MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 12, № 1, 1983, pp. 19-23 Same bur S. Direc Ash H. on & reached to d by : Bh" warps a sure lunch

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

riens min EQUIVALENCE RELATION IN PROBABILISTIC SYNTOPOGENOUS SPACES THE SHOT D. D. DONNESS AND

by LIVIU FLORESCU

-tal a sub production (Iași) communer I porns, then, on every a 10, and 1 per define -taken a N. Y The second se

In [4], K. MENGER introduced three types of distinguishability for pairs of points of a probabilistic metric space, depending upon the behaviour of the distance distribution function near zero. If (X, F) is a PM space, $x, y \in X$ and $t_{xy} = \inf \{ \alpha : F_{xy}(\alpha) > 0 \}$, then we say that x and y are: (A) certainly-distinguishable if $t_{xy} > 0$;

(B) barely-distinguishable if $t_{xy} = 0$ and $F_{xy}(0^+) = 0$; (C) perhaps-indistinguishable if $F_{xy}(0^+) > 0$.

The above mentioned types of distinguishability were reconsidered by B. SCHWEIZER ([5]) who defined two relations on X as follows:

(1) $x \rho y$ iff x and y are perhaps-indistinguishable, i.e. iff (C) holds; (2) $x \delta y$ iff x and y are not certainly-distinguishable, i.e. iff either (B) or (C) holds.

In the following we refer only to the relation ρ . In [5, Th.1] B. SCHWEIZERR. proof that, if (X, F, T) is a Menger space, where T t-norm such that: (3) T(a, b) > 0 whenever a > 0 and b > 0, is a *t*-norm such that:

then ρ is an equivalence relation on X and R. J. EGBERT shows that the quotient space $\dot{X} = X/\rho$ can be endowed with an adequate probabilistic metric; in some conditions x and y are perhaps-indistinguishable in X iff $x = \dot{y}$ (see [2, Th. 31]).

In [3] we introduce a probabilistic variant of the Császár's syntopogenous structures (see [1]) - the probabilistic syntopogenous structure. Using these structures, we define, in a natural way, the probabilistic uniformities and the probabilistic proximities; the relations between these structures and the probabilistic metric structures are analogous with the rela2

3

tions between the uniform structures, the proximity structures and the metric structures on a set.

Let *I* be the closed unit interval and let $T: I \times I \to I$ be a *t*-function $(T(a_1, b_1) \leq T(a_2, b_2)$ if $a_1 \leq a_2$ and $b_1 \leq b_2$; for every $a \in I$ let \mathscr{S}_a be a non-empty family of topogenous orders on *X*, such that for every $<_1, <_2 \in \mathscr{S}_a$ there is $< \in \mathscr{S}_a$ with $<_1, <_2 \subseteq <$. A probabilistic syntopogenous structure (pss) on *X* is a pair (\mathscr{S} , *T*), where $\mathscr{S} = \{\mathscr{S}_a: a \in I\}$, satisfying the following conditions:

(PSO) $\mathfrak{S}_0 = \{ <_0 \}$, where $A <_0 B$ iff $A = \Phi$ or B = X,

(PS1) for every $a, b \in I$ with a < b and for every $< \in \mathfrak{S}_a$ there exists $<' \in \mathfrak{S}_b$ such that $< \subseteq <'$.

(PS2) for every $\leq \in \mathscr{S}_{T(a,b)}$ there exist $\leq' \in \mathscr{S}_a$ and $\leq'' \in \mathscr{S}_b$ such that $A \leq B$ implies that $A \leq' C <'' B$ for some $C \subseteq X$.

A probabilistic syntopogenous space is a triple (X, \mathfrak{F}, T) , where (\mathfrak{F}, T) is a pass on X.

We say that a pss (\$, T) on X, $\$ = \{\$_a : a \in I\}$, is symmetrical, perfect, or simple if each $\$_a$, $a \in I$ is symmetrical, perfect, or consist of a single topogenous order. If (X, F, T) is a Menger space, where T is a leftcontinuous t-norm, then for every $\alpha > 0$, $a \in I$, we define $<_{\alpha, a} \subseteq \mathfrak{A}(X) \times$ $\times \mathfrak{A}(X)$, letting $A <_{\alpha, a} B$ if $A \times \mathfrak{A}(X - B) \subseteq \{(x, y) : F_{xy}(\alpha) \leq a\}$. For every $a \in (0, 1]$, let $\$_a = \{<_{\alpha, b} : \alpha > 0, b < a\}$ and $\$_0 = \{<_0\}$; then the pair (\$, T), where $\$ = \{\$_a : a \in I\}$, is a perfect and symmetrical pss on X — the pss induced by the probabilistic metric of the space (see [3, Th. 6.1.]).

