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1. Introduction

Iet X be a normed linear space, and M a linear subspace of X. The
set-valued mapping x — Py (x), where

Py(n) = {mo @ M ||| 5 — mol| = dist (x, M)}

is called the metric projection of X onto M, and each Pu(%) e Pylx) is
called a best approximation of x out of M. For some x = X it is possible
that Py(x) = @, but when X is reflexive and M closed (it suffices M reflexi-
ve), then this will never happen. Among the general properties of Py we
notice the following two: for x = X with Py(x) # & we have:

(L1) 11z —pu@®) [ <11xl] (Buln) < Pu() | .
(1.2) | |x — pu(x) || =||%]| for some (all) py (%) € Py(x) iff O Py(x)

When X is reflexive and strictly convex, and M closed then Py is a
well-defined operator (in general non-linear) which assigns to each ¥ e X
its unique best approximation Pyx. So, one possible way to generalize
the (single-valued) metric projection P is to consider a map P XX
satisfying (1.1) and (1.2) where we replace Py(%) (pu(x)) by Px. Such
a map is called [12] a B-operator. If the range of P is included in M, for
some closed linear subspace M of X, then the B-operator P is said
to be on M ([11, [12]) if for ¥ « X\ M we have Px =0 if and only if
Pyx = 0. Such operatos have been used to construct P,, (note that for



26 . G. GODINI 2

this problem only the points x & M are interesting, since otherwise P,x =
= x). Clearly, when X is reflexive and strictly convex, and M closed,
then each Py is a B-operator on M.

B-operators (on M) were first introduced by B. atrTisTaM and
F. SULLIVAN in [1] (in connection with methods of calculating best approxi-
mations on finite dimensional subspaces of L?), but an extensive study
of B-operators (B-operators on M) and their applications were done by
F. SULLIVAN in [12].

In this paper we enlarge the class of B-operators (on sonie closed sub-
spaces) when X is an arbitrary normed lincar space, in such a way, that
for each linear subspace M < X (not necessarily closed), P, belongs to
this class. Then we must consider not only single-valued mappings defined
on the whole X, but set-valued mappings, their domains being subsets of
X, and the set-valued mappings satisfy conditions similar with (1.1) and
(1.2). Such set-valued mappings will be called B-set-valued mappings (see
Definition 2.1 below), and in an appropriate way we define B-set-valued
mappings on M, M a linear subspace (see Definition 2.2 below). I'he results
of this paper may be regarded as geueralizations for B-set-valued mappings
of the results of [12] for B-operators. The difficulties which appear herc
are more or less comparable with the ones which appear when the results
on Py when M is a Chebyshev subspace of X (i.e., when P, (x) is a single-
ton for each ¥ = X), are generalized for the case when M is an arbitrary
subspace of X (see e.g., [11], [4]). We notice that even when P is a B-set-
valued mapping on M, its domain being X and M a Chebyshev subspace
of the reflexive and strictly convex space X, we can not expect to apply
the results of [12] for B-operators to the selections p(x) = P(x), v < X,
which are clearly B-operators, since these B-operators are not in general
on M (though they be on other subspaces). Of course, we shall use some
ideas and techniques of [12], and we let to the reader to compare the results
and the proofs given here and the corresponding ones of [12].

HFinally, we mention that another generalization of the set-valued
metric projection, quite different of the above one was considered in [5].

2. B-SET-Valued mappings and their assoeciated B-SET-Valued mappings

Let X Dbe a normed linear space over the real field R, and X* its
dual space. Throughout this paper the word ,,subspace” stands for ,li-
near subspace”. Let us denote by 2% the collection of all subsets of X, inclu-
ding the empty set @. Let P: X — 2¥ be a set-valued mapping. We denote
by Dom(P) = {x « X |P(x) # @}, P~0) ={x €« X|0 « P(x)}, and for
% e Dom (P) we generally denote the elements of P(x) by p(x).

2.1. pDERINTTION. A set-valued mapping P: X — 2% is called a B-set-
valued mapping if for each x =« Dom(P) there exists ¢, e R with 0 <c, < ||%|
< ||x|| such that:

1) |1z — p(x) || = ¢, for all p(x) < P(x).

