MATHEMATICA - REVUE D'ANALYSE, NUMÉRIQUE, ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 12, $\mathrm{N}^{0} 1,1983$, pp. 19-23

EQUIVALENCE RELATION IN PROBABILISTIC SYINTOPOGENOUS SPACES

by
LIVIU FLORESCU
(Iaşi)

In [4], K. MENGER introduced three types of distinguishability for pairs of points of a probabilistic metric space, depending upon the behaviour of the distance distribution function neat zero. If (X, F) is a $P M$ space, $x, y \in X$ and $t_{x y}=\inf \left\{\alpha: F_{x y}(\alpha)>0\right\}$, then we say that x and y are:
(A) certainly-distingtuishable if $t_{x y}>0$;
(B) barely-distinguishable if $t_{x y}=0$ and $F_{x y}\left(0^{+}\right)=0$;
(C) perhaps-indistinguishable if $F_{x y}\left(0^{+}\right)>0$.

The above mentioned types of distinguishability were reconsidered by B. SCHWEIZER ([5]) who defined two relations on X as follows:
(1) $x p y$ iff x and y are perhaps-indistinguishable, i.e. iff (C) holds;
(2) $x \delta y$ iff x and y are not certainly-distinguishable, i.e. iff either (B) or (C) holds.

In the following we refer only to the relation ρ. In [5, Th. 1]
B. SCHWEIZERR proof that, if (X, F, T) is a Menger space, where T is a t-norm such that:
(3) $T(a, b)>0$ whenever $a>0$ and $b>0$,
then p is an equivalence relation on X and R. J. EGBERT shows that the quotient space $\dot{X}=X / \rho$ can be endowed with an adequate probabilistic metric ; in some conditions x and \dot{y} are perhaps-indistinguishable in \dot{X} iff $x=\dot{y}$ (see [2, Th, 31]).

In [3] we introduce a probabilistic variant of the Császár's syntopogenous structures (see [1]) - the probabilistic syntopogenous structure. Using these structures, we define, in a natural way, the probabilistic uniformities and the probabilistic proximities; the relations between these structures and the probabilistic metric structures are analogous with the rela-
tions between the uniform structures，the proximity structures and the metric structures on a set．

Let I be the closed unit interval and let $T: I \times I \rightarrow I$ be a t－function $\left(T\left(a_{1}, b_{1}\right) \leqslant T\left(a_{2}, b_{2}\right)\right.$ if $a_{1} \leqslant a_{2}$ and $\left.b_{1} \leqslant b_{2}\right)$ ；for every $a \in I$ let \mathscr{B}_{a} be a non－empty family of topogenous orders on X ，such that for every $<_{1},<_{2} \in \mathscr{S}_{a}$ there is $<\in \mathscr{E}_{a}$ with $<_{1},<_{2} \subseteq<$ ．A probabilistic syntopo－ genous structure（pss）on X is a pair (\mathbb{B}, T) ，where $\mathfrak{S}=\left\{\Im_{a}: a \in I\right\}$ ， satisfying the following conditions
（PSO） $\mathfrak{B}_{0}=\{<0\}$ ，where $A<{ }_{0} B$ iff $A=\Phi$ or $B=X$ ，
（PS1）for every $a, b \in I$ with $a<b$ and for every $<\in \mathscr{\Phi}_{a}$ there exists $<^{\prime} \in \mathscr{S}_{b}$ such that $<\subseteq<^{\prime}$ ．
（PS2）for every $<\in \mathscr{S}_{T(a, b)}$ there exist $<^{\prime} \in \mathbb{S}_{a}$ and $<^{\prime \prime} \in \mathscr{I}_{b}$ such that $A<B$ implies that $A<{ }^{\prime} C<{ }^{\prime \prime} B$ for some $C \subseteq X$ ．

A probabilistic syntopogenous space is a triple $(X, \&, T)$ ，where $(\$, T)$ is a pass on X ．

