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1. Introduetion

We consider the maximization problem of a quasimonotonic function
fiD =R on a closed set D < R”. For solving this problem a linearization
technique consisting in the successively (exactly or approximatively) so-
lution of certain optimization problems with the same feasible set D
and with linear objective functions is used.

This linearization technique was employed by several authors for
solving certain optimization problems with linear constraints and a quasi-
monotonic objective function such as: xucmer BM. [9], TIcAN S. [13],
[14], BoaTT 8. K. [3] (in the case of linear constraints), BECTOR C.R.,
JoLLy P. L. [l], 116AN 8. [14] (for integer linear constraints), BECTOR ¢.
R., BHATT S.X. [2] (for interval linear constraints). g

In this paper sufficient conditions for the convergence (finite or in-
finite) of this linearization method for quasimonotonic optimization prob-
lems are given. We will show that this method can be applied to solve
certain quasimonotonic optimization problems on the graphs, when, for
instance, the set' D consists of all the spanning trees or of all the ele-
mentary paths between two fixed vertices, In particular, when the objec-
tive function is a fractional one the linearization technique is equivalent
to some known algorithms for fractional optimization in graphs (see [4],

[5], [71, [11]).
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2. Definition and prelirninary results

Tet X < B* be a non-void open convex set and let f: X — R be a
differentiable function on X. We denote by

, of (' af(x’
) = (22, ... 52
1 n

the gradient of f in the point x'.

On the set X the function f is said to be:
{i) pseudoconcave if Vf(x') - (x” — &') < 0 implies f(x") < f(x'), for every
x', ' in X ;
(ii) pseudoconvex if —f is pseudoconcave ;
(iii) quasiconcave if f(x') < f(x"')! implies f(x') <
equivalently, f(¥') < f(x") implies Vf(x) - (¥ —
%" in X and ¢ = ]0, ; ,
(iv) guasiconvex if —f is quasiconcave;
(v) quasimonotonic if f is both quasiconcave and gquasiconvex ;
(vi) pseudomonotonic if f is both pseudoconcave and pseudoconvex.

Tet D < X be a non-void closed set. We will denote by co(D) the con-
vex hull of the set D, that is:

co(D)={y « R*:3x* € D, 3¢, >0 (i =1, 2, ..., k), such that

k k
y =5t and Dt =1}
i=1

i=1

fEx 4 (1 =85 (or,

x
%) > 0) for every ',

It is known (see [12], Theorem 17.2, p.158) that if D is a closed 'boun-
ded set then co(D) is a closed bounded set too.

We consider the following .optimization problem:
P. Find

s = max{f(#): ¥ = D},

where f is ‘a differentiable function on the convex set X, and Dis a
closed bounded non-void subset of X.

We associate to problem P the following optimization problem with
convex feasible set:

P1. Find

s, = max' {f(x): x < co(D)}.

The following theorem. states sufficient conditions that the problems
P and Pl have the same optimal solutions in D.

THEOREM 1. If the fumction f is quasiconvex and differentiable on the
comvex set X and D is @ closed bownded nown-void subset of X, then s = si.
Also, %' « D 4s an optimal solution of problem P if and only if it 15 an
optimal  solution of problem P1.

€1

¥
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Proof. Obviously, since D < co(D), we have:
2.1 s £ s;.

On the other hand, since f is continuous and the set co(D) is com-
pact, there exists %' e co (D) such that f(x') = s.. If x < D then the

theorem is evidently true. Suppose that ¥’ & D). Then there exist the points

¥ e D, 1e{l,12,..., k} = K, and the ‘real numbers f;, = 0,1, K,
such that:

k k
Zti = 1tand x' = ?;1 £xt.

i=1

Since f is quasiconvex, it follows that:
{2.2) s, = f{x) < max {f(#):¢ < K} = f(x"),

for some ¢ in K. But & = D, so we have:
{2.3) flx") i< s

But, by (2.2) and (2.3), we get: S < s, ' et o
This last inequality and (2.1) yield the ’equahty s = §;, between the
optimal values of the problems P and PIL. The last part of the theorem
follows from this equality and the inclusion D < co(D). ’ ”
-+ we need the following result due to KORTANEK all EVANS .
TS ontinuously differentiable function defined on

.‘_3REu2.L_etfbanc :  dey
the “i;é;*ocm?:wx set X = R*. Consider the two following problems:

max {f(x): x = C} and (IT)., max Vf(x) 2% & C}, where C 18
a cﬂu&:?d ;i}t co%&a-ﬁmd in X and ' = C. Then %' 1S an o‘;b_i:n‘;al .;;olutwﬂ
for (1) if and only if &' is an optimal solution for (L) proviaca cwher one
of the following conditions holds :
(a) f s pseudoconcave 0% X2 !
(b) f is quasiconcave o X and Vf(x') # 0. ' _ > A
Theorem 2 gives a caracterization of the optimal s_olutlonshfor the .
problem . P, when the feasible set D 1s convex. Now using thgT: .eorcm_s
1 and 2, we will derive, with the supplimentary hypothcsefs that f bllﬁ‘ quits_x-
convex, a version of The;orem 2 supp)omig only that the feasible set 1S
: ed (possible non-convex) set. ‘ ]
J Llofiioblg?; i Lz(rf fbea continuously differentiable quasiconvex function
on the c;om;::x set X and let D be a closed bo:zmded non-void sudb_Sft of ff).
Let suppose in addilion for the function _f that either one of the co;z ;twnsf{t )
or (b) of Theorems 2 holds. Then % & D is an optimal .s‘;}’ua‘pw ?‘n he
problem P if and only if %' is an optimal solution for the following hine