2) ¢, = ||x|| if and only if 0 « P(x).
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It is obvious that for a B-set-valued mapping P, we have P(0) =
= {0} if 0 « Dom(P), and by 0 < ¢, < ||x|| and condition 1 we have:
(2.1) Hp() ] < 2] 1% (¥ = Dom(P), p(x) = P(x))

Tet us denote by P(X) = {U{P(%x)|* = Dom(P)}.

2.2, periNtrioN. If P(X) <« M for some subspace M of X then the
B-set-valucd mapping P is said to be on M if Py (0) {0} = P 10) M.

Equivalently, P is on M if P(X) <« M and for ¥ & M we have 0=
e P(x) if and only if 0 & Py(x).

Since PD:II(O) — P;;'(0) where M is the closure of M in the norm
topology, if P is on M then P is also on M, so the assumption on P
to be on a closed subspace is not more restrictive than to be on an arbi-
trary subspace.

Clearly, if M is a subspace of X, then the set-valued mapping P: X —
— 2% defined by the conditions P(x) = Py(x), x< X, and if x < Py (0)
then 0 = P(x), is a B-set-valued mapping on 3. The next four results give
conditions on a B-set-valued mapping P on M for which P(x) < P,(x)
for ¥ « Dom(P).

We recall (sce e.g., [3]) that a normed linear space X is called strictly

comvex if forall x, vy e X, x # 3, ||#]| = ||y]]| =1 we have ||x 4+ y|| <

< 2. 'This is equivalent [10], with the fact that each subspace M of X
is a semichebyshev subspace of X, ie., for each ¥ e X, Py(x) is either
empty or a singleton. Another equivalent condition which will be used
in Section 4, is that cach f « X*\ {0} attains its norm at most at one point
x =X, ||xll =1

2.3. Remark. If Pisa B-set-valued mapping on M, and ¥ = Dom/(P)
such that P(x) N Py(x) # &, then P(x) = Py(x). Consequently, if X is

strictly convex, then for each B-set-valued mapping P on M, and x &

e M {0}, we have x & P*(0) if and only if P(x) = {0}. Indeed, let
m < P(x) (N Py(x) and p(x) = P(x). We have by condition 1 of Definition

2.1 that ||x — p(x)|| = ||x — m]||. Since m < Py(%) and p(x) « M it

follows p(x) & Py(x). The other assertion follows since P is on M, which
is now a semichebyshev subspace of X.

24. Remark. Let P bea B-set-valued mapping on M, ¥ < Dom(P)
M and m < P(x). The following assertions are equivalent:

1) m e Py(x)

ii) x — m « Dom(P) and ¢, = ¢,—p.

iii) x"—m < Dom(P) and ¢, < ¢y—m
Indeed, suppose we have i). Then 0 e Py(x — m), and P being on M it
follows 0 « P(x — m). So, ¥ —m < Dom(P) and since 0 e P(x — m)

and m < P(x) we have ¢, = [|x —m|| =c, ie., we haye ii). Since
ii) => iii) is obvious, suppose we have iii). By m « P(x) and iii) we have
o =|lx —m|| € Cym < || —m||, and s0 ¢;_,, = ||%* — m||. By condi-

‘tion 2 of Definition 2.1 it follows 0 « P(x — m), and P being on M,

0 e Py(x — m) whence m = Py(x).
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25 Remark An immediate consequence of Remarks 2.3 and 2.4
is the following : if P is a B-set-valued mapping on M and for some %
e Dom(P)\. M we have P(x) () Py(x) # @, then we have c,4(x) =
= ¢, for each p(x) e P(x) with ¥ — p(x) e Dom(P).

2.6. THEOREM. Let P be a B-set-valued mapping on M and % =
e Dom(P)\_M. The following assertions are equivalent:

i) P(x) = Py(x)

i) 0 e P(x — p(x)) for all p(x) e P(x).

iii) For some p(x) e P(x) there exists m < P(x — p(x)) such that
—m = P(x — p(x) — m).