We say that a pss $(\stackrel{\Im}{\Omega}, T)$ on $X, \mathcal{S}=\left\{\mathscr{B}_{a}: a \in I\right\}$ ，is symmetrical， perfect，or simple if each $\stackrel{s}{s}_{a}, a \in I$ is symmetrical，perfect，or consist of a single topogenous order．If (X, F, T) is a Menger space，where T is a left－ continuous t－norm，then for every $\alpha>0, a \in I$ ，we define $<_{\alpha, a} \subseteq \mathscr{I}(X) \times$ $\times \mathscr{Q}(X)$ ，letting $A<_{\alpha, a} B$ if $A \times_{1}(X-B) \subseteq\left\{(x, y): F_{x y}(\alpha) \leqslant a\right\}$ ．For every $a \in(0,1]$ ，let $\S_{a}=\left\{<_{\alpha, b}: \alpha>0, b<a\right\}$ and $\AA_{0}=\left\{<_{0}\right\}$ ；then the pair（ \mathcal{B}, T ），where $\mathscr{S}=\left\{\mathscr{B}_{a}: a \in I\right\}$ ，is a perfect and symmetrical pss on X－the pss induced by the probabilistic metric of the space（see［3， Th．6．1．］）．

The purpose of this paper is to give an extension of Schweizer＇s and Egbert＇s results as well as a probabilistic variant of a Császát＇s theorem concerning the simple，symmetrical and perfect syntopogenous structures．

We omit the proof of the following easily established
lemma．．Let (X, F, T) be a Menger space under a left－continuous t－norm T ，let ρ be the relation（1）and let $(\mathbb{B}, T), \mathscr{S}=\left\{⿷_{a}: a \in I\right\}$ be the pss induced by the probabilistic metric of the space．Then xpy iff there exists $a>0$ such that for every $<\in \mathscr{S}_{a}$ we have $x \nless X-y$ ．

DEfintion 1．Let (\mathfrak{B}, T) be a pss on X ，where $\mathscr{S}=\left\{\mathfrak{s}_{a}: a \in I\right\}$ ； we define a relation $p \subseteq X \times X$ letting $x p y$ iff there exists $a \in(0,1]$ such that，for every $<\in \mathfrak{E}_{a}$ ，we have $x \nless X-y$ ；taking into account the result of lemma，is natural to say that x and y are perhaps－indistinguishable if $x p y$ ．

Now，we give a generalization of Schweizer＇s theorem（see［5，Th．1］）
Theorem 1．Let $(8, T)$ be a symmetrical pss on X under a t－function T which satisfies the condition（3）．Then，the relation ρ is an equivalence rela－ tion on X ．

Proof．For every topogenous order $<$ on X and for every $x \in X$ we have $x \nless X-x$ ；hence ρ is a reflexive relation．Because (Ω, T) is symmetrical it follows that ρ is a symmetrical relation．Finally，if $x \rho y$ and $y p z$ then there exist $a, b \in(0,1]$ such that for every $<^{\prime} \in \mathscr{S}_{a}$ and $<^{\prime \prime} \in$ $\in \mathscr{S}_{b}$ we have $x \not \chi^{\prime} X-y, y \not \Varangle^{\prime \prime} X-z$ ，where $\mathbb{\Phi}=\left\{\mathscr{S}_{a}: a \in I\right\}$ From
（3），$c=T(a, b)>0$ ；suppose that there exists $<\in_{\mathscr{S}_{\theta}}$ such that $x<$ $<X-z$ ；then，from（PS2），there exists $<^{\prime} \in \mathscr{S}_{a},<^{\prime \prime} \in \Im_{b}$ and $C \subseteq X$ such that $x<{ }^{\prime} C<{ }^{\prime \prime} X-z$ ．Because $y<{ }^{\prime \prime} X-z$ ，it follows that $y \in C$ ； hence $C \subseteq X-y$ and therefore $x<^{\prime} X-y$ ．But this is a contradiction； thus ρ is a transitive relation．

Becausé every probabilistic proximity and every probabilistic unifor－ mity are induced by an unique simple and symmetrical pss，resp．by a symmetrical and perfect pss（see［3，Th．4．1，and 5．1．］），this result is fulfiled in every probabilistic proximity space as well as in every probabilistic uniformity space．