vized problem :
P(x). max {Vf(x) - #: % & Dj}.
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Proof. By Theorem 1, ' « D is an optimal solution for P iff %’ is
an optimal solution for P1. By Theorem 2, x’ is an optimal solution for
P1 iff %" is an optimal solution for the problem :

P1(x'). max {Vf(x') - #: x « co(D)}.

And again, by virtue of Theorem 1, ' < D is an optimal solution for
the problem Pl1(x’) if and only if x"'is an optimal solation for the pro-
blem P(x'). By this sequence of equivalences the proof is complete.

The Theorem 4 below follows directly from quasiconvexity definition
(see, for instance, [6], P.27 (ix), pp. 29—30).

THEOREM 4. Let f be a differentiable quasiconvex function on the con-
vex set X and let x', %" be in X. If we have:

(2.4) VA T <V - 2

then f(x') < f(x").
We note that some versions of this theorem was used in [10], [9],

[13] to derive a simplex criterion to change a basis for quasimonotonic
programming with linear constraints.

3. Algorithms

The theorems 3 and 4 suggest that maximizing aquasimonotonic func-
tion on a closed bounded set D is equivalent to maximizing certain
linear functions on D. The algorithms below envisage to find a sequence
of points in D converging (finitely or infinitely) to a point %’ in D for
which Theorem 3 holds. This is done by solving o certain number of
linearized problems.

Algoritm 1
Step 1. Choose %y <= D and take ¢ = 0.
Step 2. Solve the linearized problem :

P(x*). Find
(3.1) s; = max {Vf(xf) - x: x « D}.
Let x**+! be an optimal solution of the problem P(xf).

Step 3. (i) If Vf(x')x* <'s;, then go to Step 2 with 4 replaced by ¢ - 1.

(if) If Vf(¥%) - »* = s;, stop. By Theorem 3, ¥* is an optimal solution
for the problem P.

We will give an approximative version of the algorithm 1. For this,
we consider the sequence of real numbers () such that:

(3.2) t, >0, Lim¢, = 0.

=00
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Algorithm 2
Step 1. Choose %, = D and take i = 0.
Step 2. (i) If there exists x e D such that:

(3.3) Vf(x)) - x> Vf(x¥) - %,
then go to Step 3.
(ii) If
(3.4) vi(x) « x < yf(x) - &, V x e D,
stop.
Step 3. Find x**! « D such that:
(3.5) VF(x) « 2+t > max {s; — t;, Vf(¥') - %%},

where s, is the optimal value of the problem P(#’) (see, (3.1)). Replace ¢

by ¢ + 1 and go to Step 2. ‘ .
A ’bli'_e mar lf 3.1 WE note that the algorithm 1 can be derived from

the algorithm 2 by taking f, = 0, for every natural.i.. Also, if D is a
finite set, in the algorithm 2 we can replace the condition (3.5), by

(3.6) V(%) - 2+t > Vf(x) -«

4. Convergenee results

i low) for the
. We will state a general convergence result (The:orem 6 be
algorithm 2 and, by Remark 3.1, also for the algorithm 1. After that, we
will give sufficient conditions for the finite convergence of these algo-
r.thms. ~ . . . y 3
1 THROREM 5. Let [ be a quasimonotonic differentiable function. Then,
whenever condition (3.5) from algorithm 2 holds, we have:

f@tt) > flx').
Proof. From the condition (3.5), one gets:
Vf() - 2 > V() - o,

whence, by Theorem 4, it follows f(x+!) > f(x). ' ! )
THREOREM 6. Let f be a quasimonotonic continuously differentiable function
veriffying at least one of the conditions (a) or (b) from Theorem 2, .and let
D be a closed bounded set. Then one of the following situations holds : '
() If the condition (3.4) is fulfiled for some i, then the algorithm 2 45
inished  after a finite nwumber of itevations and ¥ is an optimal solution
v the problem P. ) Wl
: (i) pI 'f the condition (3.4) is not realized for any u, then every l%m;pit point
x' of the sequence (%) is an optimal solution of the problem P an

(4.1) f(#) = Lim f(x) = max {f(x): % D}.
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Proof. (i) The condition (3.4) implies that x* is an opti i

. ‘ . ptimal solution
for the problem P(x’), whence by Theorem 3, one gets that # is an
optimal solution for the problem P.

(ii) Let &' = Ikigl %%, where (x"k) is a convergent subsequence of the

sequence (xf). The set D being closed, it follows that x' < D. Al
(8.5), for every natural %, we have: & B $EobY

Vf(x"k) AR $;, — t;, = max {Vf(x"k) XX = D} — b,
that is:

(4.2) Vf(a') - x> vf(at) - x — b, Vxe D.