Proof. i) =ii). Let p(x¥) e P(x). By i) we have 0 e Py(x — p(x))
and since P is on M, it follows 0 e P(x — p(x)), that is ii).

ii) = iii) is obvious for m = 0.

iii) = 1i). The hypothesis iii) and x & M imply that x — p(x), x—p(x) —
— m e Dom(P)~\_M. Since —m < P(x — p(x) — m) we have:

22)  Crpgon = |16 — plx) — m) — (—m) || =11% — (#) || > capin
whence by Remark 2.4, m < Py(x — p(x)). Hence 0 & Py(x — p(x) — m)
and since P is on M, it follows 0 € P(x — p(x) — m). Hence using (2. )
we haye cegion = 1% — p(a) —m|| = |]x — p(x)]] and since p(x) +

4 m & Py(x) and p(x) e M, we get p(x) e Py(x). So, p(x) e P(x) N
(O Py(#), whence by Remark, 2.3 we have i), wh1ch completes the proof.

We recall (seee.g., [11]) that a set-valued mapping P X — 2% is called
upper (K) semi-continuous (u.(K)s.c.) at x « Dom(P), respectively lower 'K
semi-continuous (1.(K)s.c.) at x = Dom(P), if the relations x, = Dom(P), lim

x, =%, p(x,) e P(x,), im p(x,) = y e X imply y e P(x), respectively if “the
relations %, e Dom(P), lim x,=x, p(x) = P(x) imply the existence of $(#,) =

e P(x,) with lim p(x,) = p(x). If everywhere above we replace lim by

w-lim  (i.e., for 7,,, 2z « X we have w-lim z, = z if for. each [ e X*,
lim f(z,) = f(z)), then P is called sequenttially weakly wupper(K)semi-conti-

nuous (w—w.u.(K)s.c.) respectively sequentially weakly lower (K) semsi-
continuous (w—w.l.(K)s.c.) at ¥ « Dom(P). P is called (nmm weak ),
(K)s.c. at x e Dom(P) if the relations ¥, e Dom(P), lim x, = %, p(%,) =

e P(x,), w— lim p(x,) = yimply y « P(x). P 1s called upper semi-con-
tinuous (1.s. c) at ¥ = Dom(P), respectively lower semi-continuous (l.s.c.;
at x = Dom(P), if for each closed subset C = X the relations x, € Dom(P),
lim x, = %, P(x,) N C # @ imply P(x) N C # 9, respectwely if for each

H—CO

open subset D < X, the relations x, < Dom(P), lim %, = x, Plx)N

Hn—r 00

N D #@ imply P(x,) D #@ for n > mn, Clearly, if P is us.c. at
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¥ e Dom(P) then P is u. (K)s.c. at ¥ while [10] Pis ls.c. at ¥ « Dom(P)
if and ounly if P is 1.(K)s.c. at x.

We recall (see e.g., [3]) that a normed linear space X has property

(H) if the relations x,,.x e X, w—lim x, = «, lim ||x,|| = ||x]|| imply
lim %, = #, and it is called wuwniformly comvex if for x,, v, X, ||x,]|| =
";00| .1l =1 »=1,2 ..., the relation lnn [1%, - v,1| =2 implies
}li_r}}o [, — v,]] = 0. It is known that if X 15 00un1formly convex then it

has property (H), and a uniformly convex Banach space is always reflexive.

The metric projection P, is always u.(K)s.c. at each x < Dom(P,,),
M an arbitrary subspace of X, and in uniformly convex Banach spaces
X, Py is continuous at each ¥ e X for each closed subspace M < X (see
e.g., [6]). More generally, if X is a strictly convex mnormed linear space
with property (H), then P, is continuous at every x = X for each reflexive
subspace M (C X. These results will be easy consecquences of the following
result, if we use the known fact ({11]) that for the metric projection P,,
the continuity (semi-continuity) at all ¥ « Py'(0) implies the continuity
(semi-continuity) at all ¥ e Dom(P,,).