The purpose of this paper is to give an extension of Schweizer's and Egbert's results as well as a probabilistic variant of a Császár's theorem concerning the simple, symmetrical and perfect syntopogenous structures.

We omit the proof of the following easily established

LEMMA. Let (X, F, T) be a Menger space under a left-continuous t-norm T, let ρ be the relation (1) and let (\$, T), $\$ = \{\$_a : a \in I\}$ be the pss induced by the probabilistic metric of the space. Then $x \rho y$ iff there exists a > 0 such that for every $\langle \in \$_a$ we have $x \ll X - y$.

DEFINITION 1. Let (\$, T) be a pss on X, where $\$ = \{\$_a : a \in I\}$; we define a relation $\rho \subseteq X \times X$ letting $x \rho y$ iff there exists $a \in (0, 1]$ such that, for every $\langle \in \$_a$, we have $x \not < X - y$; taking into account the result of lemma, is natural to say that x and y are perhaps-indistinguishable if $x \rho y$. Now, we give a generalization of Schweizer's theorem (see [5, Th. 1]) THEOREM 1. Let (\$, T) be a symmetrical pss on X under a t-function T which satisfies the condition (3). Then, the relation ρ is an equivalence relation on X.

Proof. For every topogenous order < on X and for every $x \in X$ we have $x \not < X - x$; hence ρ is a reflexive relation. Because (\$, T) is symmetrical it follows that ρ is a symmetrical relation. Finally, if $x\rho y$ and $y\rho z$ then there exist $a, b \in (0, 1]$ such that for every $<' \in \$_a$ and $<'' \in$ $\in \$_b$ we have $x \not < 'X - y$, $y \not < ''X - z$, where $\$ = \{\$_a : a \in I\}$ From (3), c = T(a, b) > 0; suppose that there exists $< \in \mathscr{S}_c$ such that x < < X - z; then, from (PS2), there exists $<' \in \mathscr{S}_a$, $<'' \in \mathscr{S}_b$ and $C \subseteq X$ such that x < 'C < ''X - z. Because y < ''X - z, it follows that $y \in C$; hence $C \subseteq X - y$ and therefore x < 'X - y. But this is a contradiction; thus ρ is a transitive relation.

Because every probabilistic proximity and every probabilistic uniformity are induced by an unique simple and symmetrical pss, resp. by a symmetrical and perfect pss (see [3, Th. 4.1, and 5.1.]), this result is fulfiled in every probabilistic proximity space as well as in every probabilistic uniformity space.

Let (\$, T) be a symmetrical and perfect pss on X under a t-function T which satisfies (3), $\$ = \{\$: a \in I\}$, let ρ be the equivalence relation associated to (\$, T) (see Theorem 1) and let $\dot{X} = X/\rho$ be the quotient space; for every $a \in I$ and $< \in \$_a$ we define $< \subseteq \mathfrak{A}(\dot{X}) \times \mathfrak{A}(\dot{X})$ letting $\dot{A} < \dot{B}$ iff for every $\dot{x} \in \dot{A}$, $y \in \dot{X} - \dot{B}$ there is $u \in \dot{x}$ such that $u < < X - \dot{y}$ or there is $v \in \dot{y}$ such that $v < X - \dot{x}$. Let $\dot{\$}_a = \{\dot{<}: < \in \$_a\}$ and $\dot{\$}_a = \{\dot{\$}_a : a \in I\}$. The following theorem is an extension of the above mentioned Egbert's result.

THEOREM 2. (\dot{s} , T) is a symmetrical and perfect pss on \dot{X} ; in addition, if (\dot{s} , T) fulfils the condition:

(4) for every $\dot{x} \in \dot{X}$ there exists $a \in (0, 1]$ such that for every $u, v \in \dot{x}$ and $\langle \in \mathfrak{S}_a$ we have $u \not < X - v$, then \dot{x} and \dot{y} are perhaps-indistinguishable in (\dot{X}, \dot{s}, T) if and only if $\dot{x} = \dot{y}$.