By continuity of the gradient of d by (3.2), taki —> i
(4.2), we get: g f and by (3.2), taking & —» o0 in

Vi) - & = Vf(x') - x, YVx e D.

Tllel‘efol i X 1S an o p tlmal S()lutlon f()I the [)1 O wliie e
acceor dlng t() the t:he()l em 3, it T eSlll tS tha,t X 1'S a l O l 1

To prove (4.1), we remark that, by Th ‘
1 : 1), ] , by Theorem 5, the sequence (f(x*
is strictly increasing. Also, by the first part of the theorem, this seq({e(nc)g
is upper bounded by f(x'). Therefore it is a convergent sequence. But
since it possesses a subsequence x'r)) which F(x), i ’
lows that (4.1) holds. (f( ) R SHESS el ), fol-
THEOREM 7. Suppose that the assumptions on the function f in Th
6 hold. Assume also theve exists a fimite sel D' < D{[ such thj;t: e

max {f(x): ¥ e D} = max {f(x): x « D'}.

If ¥t = D', whenever condition (3.5) holds g0t s find

A LN il (3.5) holds, them Algovitm 2 is finished after
Proof. Since, by Theorem 5, the sequence (f(x%)) is strictly increasing

it follows that in the sequence (x) do not exist two identical elements,

Hence, the set D’ being finite, one arrives after a finite number of iterafioﬁé

that condition (3.4) is fulfiled. Thus by Theorem 6, the algorithm is finished

after a finite number of iterations.

~ Remar k. 4.1. The assumption of the theorem 7 is evidently veri-

fied Wh.en th'e set' D is finite. It happens so, for instance, when the feasible
set D is def}ned by a system of linear constraints with integer variables
(1], [4], or'in some optimization problems in graphs (see section 5 below)
when feasible set D is a finite set of subgraphs. When D is defined by
a syste.m,of'h.near constraints (with continuously variables [2], [3], [9]
[13]), it has, in general, an infinite number of elements, but there exists
a finite .subset D' containing all extremal points of D, which verifies, the
assumption of Theorem 7. :
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Remark 42 We note that in the hypotheses of Theorem 7, a
version of Algorithm 2 obtained by replacing the condition (3.5) by (3.6)
in Step 3, converges finitely too. It happens so, in some simplex algorithms
for the quasimonotonic programming [9], [13].

5. Applications to optimizaticn problems in graphs

Let G = (V, U) be a connected graph with |V | = » vertices and |U| =
— mares, U = {ty, tg, ..., %,} SV X V.

We denote by E a certain set of subgraphs of the graph G. Such
sets of subgraphs can be taken, for instance, the set of spanning trees
of the graph G, or the set of elementary paths between two fixed verti-
ces. :

Given a subgraph A in E we denote by U(4) the set of its arcs and
we associate to A the vector X(4) = R”, having the components:

i} 0, if 'u, « U —U(4), , I
xz()_ 1,1f%iEU(A), =1, 2, ..., M.
Also, we define the set:
C(E) = {X(4): A e E}.

DEFINITION 5.1. A function f+E — R ¢s said to be pseudoconcave (7es-
pectively quasiconvex, quasiconcave, pseudoconvex, quasimonotowic or linear)
on E if there exists a pseudoconcave (respectively quasiconvex, quastconcave,
pseudoconvex, quasimonolonic oy linear) function f: co(C(E)) = R, such that .

f(4) =7(X(4)), V4 ¢ E.

We call the function f an extension of the function I

We note that the fractional objective functions considered in some
fractional optimization problems (on the paths set (7], [11], on the span-
ning trees set [4], {7] and on the cycles set [5]) are both pseudoconcave
and quasiconvex functions in the sense of the definition 5.1. .

Suppose now that for each arc 4, = U are given two nonnegative weéight
¢, and b, Then the function f: E - It, defined by

F(A) 2150 a1+\/[u_§;mai]2+ SN b+ o VA <E, ¢>0,

;< U(4) s U(4)

is quasimonotonic because the extention f: co(C(E)) — R of f where:

m

7 m 2 e
. Y
(e, %oy ooy %) = \2:1 a;%; 4 %/ (Ex aixi) 1= 21749‘4 + ¢,
1= i= =

is quasimonotonic on the set co(C(E)). !
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Iet E be a set of subgraphs of G and let f be a function which is
both pseudoconcave and quasiconvex on E. We consider the following
quasimonotonic optimization problem on the graph G:

PG. Find A’ e E, such that:

f(4") = max{f(4): A = E}.

If fis an extension of f, then the problem PG can be restated in the
following manner :
PG". Pind A' < E, such that:

FX(4") = max{f(X): X e C(E)}

The problem PG can be solved by applying the linearization algorithm
1 to the problem PG’. Thus the solving of the nonlinear optimization prob-
lem PG can be reduced to the solving of a finite aumber of , linear”
optimization problems on the set of subgraphs E. For these linear problems,
in some particular cases, there exist efficient algorithms (see, for instance,
[7], when E is the spanning trees set, the paths set, the cycles set, ete.).
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