Let (\mathbb{S}, T) be a symmetrical and perfect pss on X under a t－function T which satisfies $(3), \mathscr{S}=\{\mathscr{S}: a \in I\}$ ，let ρ be the equivalence relation associated to（ \mathcal{S}, T ）（see Theorem 1）and let $\dot{X}=X / p$ be the quotient space；for every $a \in I$ and $<\in \mathscr{B}_{a}$ we define $<\subseteq \mathscr{P}(\dot{X}) \times \mathscr{Q}(\dot{X})$ letting $\dot{A} \dot{<} \dot{B}$ iff for every $\dot{x} \in \dot{A}, y \in \dot{X}-\dot{B}$ there is $u \in \dot{x}$ such that $u<$ $<X-\dot{y}$ or there is $v \in \dot{y}$ such that $v<X-\dot{x}$ ．Let $\mathfrak{s}_{a}=\left\{<:<\in \mathfrak{g}_{a}\right\}$ and $\dot{\Phi}_{a}=\left\{\dot{\dot{\Xi}}_{a}: a \in I\right\}$ ．The following theorem is an exteusion of the above mentioned Egbert＇s result．
thforem 2．$(\dot{\Omega}, T)$ is a symmetrical and perfect pss on \dot{X} ；in addition， if (\hat{B}, T) fulfils the condition：
（4）for every $\dot{x} \in \dot{X}$ there exists $a \in(0,1]$ such that for every $u, v \in \dot{x}$ and $<\in \mathfrak{B}_{a}$ we have $u \nless X-v$ ，
then \dot{x} and \dot{y} are perhaps－indistinguishable in $(\dot{X}, \dot{\varepsilon}, T)$ if and only if $\dot{x}=\dot{y}$ ．
Proof．It follows directly from the definition of the family $\dot{⿷ 匚}_{a}$ that it is a non－empty family of symmetrical and perfect topogenous orders on X ，directed by \subseteq ．（PSO）We suppose that $\dot{A} \dot{<}_{0} \dot{B}$ and $\dot{A} \neq \Phi$ and $\dot{B} \neq \dot{X}$ ；then，there exist $\dot{x} \in \dot{A}, \dot{y} \in \dot{X}-\dot{B}$ such that $u<_{0} X-\dot{y}$ for some $u \in \dot{x}$ ，or $v<{ }_{0} X-\dot{x}$ for some $v \in \dot{y}$ ．It follows that $X-\dot{y}=X$ or $X-\dot{x}=X$ and this is a contradiction，because $y \in \dot{y}$ and $x \in \dot{x}$ ． （PS1）is obvious．We shall show that the condition（ $P S 2$ ）also is satisfed． Let $\dot{<} \in \dot{\mathscr{S}}_{T(a, b)}$ ；by the definition of $\dot{\mathscr{B}}_{T(a, b)},<\in \mathscr{B}_{T(a, b)}$ and，hence， there exist $\stackrel{T(a, b),}{<} \in \mathscr{\Xi}_{a},<^{\prime \prime} \in \mathscr{S}_{b}$ such that $A<B$ implies $A<{ }^{\prime} C<{ }^{\prime \prime} B$ for some $C \subseteq X$ ．Let $\dot{A} \dot{<} \dot{B}$ ；for every $\dot{x} \in \dot{A}$ and $\dot{y} \in \dot{X}-\dot{B}$ we have：
a）．there exists $u \in \dot{x}$ such that $u<X-\dot{y}$ ，or
b）．there exists $v \in \dot{y}$ such that $v<X-\dot{x}$ ．
a）．$u<X-\dot{y}$ implies that there exists $C \subseteq X$ such that $u<{ }^{\prime} C<{ }^{\prime \prime} X-\dot{y}$ ． Let $\dot{C}=\{x: x \in C\}$ ；for every $\dot{w} \in \dot{X}-\dot{C}$ we have $C \subseteq X-\dot{w}$（for every $z \in C$ we have $\dot{z} \in \dot{C}$ ，hence $\dot{z} \neq \dot{w}$ ，therefore $z \in w)$ ．Thus $u<^{\prime} X-w$ for every $\dot{w} \in \dot{X}-\dot{C}$ ，hence $\dot{x} \dot{<}^{\prime} \dot{C}$ ．On the other hand，for every $\dot{x} \in \dot{C}$ there exists $x \in \dot{x}$ such that $x \in C<" X-\dot{y}$ ，hence $x<{ }^{\prime \prime} X-\dot{y}$ herefore $\dot{C} \dot{<}$＂$\dot{X}-\dot{y}$ ．
b). Similary, we proof that there exists $\dot{C} \subseteq \dot{X}$ such that $\dot{x}<{ }^{\prime} \dot{C}<{ }^{\prime} " \dot{X}-\dot{y}$. Therefore, for every $\dot{x} \in \dot{A}$ and $\dot{y} \in \dot{X}-\dot{B}$ there exists $\dot{C}_{x y} \subseteq \dot{X}$ such that $\dot{x} \dot{<}^{\prime} \dot{C}_{x y}<{ }^{\prime \prime} \dot{X}-\dot{y}$. Let $\dot{C}=\underset{\dot{x} \in \dot{A}}{\bigcup} \underset{y \in \dot{X}-\dot{B}}{\cap} \dot{C_{x y}}$; because $\dot{<}^{\prime}$ and $\dot{<}^{\prime \prime}$ are biperfect, it follows that $\dot{A} \dot{<}^{\prime} \dot{C} \dot{<}^{\prime \prime} \dot{B}$. Hence (\dot{B}, T) is a symmetrical and perfect pss on \dot{X}.