2.7. provosiTioN. If X is a strictly comvex mnormed linear space, then
each B-est-valued map]bing P on the closed subspaces M < X is u.(K)s.c.
at each x P YO\ (M{0}). If in addition X has property (H) and M
1s veflexive, then P is both u.s.c. and Ls.c. at each x = P7HOPN (M {0}).

Proof. Suppose X strictly convex, P a B-set-valued mapping on
the closed subspace M and let x e PO (M {0}). By Remark 2.3 we
have P(x) = P,(x) = {0}.

Let %, < Dom( ) lim %, = % and $(x,) e P(x,), im p(x,) =m < M.

H—>00 0O

By condition 1 of Definition 2.1 we have for all #

(2.3) N, — P < [z, ]

andso ||x —m|| =1lm ||x, — p(x,)]] < 11m||x||—||x||S1nceP()=

#—-00

= {0} and m = M, it follows m = 0 and so P is w.(K)s.c. at x.
Suppose now that X ‘has in addition property (H) and M is reflexive,
and let », e Dom(P), lim x, = x, and p(x,) « P (x,). We show that

11—+ 0

lim p(x,) = 0. By (2.1), {p(x,)}a-1 is a bounded sequence of the reflexive

space M and so there exists a subsequence {p(x ©  of {(px,)}°_, such
that w—hm p(%,) =m = M. Then w—hm — P(%,)) = ¥ —m, and

since (2. 3) holds for all #, we have

[|x —m || < lin_l inf Hx" L& p(x,,i)!' <
—p(x"i)

(2.4)

< tim ] =1l
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We have P(x) = {0}, whence by (2.4) we get m = 0. Hence, using again
(2.4) it follows lim “x (%, )” = ||#¢||. -Since X has property (H).,

lirn (%, — (% )) = % and so lim p(%, )= 0. Therefore each weakly con-

vergent subsequence of {p(%,)} 1 converges in mnorm to zero, whence
lim p(x,) = 0. It is now obvious that P is us.c. at x and (K )s c. at x

(hence Ls.c. at x).
For x « X we denote by [x] the linear space spanned by x. When

G is a subset of X we shall denote sp G, resp. sp G, the linear space spanned
by G, resp. the closed linear space spanned by G.

To each set-valued mapping P: X — 2X we associate another set-
valued mapping P’: X — 2% with Dom(P’) < Dom(P) in the following
way 1if x « P~1(0) U (X . Dom(P)) then P'(x) = P(x);if x & Dom(P)
N PT0), let us put

(2.5) o, = inf{dist(x, [p(x)]) |p(x) = P(»)}
If there e\ists p(x) e P(x) such that a = dist (%, [p(x)]) then P'(x) =
= U{Pyun(x) 1p(x) e P(x), dist (¢, [p(x)]) = a,}; if not, then P'(x) = .

Let us obselve that it can happen that for some x e Dom(P’) with
P(x) a singleton, to have not P'(x) a singleton. If X is strictly convex,
then for x = Dom(P’) we have Py )(x)a singleton for each j)(x) e P(x)
but P’(x) can be not a singleton and in this case surely P(x) is not a sing-
leton.

2.8. pErINTTION. A set-valued mapping P is called ovthogonal if
P =P

2.9. Rem ark. For each set-valued mapping P, the setvalued mapp-
ing P’ is orthogonal, and P’ will be called its associated orthogonal sci-valued
mapping.

2.10. Remark If P is a set-valued mapping and x < Dom(P)
with P(x) compact, then ¥ « Dom(P’) and P’(x) is also compact. Indeed,
by ‘Lhe definition of P’ we must show the above statersents only for x &

1(0). LLL p(%) e P(x) and A, € R be. such that ||x — A p,(x) || =

dist(x, [p,(x)])(< |lx]]), lim dist (%, [p.(x)]) = a,, where a,is defined

y (2 5). ulnCL P(x) is compact we can suppose lim j)”( ) = plx)  Px),
(x

) # 0. Then {}};-1 is a bounded sequence and we can suppose lim i, =
A. We have

< dist (v, [p(0)]) < M%) || = a,

and so a, = dist(x, [p(x)]) = ||x — Ap(x)[], Le, Mp(x ) e P(x) and x <
= Dom(P’). The proof that P’(x) is compact is similar and we omit it.

