||P(y_0)|| \leq K||y_0 - x_0|| \cdot ||y_0 - u_0||.$$

Further we have

$$y_0 - u_0 = \Gamma_0 P(u_0) = \Gamma_0 [x_0, u_0; \Phi](x_0 - u_0),$$

from 19) it regults the reserver of the mapping

ON A METHOD

from which using $||x_0 - u_0|| \le \frac{d_0}{B_0}$ we obtain

$$||y_0 - u_0|| \leqslant Md_0.$$

From (3) we get

$$||P(y_0)|| \leq d_0^2 KM.$$

By (i) and (2) we can construct the point x_1 , thus $u_1 = \Phi(x_1)$ too. We check the conditions (i)-(v) for the point x_1 with analogous numbers B_1 , d_1 , K and M. Using (2) by (i), (ii) and (5) it results:

(6)
$$||x_1 - x_0|| \leq ||\Gamma_0 P(x_0)|| + ||\Gamma_0 P(y_0)|| \leq \eta_0 < r,$$

which means that $x_1 \in \overline{S}$.

Considering that $x_1 \in \overline{S}$ we obtain

(7)
$$||u_1 - u_0|| = ||\Phi(x_1) - \Phi(x_0)|| = ||[x_1, x_0; \Phi](x_1 - x_0)|| \le M||x_1 - x_0|| \le M\eta_0.$$

According to the definition of the divided differences we have

$$P(x_1) = [x_0, y_0, u_0; P](y_0 - u_0)\Gamma_0 P(y_0) + [x_1, x_0, y_0; P](x_1 - x_0)(x_1 - y_0).$$

Using (4), (5), (6) and the equality $x_1 = y_0 - \Gamma_0 P(y_0)$ we obtain

(8)
$$||P(x_1)|| \leq \frac{B_0^2 K^2 \eta_0^2}{B_0} (1+M)^2 \eta_0 = \frac{h_0^2}{B} \eta_0 < \frac{\eta_0}{B_0} .$$

From (8) it rezults

$$||x_0 - u_1|| = ||x_0 - \Phi(x_1)|| = ||x_0 - x_1 + P(x_1)|| \le \eta_0 \left(1 + \frac{1}{B_0}\right),$$

therefore $u_1 \in \overline{S}$.

Using the condition (iii), (6) and (7) we may write:

(9)
$$||\Gamma_{0}([x_{0}, u_{0}; P] - [x_{1}, u_{1}; P])|| \leq \Gamma_{0}([x_{0}, u_{0}; P] - [x_{1}, u_{0}; P])|| + ||\Gamma_{0}([x_{1}, u_{0}; P] - [x_{1}, u_{1}; P])|| \leq$$

$$\leq B_{0}K(\eta_{0} + \eta_{0}M) = B_{0}K(M + 1)\eta_{0} = h_{0} < 1.$$

Because

$$\{\Gamma_0[x_1, u_1; P]\}^{-1} = \{I - \Gamma_0([x_0, u_0; P] - [x_1, u_1; P])\}^{-1}$$

from (9) it results the existence of the mapping

$$\{\Gamma_0[x_1, u_1; P]\}^{-1},$$

and the inequality

$$\{\Gamma_0[x_1,\ u_1\ ;\ P\,]\}^{-1}\leqslant \frac{1}{1-h_0}\cdot$$

Using further the equality

$$\{\Gamma_0[x_1, u_1; P]\}^{-1}\Gamma_0 = \Gamma_1$$

we obtain
$$||\Gamma_1|| \leqslant \frac{B_0}{1-h_0} = B_1,$$

which means that (i) is satisfied for the points x_1 and u_1 with the number B_1 . By (8) and (10) we have

$$||\Gamma_1|| \cdot ||P(x_1)|| \leq \frac{h_0^8}{1-h_0} \eta_0 = d_1.$$

Thus the hypothesis (ii) for x_1 is verified with the number d_1 . From the existence of the mapping $\Gamma_1 = [x_1, u_1; P]^{-1}$ it results that we can construct x_2 . If $y_1 = x_1 - \Gamma_1 P(x_1)$, then $y_1 \in \overline{S}$, because

$$||y_{1} - x_{0}|| \leq ||y_{1} - x_{1}|| + ||x_{1} - x_{0}|| \leq ||\Gamma_{1}P(x_{1})|| + \eta_{0} \leq \left(\frac{h_{0}^{2}}{1 - h_{0}} + 1\right)\eta_{0} \leq \frac{61}{45}\eta_{0} < r.$$