Now, we suppose that \dot{x} and \dot{y} are perhaps-indistinguishable in the space ($\dot{X}, \dot{\dot{\theta}}, T$) with the condition (4) and $\dot{x} \neq \dot{y}$. From the definition 1 and from the definition of $\dot{\bar{s}}$, there exists $a \in(0,1]$ such that for every $<\in \mathcal{S}_{a}$ we have $x \nless X-\dot{y}$ and $y \notin X-\dot{x}$. Because $<$ is a symmetrical and perfect topogenous order on X, it follows that there exist $x_{<} \in \dot{x}$, $y \in \dot{y}$ such that $x \nless x-y<$ and $y \nless X-x_{<}$. From (4) there exits $b \in(0,1]$ such that for every $v, w \in \dot{y}$ and $<\in \mathfrak{s}^{\prime}$, we have $v<X-v$. Let $c=T(a, b)>0$ (from (3)); $\dot{x} \neq \dot{y}$ implies that there exists $<\in \mathscr{S}_{c}$ such that $x<X-y$. From (PS2) there exist $<^{\prime} \in \mathcal{E}_{a},<^{\prime \prime} \in \mathscr{S}_{b}$ and $C \subseteq X$ such that $x<^{\prime} C<^{\prime \prime} X-y$. It follows that there exists $y_{<\prime} \in \dot{y}$ such that $x<' X-y<^{\prime}$. Hence $C \neq X-y_{<^{\prime}}$, so $y_{<^{\prime}} \in C$. But this is a contradiction because $y<^{\prime}, y \in \dot{y}$ implies $y_{<^{\prime}} \not^{\prime \prime} x-y$.

We say that (\dot{s}, T) is the quotient pss on \dot{X} and we note $\dot{\delta}=\mathscr{s} / \rho$
In [1, 14.1], A. Császár shows that if $\mathscr{J}=\{<\}$ is a simple, symmetrical and perfect syntopogenous structure on X and $x p y$ iff $x \nless X-y$ then ρ is an equivalence relation and the quotient order $</ \rho$ on X / p is the inclusion \subseteq. The following theorem is a probabilistic variant of this result.
theorear 3. Let $(, T)$ be a simple, symmetrical and perfect pss on X under a t-function T which satisfies the condition (3) and let $(\dot{\Omega}, T)$ be the quotient $p s$ on $\dot{X}=X / p$, where p is the perhaps-indistinguishability relation on X; then $\dot{\mathscr{S}}=\left\{\dot{\Phi}_{a}: a \in I\right\}$ where $\dot{\Phi}_{a}=\{\subseteq\}$ for every $a \in(0,1]$.