2.11. Remark. If Pis a B-set-valued mapping, then (P')=*(0) =
= P-1(0). Indeed, by the definition of P’ we must show only the inclusion<.
Let x e P()710)~_P10). Since 0 e P'(x) and 0 & P(x), there
exists p(x) < P(x), p(x) # 0 with a, = dist(x, [p(x)]) = ||x]|| < [|¥ —

*e-c‘l

I

1% — 2p(%) |} = lim | |x —
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— p(x) ||, where a, is defined by (2.5) Since p(x) e P(x) and P is a B-get-
valued mapping, we havec, = ||z — p(#) || < llxll S0, ¢, = ||x|| whence
by condition 2 of Definition 2.1, it follows 0 = P(x), a contradiction.

If P is a B-set-valued mapping, by Remark 2.11 1t follows that for
% « Dom(P’) and each p'(x) e P'(x) we have p'(x) = Mp(x), p(x) < P(x),
A e R with ||x — p"(%) || = ||x — Ap(x) || = dist (x, [;b( x)1).

In the sequel we want to see what properties of P are inhercted by

Since there are very few in the general case (see LLemma 2.12 below)
most of the results will require some couditions on X as well as some additio-
nal assumptions on P.

2.12. I,emma. If P is a B-set-valued mapping, then P’ is also a
B-set-valued mapping. Moreover if P 1s on M, then P’ is on M.

Proof. For ¥ « Dom(P’) let ¢, =c¢, for x « P740) and ¢, = a,
otherwise, where a, is defined by (2.5). Then clearly 0 < ¢, < ||x|]| and
condition 1 of Definition 2.1 is obviously satisfaied by P’, while condition
2 is satisfied by Remark. 2.11 and the fact that P is a B-set-valued
mapping. If P us on M, then P'(X) « M and the last statement follows
using again Remark 2.11.

The next result, which will be useful in the sequel, is a slight generali-
zation of [12], Section 4, Lemma 1, the implication a) = b).
2.13. Lemma. Let X be a uniformly convex mormed linear space

and let {M Yoz1 be a sequence of subspaces of X. Let {x},1 < X and m, =

eM, n=1, 12 , such that:
(2.6) lim ||z, || = Um ||x, — m,]|| = lim dist (x,, M)
Then lim m, = 0.
Proof. If lim ||x,|] =0, then by (2.6) we have lim m, = 0. If

lim ||x,|] > 0, then we can suppose that for all #, ||x,|| > 0 and ||x, —
—m,|| > 0. Let us put for all »

1 1

%, ==

Hxn” “Vn == 111,,”

Then by (2.6) we have i o, = 2/¢, where « = lim ||x,|| > 0. We have
that for all »

2;‘ ! n H_

HA’nH qu 7ty
Heunce, since X is uniformly convex

1

> a,dist (x, M,) —» 2

n

o[ %0 — 14|

Xy Xy — 9ty

lanll - llaw — mll

lim

whence by (2.6), lim m, = 0.

The next two results give conditions on X and the B-est-valued
mapping P on M for which P’ has some semi-continuity properties. The
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assumptions on X and M being not weaker then those given in Proposition
2.7, in view of this proposition and Lemma 2.12, we need not consider
% < (P)=%0).

9.14. THEOREM. Let X be a wuniformly comvex mnormed linear space,
P a B-set-valued mapping on the closed subspace M, and
% < Dom (P )\ ((P')~0) U M).

i) If P is both w.(K)s.c. and L(K)s.c. at x, then P’ is u.(K)s.c. at x.

i) If P is u.(K)s.c. at x and P(x) 1s a singleton, then P’ is w.(K)s.c.
at x.

iti) If M is reflexive, P(x) compact, and P 1s both w.s.c. and ls.c. at x,
thenw P’ is w.s.c. at x. _

iv) If M is reflexive, P(x) is a singleton and P 1s w.8.c. at x, then P’
s w.5.c. at x.