Making the same reasoning we used for obtaining $P(y_0)$ we get

$$||\Gamma_1|| \cdot ||P(y_1)|| \leq B_1 d_1^2 KM,$$

whence using (8) it results

$$||x_2 - x_1|| \le B_1(||P(x_1)|| + ||P(y_1)||) \le d_1(1 + B_1d_1KM) = \eta_1$$

which means that (iv) is satisfied for the points x_1 with the numbers B_1 , d_1 , K, M and the following relations are true:

$$\eta_1 = rac{h_0^2}{1-h_0} \Big(1 + rac{h_0^2}{(1-h_0)^2} \Big) \, \eta_0 \leqslant rac{1}{5} \Big(rac{17}{5} \Big)^2 \, h_0^2 \, \eta_0 \, \leqslant \, \eta_0.$$

We have

$$||x_2 - x_0|| \le ||x_2 - x_1|| + ||x_1 - x_0|| \le \eta_1 + \eta_0 < r$$

$$h_1 = B_1 K(M+1) \eta_1 = \frac{B_0}{1 - h_0} K(M+1) d_1 (1 + B_1 d_1 KM) \le$$

$$\le \left(\frac{68}{75}\right)^2 h_0 < h_0 < \frac{4}{9}.$$

So the numbers B_1 , d_1 , K and M verify the conditions (i) -(v). By induction we can prove the following relations:

$$B_n = rac{B_{n-1}}{1 - h_{n-1}};$$
 $d = rac{h_n^2}{1 - h_{n-1}} \eta_{n-1};$
 $\eta_n = d_n(1 + B_n d_n KM);$
 $h_n = B_{n-1} K(M+1) \eta_{n-1}$

and

$$x_n, u_n, y_n \in \overline{S}$$

for all pozitive integers. From the former inequalities we obtain

$$h_n \leqslant \frac{25}{51} \left(\frac{51}{25} h_0 \right)^{3^n}$$

(12)
$$\eta_n \leqslant \left(\frac{5}{9}\right)^n \left(\frac{51}{25} h_0\right)^{3^{n-1}} \eta_0.$$

Using the inequality $||x_{n+1} - x_n|| \leq \eta_n$, and the relation (12) we obtain

$$(13) \quad ||x_{n+p}-x_n|| \leqslant \eta_n+\eta_{n+1}+\ldots+\eta_{n+p-1}<\left(\frac{5}{9}\right)^n\left(\frac{51}{25}h_0\right)^{3^{n-1}}\eta_0.$$

The space X being complete it results the existence of the limit of the sequence (x_n) , and $\lim_{n \to \infty} x_n = x^* \in \overline{S}$. For $p \to \infty$, the inequality (13) gives the rapidity of the convergence of the sequence (x_n) .

We shal prove that the point x^* is the solution of the equation (1). By the inequality

$$||P(x_n)|| \leqslant \frac{d_n}{B_n}$$

using the relation $B_n \geqslant B_0$ for all $n = 1, 2, 3, \ldots$ and the formula of d_n , it rezults

(14)
$$||P(x_n)|| \leq \frac{9}{4B_0} h_{n-1}^2 \eta_{n-1}.$$

The inequality (14), using (11) and (12) gives

$$\lim_{n \to \infty} ||P(x_n)|| = ||P(x^*)|| = 0 \text{ thus } P(x^*) = 0.$$

REFERENCES

- B alázs, M., On a Method of Third Order, Studia Univ. Babeş-Bolyai, Mathematica, XXV, 1, 1980, 54-59. XXV, 1, 1980, 54-59.
- 2] Balázs, M., Goldner, G., Diferențe divizate în spații Banach și unele aplicații ale lor, Studii și Cercet. Mat., 7, 21, 1969, 985-996.
 [3] Bosarge, M. E. and Falb, P. L., A Multipoint Method of Third Order, Houston
- Scientific Center IBM Publication, No. 320.2350, Octobre, 1968.

[4] Rolewicz, S., Metric Linear Spaces, PWN, Warszava, 1972.

Received 12.X.1982,

Universitatea Babeș-Bolyai Facultatea de matematică Universitatea Babeș-Bolyai Str. Kogălniceanu 1 mundle our authorizent regreed and manifestation 3400 Cluj-Napoca