Proof. It follows directly from the definition of the family \dot{s}_a that it is a non-empty family of symmetrical and perfect topogenous orders on X, directed by \subseteq . (PSO) We suppose that $\dot{A} <_0 \dot{B}$ and $\dot{A} \neq \Phi$ and $\dot{B} \neq \dot{X}$; then, there exist $\dot{x} \in \dot{A}$, $\dot{y} \in \dot{X} - \dot{B}$ such that $u <_0 X - \dot{y}$ for some $u \in \dot{x}$, or $v <_0 X - \dot{x}$ for some $v \in \dot{y}$. It follows that $X - \dot{y} = X$ or $X - \dot{x} = X$ and this is a contradiction, because $y \in \dot{y}$ and $x \in \dot{x}$. (PS1) is obvious. We shall show that the condition (PS2) also is satisfed. Let $\dot{<} \in \dot{\$}_{T(a,b)}$; by the definition of $\dot{\$}_{T(a,b)}$, $\dot{<} \in \dot{\$}_{T(a,b)}$ and, hence, there exist $\dot{<}' \in \dot{\$}_a$, $\dot{<}'' \in \dot{\$}_b$ such that A < B implies A < C < HBfor some $C \subseteq X$. Let $\dot{A} < \dot{B}$; for every $\dot{x} \in \dot{A}$ and $\dot{y} \in \dot{X} - \dot{B}$ we have:

a), there exists $u \in \dot{x}$ such that $u < X - \dot{y}$, or

b). there exists $v \in \dot{y}$ such that $v < X - \dot{x}$.

a). $u < X - \dot{y}$ implies that there exists $C \subseteq X$ such that $u < C < X - \dot{y}$. Let $\dot{C} = \{\dot{x}: x \in C\}$; for every $\dot{w} \in \dot{X} - \dot{C}$ we have $C \subseteq X - \dot{w}$ (for every $z \in C$ we have $\dot{z} \in \dot{C}$, hence $\dot{z} \neq \dot{w}$, therefore $z \in \dot{w}$). Thus $u < X - \dot{w}$ for every $\dot{w} \in \dot{X} - \dot{C}$, hence $\dot{x} \neq \dot{C}$. On the other hand, for every $\dot{x} \in \dot{C}$ there exists $x \in \dot{x}$ such that $x \in C < X - \dot{y}$, hence $x < X - \dot{y}$ herefore $\dot{C} < X - \dot{y}$. b). Similary, we proof that there exists $\vec{C} \subseteq \vec{X}$ such that $\dot{\vec{x}} < \vec{C} < \vec{X} - \dot{\vec{y}}$. Therefore, for every $\dot{x} \in \dot{A}$ and $\dot{y} \in \dot{X} - \dot{B}$ there exists $\dot{C}_{xy} \subseteq \dot{X}$ such that $x < C_{xy} < TX - y$. Let $\dot{C} = \bigcup_{x \in \dot{A}} \bigcap_{y \in X - \dot{B}} \dot{C}_{xy}$; because \dot{C}' and \dot{C}'' are

biperfect, it follows that $\dot{A} \stackrel{.}{<} '\dot{C} \stackrel{.}{<} ''\dot{B}$. Hence (\dot{s}, T) is a symmetrical and perfect pss on X.

Now, we suppose that \dot{x} and \dot{y} are perhaps-indistinguishable in the space (\dot{X}, \dot{s}, T) with the condition (4) and $\dot{x} \neq \dot{y}$. From the definition 1 and from the definition of \hat{s} , there exists $a \in (0, 1]$ such that for every $\leq \in \mathfrak{Z}_a$ we have $x \leq X - \dot{y}$ and $y \leq X - \dot{x}$. Because \langle is a symmetrical and perfect topogenous order on X, it follows that there exist $x_{<} \in \dot{x}$, $y \in \hat{y}$ such that $x \ll X - y_{\leq}$ and $y \ll X - x_{\leq}$. From (4) there exits $b \in (0, 1]$ such that for every $v, w \in \dot{y}$ and $\langle \in S_b$ we have $v \notin X - w$. Let c = T(a, b) > 0 (from (3)); $\dot{x} \neq \dot{y}$ implies that there exists $\langle c \in S_c \rangle$ such that x < X - y. From (PS2) there exist $<' \in S_a$, $<'' \in S_b$ and $C \subseteq X$ such that x < C < X - y. It follows that there exists $y_{<'} \in y$ such that $x < X - y_{<'}$. Hence $C \not \subseteq X - y_{<'}$, so $y_{<'} \in C$. But this is a contradiction because $y_{<'}, y \in y$ implies $y_{<'} \notin X - y$.

We say that (\hat{s} , T) is the quotient pss on \dot{X} and we note $\hat{s} = s/\rho$

In [1, 14.1], A. Császár shows that if $\mathfrak{T} = \{<\}$ is a simple, symmetrical and perfect syntopogenous structure on X and $x \rho y$ iff $x \not < X - y$ then ρ is an equivalence relation and the quotient order $</\rho$ on X/ρ is the inclusion \subseteq . The following theorem is a probabilistic variant of this result.