Proof.Ietx e« Dom(P' ) ((P)~*0)UM), », « Dom(P’) such that
im %, = x, and $'(¥,) = P'(%,). We have p'(%,) = A\p(x,) for some
p(x,) = P(x,) and A, € R. If Pis u.(K)s.c. at sx, then for all » i

(2.7) llp(x) il >8>0

Indeed, if lim p(x,)) = 0, then 0 e P(x) = P’(x), contradicting » & (P)~3(0
i) Suppose lim p'(x,) =m = M. We show that m = P'(x). By (2.7)

and (2.1) we have that {\,}5=; is a bounded sequence, and so we can suppose
(pass(ing)to a subsequence if necessary), that lim A, = A If A =0, then
by (2.1) we have lim p'(%,) = 0, and for all # the following relations hold :

(2.8) |2, — p'(x,) ] = dist (%, [p(x)]) < Iz — @) <2
Hence
@29)  Lm || % || = lim dist (5, [p()]) = lim|l% —2(x)|

3 i i = ontradicting Therefore
By Lemma 2.13 it follows lim p(x,) =0, contradicting (2.7). There
13.7’&0, and so lim p(x,) = m[X. Since P is u.(K)s.c. at %, it follows mfr =
e P(x), and so m = Ap(x) for some p(x) = P(x). By the definition of
P' and the assumption on #x, there exist #, P(x) and p = R with
a. = || ¥ — pig||, where a, is defined by (2.5). Since P is l.(K)s.c. at x,
there exist m, = P(x,) with lim m, = m,. We have for all »

Hxn I )‘nﬁ(xn)H < Hxn - (‘Lmull

and so

@, < Hx B 7‘?(7‘) H = lim || xn"MP(xn) | [ < lim H X = P‘mnl | = || x—pang | =a,
Thus, a, = || ¥ — Ap(%) ]|, whence Ap(x) = P'(x), which completes the
proof of i).

ii) Using the notation of i), the proof of ii) is similar, since if P(x)=
= {p(»)}, then lim p(x,) = p(x) and the above argument holds replacing
my by p(¥) and m, by p(%,).
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iii) Let C be a closed subset of X such that P'(x,) M C#@, and let
P'(x,) e P'(x,) N C, where as above p'(x,) = Ap(x,) for some p(x,) =
e P(x,) and A, « R, n =1, 2, .... We claim that {p,(x)}% "' has a con-
vergent subsequence. If not, the set C; = {p(x,) |z =1, 2, ...} is closed
and P(x,) N Cy# D for all n, so by the assumption on P to be ws.c. at
%, it follows P(x) N Cy# @. Thus, there is x, with p(x,) < P(x) N C,.
Let Cy = {p(x,) |n < m,}. Then C, is closed and P(x,) M) Cy# & for all
# > n, and so P(x) (N C, # @, say, p(%,) = P(x) for some n, > n,.
By repeating the above argument, we find a subsequence {(x,)}?  —

13

C {p(x,)}>, with {p(x,,)}2, C P(¥). This contradicts the compactness

n=1

of P(x), since {p(x,)}?., has no convergent subsequence. Therefore there

exists a convergent subsequence of {p(x,)}n-1, and without loss of generality
we can suppose lim p(x,) =m < M. By (2.7), we have m % 0. Then
{N}se1is a bounded sequence and we may assume lim A, = A Hence,
lim p'(x,) = M < C. By i) above, P’is u.()s.c. at x and so mn = P’'(x).
Therefore P'(x) () C # &, which shows that P’ is u.s.c. at .

iv) The proof is similar with iii), using ii) instead of i). This completes
the proof of the theorem.

2.15. raroreM. Let X be a strictly comvex mnormed lincar space with
propery (H), P a B-set-valued mapping on the rveflexive subspace M and
%, = Dom (P ) ((P)-Y0) U M). If P is both 1.(K)s.c. and (norm-weak)u.
(K)s.c. at x, then P’ is w.s.c. at w. If in addition P'(x) is a singleton, then
P is 1.(K)sc. at x.