Proof. Let $\mathscr{E}=\left\{\mathfrak{B}_{a}: a \in I\right\}$, where $\mathscr{B}_{a}=\left\{<_{a}\right\}$, and $<_{a}$ is a symmetrical and perfect topogenous order on X for every $a \in I$. Then $\dot{\mathscr{B}}_{a}=\left\{\dot{<_{a}}\right\}$ for every $a \in I$; the condition $\dot{<}_{a} \subseteq \subseteq$ is obvious. Now, if $\dot{A} \subseteq \dot{B}$ then, for every $u \in \dot{x} \in \dot{A}$ and $v \in \dot{y} \in \dot{X}-\dot{B}$, we have that u and v are not perhaps-indistinguishable $(\dot{x} \cap \dot{y})=\Phi)$; hence, for every $a \in(0,1]$ $u<_{a} X-v$. Because $<_{a}$ is symmetrical and perfect we have $\dot{x}<_{a} X-\dot{y}$, hence $\dot{A} \dot{<}_{a} \dot{B}$. Therefore $\subseteq \subseteq \dot{<}_{a}$, so that $\dot{<}_{a}=\subseteq$ for every $a \in(0,1]$.

Remark 1 . If (\mathscr{s}, T) is a simple, symmetrical and perfect pss on X then \dot{x} and \dot{y} are perhaps-indistinguishable in \dot{X} iff $\dot{x}=\dot{y}$. Indeed, \dot{x} and \dot{y} are perhaps-indistinguishable iff there exists $a \in(0,1]$ such that $\dot{x} \dot{<}_{a} \dot{X}-\dot{y}$ where $\dot{\mathscr{®}}_{n}=\left\{\dot{<}_{a}\right\}$ and $\dot{\mathscr{B}}=\left\{\dot{\mathscr{B}}_{a}: a \in I\right\}$ is the quotient pss; because $<_{a}=\subseteq$ we have $\dot{x}=\dot{y}$.

Remark 2. Let (\mathcal{S}, T), $\left(\mathcal{S}^{\prime \prime}, T\right)$ be two simple, symmetrical and perfect pss on X, where $\mathscr{s}^{\prime}=\left\{\mathfrak{s}_{a}^{\prime}: a \in I\right\}, \mathscr{S}^{\prime \prime}=\left\{\mathscr{s}_{a}^{\prime \prime}: a \in I\right\}$ and $\Im_{a}=$ $\stackrel{\text { perfect }}{=}\left\{<_{a}^{\prime}\right\}, \mathbb{S}_{a}^{\prime \prime}=\left\{<_{a}^{\prime \prime}\right\}$ for every $a \in I$, and let ρ_{1} and ρ_{2} be the perhapsindistinguishability relations associated to (\mathcal{s}^{\prime}, T) and ($\left.\mathcal{S}^{\prime \prime}, T\right)$; then $\mathscr{夕}^{\prime}=\mathscr{\delta}^{\prime \prime}$ iff $\rho_{1}=\rho_{2}$.

Now, if ρ is an equivalence relation on X, we define a relation $<\cong$ $\subseteq \mathscr{I}(X) \times \mathscr{I}(X)$ letting $A<B$ iff for every $x \in A, y \in X-B(x, y) \in$ $\bar{\in} p$. Then $\mathscr{S}_{\rho}=\{<\}$ is a simple, symmetrical and perfect syntopogenous $E \rho$.
$\left(3^{\prime}\right) T(a, b)=0$ iff $a=0$ or $b=0$,
then $(\Omega, T), \mathcal{S}=\left\{\delta_{a}: a \in I\right\}$ where $\delta_{a}=\delta_{\rho}$ for every $a \in(0,1]$, is the unique then (s, \mathcal{P}, $\begin{aligned} & \text { simple, symmetrical and perfect pss on } X \text { for which } \rho \text { is the perhaps- }\end{aligned}$ indistinguishability relation.

REFERENCES

[1] Császár A, Fondements de la topologic générale, Akadémiai Kiadó, Budapest, 1960 . [1] Esaszar A, J., Products and quotients of probabilistic metric spaces, Pacific J. Math. $\mathbb{2}$ (3) [3] Florescu, L., [4] Menger, K., Probabilistic geometry, Proc, Nat. Acad. Sich
$[5]$ Schweizer, B., Equivalence relations in probabilistic metric spaces, Bul. Inst. Politehnic [5] Schweizer, $\begin{aligned} \text { Iaşi } 10(14) & 67-70 \text { (1964). }\end{aligned}$

Received B.I. 1982 .