THEOREM 3. Let (, T) be a simple, symmetrical and perfect pss on X under a t-function T which satisfies the condition (3) and let (\hat{s}, T) be the quotient pss on $\dot{X} = X/\rho$, where ρ is the perhaps-indistinguishability relation on X; then $\dot{s} = {\dot{s}_a : a \in I}$ where $\dot{s}_a = {\subseteq}$ for every $a \in (0, 1]$.

Proof. Let $\mathscr{S} = \{\mathscr{S}_a : a \in I\}$, where $\mathscr{S}_a = \{<_a\}$, and $<_a$ is a symmetrical and perfect topogenous order on X for every $a \in I$. Then $\dot{s}_a = \{\dot{a}\}$ for every $a \in I$; the condition $\dot{a} \subseteq \subseteq$ is obvious. Now, if $\dot{A} \subseteq \dot{B}$ then, for every $u \in \dot{x} \in \dot{A}$ and $v \in \dot{y} \in \dot{X} - \dot{B}$, we have that u and v are not perhaps-indistinguishable $(\dot{x} \cap \dot{y}) = \Phi$; hence, for every $a \in (0, 1]$ $u <_a X - v$. Because $<_a$ is symmetrical and perfect we have $\dot{x} <_a X - \dot{y}$, hence $\dot{A} \stackrel{\cdot}{<}_a \dot{B}$. Therefore $\subseteq \subseteq \stackrel{\cdot}{<}_a$, so that $\overset{\cdot}{<}_a = \subseteq$ for every $a \in (0, 1]$. Remark 1. If (\$, T) is a simple, symmetrical and perfect pss on X then \dot{x} and \dot{y} are perhaps-indistinguishable in \dot{X} iff $\dot{x} = \dot{y}$. Indeed, \dot{x} and \dot{y} are perhaps-indistinguishable iff there exists $a \in (0, 1]$ such that $\dot{x} \stackrel{\cdot}{<}_{a} \dot{X} \stackrel{\cdot}{-} \dot{y}$ where $\dot{s}_{a} = \{ \stackrel{\cdot}{<}_{a} \}$ and $\dot{s} = \{ \dot{s}_{a} : a \in I \}$ is the quotient pss; because $<_a = \subseteq$ we have $\dot{x} = \dot{y}$.

Remark 2. Let (\$, T), (\$'', T) be two simple, symmetrical and perfect pss on X, where $\mathfrak{S}' = \{\mathfrak{S}'_a : a \in I\}, \mathfrak{S}'' = \{\mathfrak{S}''_a : a \in I\}$ and $\mathfrak{S}'_a = \mathfrak{S}''_a : \mathfrak{S}''_a \in I\}$ $= \{<_a'\}, \ \$_a'' = \{<_a''\}$ for every $a \in I$, and let ρ_1 and ρ_2 be the perhapsindistinguishability relations associated to (s', T) and (s'', T); then $\mathfrak{S}' = \mathfrak{S}''$ iff $\rho_1 = \rho_2$.

Now, if ρ is an equivalence relation on X, we define a relation $\leq \Box$ $\subseteq \mathfrak{A}(X) \times \mathfrak{A}(X)$ letting A < B iff for every $x \in A, y \in X - B$ $(x, y) \in \mathbb{C}$ $\overline{\epsilon} \rho$. Then $S_{\rho} = \{<\}$ is a simple, symmetrical and perfect syntopogenous structure on X; if T is a t-function which satisfies the condition :

(3') T(a, b) = 0 iff a = 0 or b = 0,

then (ŝ, T), $\$ = \{\$_a : a \in I\}$ where $\$_a = \$_p$ for every $a \in (0, 1]$, is the unique simple, symmetrical and perfect pss on X for which ρ is the perhapsindistinguishability relation.

REFERENCES

[1] Császár Á, Fondements de la topologie générale, Akadémiai Kiadó, Budapest, 1960. [2] Egbert R. J., Products and quotients of probabilistic metric spaces, Pacific J. Math. 24 437-455 (1968).

[3] Florescu, L., Structures syntopogènes probabilistes, Publicationes Mathematicae Debrecen 28 15-24 (1981).

[4] Menger, K., Probabilistic geometry, Proc. Nat. Acad. Sci. U.S.A., 37 226-229 (1951). [5] Schweizer, B., Equivalence relations in probabilistic metric spaces, Bul. Inst. Politehnic Iași 10 (14) 67-70 (1964).

more added in the part and the to the

Received 8.I.1982,

5

Universitatea Iași