Proof.Let x & Dom(P)\((P)~0) U M), x, €« Dom(L’), lim x, ==
= %, and C a closed subset of X such that P'(x,)N\C # & for all n. I,ct
P’(xn) = P,(xn) ﬂ Gr Lhen P’(xn) B 7\15(7‘1;) where P(x,,) (< ])(:\7”) and My
= R. By (2.1), {p(#,)}s=1 is a bounded sequence of the reflexive  space
M, thus we may assume that w-lim p(x,) = p(x), where p(x) & P(x) since
Pis (norm-weak)u.(K)s.c. at x. We have p(x) # 0, otherwise P(x) = P'(x)
== {0} in contradiction with x & (P’)=*(0). Since | |p(x) || < lim inf || p(x,) ||,
it follows that (2.7) holds for # > %, and so may we assume that lim A, =
= A Because P is 1.(K)s.c. at x, there are m, = P(x,)with lim m, == p(x).
We have || %, — p(x,) || = || %, — m, || for all #, and so lim || x,— p(x,) || =
= {|x — p(x)]|. Since we have also w-lim(x, — p{x,)) == x — H(x) and ~

= Ap(#) = C. The proof to show that ap(x) = P'(x) is the same with the
last part of the proot of Theorem 2.14 i) and we omit it.

The above proof shows that if P’(x) is a singleton, say, P'(x) =
= {p'(x)}, and p'(x,) € P'(x,), then each weakly convergent subsequeice
of the bounded sequence {p’(x,)}*_, converges in the norm topology to
p'(x), whence lim p’(x,) == p’(x), which proves that P’ is 1.(K)s.c. at x
when P'(x) is a singleton. This completes the proof of the theoremn.

Generalizing the definition of P dominates P when P, P, arc single-
valued mappings (see' [12]) we give:

3 — L’analyse numériquo et la théorie de l'approximation -~ Tome 12, No. 1, [933.
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2.16. DEFINITION. If P is a B-set-valued mapping on M, then P domi-
nates Py (written P> Py) if for every bounded sequence {x,}5_, C Dom(P)
with dist (x,, M) = o> 0 for all ", t_he em’stenge of a sequence {Pp(%,)}n=1,
p(x,) e P(x,) with lim p(x,) = 0 1mplws.the existence of an index n, such
that {x)n >n, C Dom(Py) and the existence of some py(x,) e Py(x,)
(n > ny) with lim p,(x,) = 0.

2.1.7. PROPOSITION. Let X be a normed linear space and P a B-set-valued
mapping on the subspace M, with Dom(P) = X, and such that P > P,.
vaP is 1.(K)s.c. at each x = Py M, then P, is 1.(K)s.c. at each % <
e Dom(P,).

Proof. Since Py is 1.(K)s.c. at each x € M, let x e Dom(P,,)\_M,
%, e Dom(Py) such that lim x, = x, and let py(x) & Py(x). Then x—
L x) e Py (0 0} and P being on M we have x — p, (%) =
Eljgbi“l((o))/M. S(igce/li{m}(xn—;‘)M(x)) = % — Py(x) and 0 e P(x — py(%)),
there exist p(x,— pu¥)) e P(x, — pyu(x)) such that lim p(x, — py (%)= 0
(since Pis L(K)s.c. at x — py(x)). By P> Py, there exist ng,and py(x, —
— puu(#)) < Puld, — pul®) 101 > my such " that lim py(%, — py(#)) — O,
and so Hm py(x,) = pu(x), which proves that Py is 1.(K)s.c. at x.

2.18. propOSITION. If X isa wuniformly comvex normed linear space
and P a B-set valued mapping on the subspace M such that P> P, then
P’ > Py

Proof. Suppose {x}.,-; C Dom(P’) is a bounded sequence with
dist(x,, M) >« > Ofor all #, and there are p’(x,) & P’'(x,) with lim p'(x,)=0.
Then p'(x,) = Ap(x,) for some p(x,) e P(x,) and A, € R. We may
assume that {||«,| },=1 is convergent, Then for all » (2.8) holds and since
lim p'(x,) = 0, we get (2.9). By Lemma 2.13, we have lim p(x,) = 0 and
since P > P, the result follows.

Generalizing for set-valued mapping the notion of a demi-compact
operator ([2], see also [12]) we give:

2.19. DEFINITION. A set-valued mapping P s called demi-compact if
for every bounded sequence {%,}n—1 C Dom(P), the existence of some p(x,) <
e P(x,) with {p(%,)}nr comvergent, implies the existence of a convergent
subsequence of {%.}°_. i

2.20. prOPOSITION. If X is a uniformly conmvex normed linear space
and P a demi-compact B-set-valued mapping, then P’ is also demi-compact.

Proof. Let {#}.,.1 C Dom(P’) be a bounded sequence and p'(x,) =
e P'(x,) with lim p'(x,) = w. Then $'(x,) = Ap(x,) for some p(x,) e P(x,)
and A, e R. We claim that {$(x,)}s—1 has a convergent subsequence, whence
since P is demi-compact, {#,},—1 has a convergent subsequence and so
P’ is demi-compact. Suppose now that {p(x,)},-: has no convergent sub-
sequence, and we may assume that {|| x,|/},~; is convergent. Then by
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=0, and so lim p’(x,) = 0. We have (2.8) for all #, whence (2.9) holds.
By Lemma 2.13 we obtain lim p(x,) = 0, a contradiction. This completes

2.1), {p(x,)}s=1 is bounded and since lim A,p(%,)= w we must have lim A, —
)
Sd
the proof.

3. Convergenee theorems

Let P: X — 2% be a set-valued mapping and for % < Dom(P) let
us define the following sequence of subsets of X by: -
(31) YO o {x}) Y’Il+1 - U{yn - P( 7l) Iyn = Yﬂ m Dom(P)}J

Br (=0, 2Lu 2511 .

Clearly, if Dom(P) = X then Y, # @ for all #. Otherwise we shall make
the assumption :

32)8¢ Y, # 0

Note that if (3.2) holds, then by (3.1) we have Y, Dom(P) # @ for all
n=0,1 2 ..., and if P is a B-set-valued mapping, then ||y, || <
< |[xf] forally, eV, Y, #@.

When (3.2) is fulfilled, we shall be concerned with sequences {s,},_o,
s, e Y, with the following property :

(n=12 ...

(3'3) ” 3n+1” < ” sn il p(sn) ” fOI' 2].11 p(sﬂ) s P(sn)! n = 0’ 1’ 2’ h
When P is a B-set valued mapping, then we have s, — 2600 < s,
hence a sequence {s,},2, satisfying (3.3), satisfies also the condition :
(3.4) lim s, || = lim [|s, — #(s,) || < [l ]|
since {||s]|}azo is a decreasing sequence, hence convergent,

Let P be a B-set-valued mapping with Dom(P) = X. Then sequence
Stwwo, S, €Y, satisfying (3.3) always exist. Indced, for x e X take
(8.5) . | so=2, Sy =s3,—p(s), ps) « P(s), n=0,1, 2, ..

The same conclusion holds under the weaker assumption that for all x, e
e Dom(P)

(3.6) (¥ — P(x)) N Dom(P) # @.

Indeed, we must take in (3.5), p(s,) « P(s,) with s, — #(s,) = Dom(P).
Another way to obtain such sequences which, as' we shall see in Example
3.2 below could be different of the ones obtained by (3.5), is given in the
next- result. STET : oW b5
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3.1. Remark ILet P be a B-set-valued mapping with P(X) <« M,
where M is a reflexive subspace of the normed linear space X, and such
that (3.6) holds for all ¥ « Dom(P). Let ¥ « Dom(P), and consider the
sets Y, defined by (3.1) (Y, # @ by (3.6), for all ).

i) Suppose that Dom(P) is sequentially weakly closed (i.e., the relations
z, = Dom(P), » =1, 2 ..., 2 e X, w—limz, =2z imply z « Dom(P)),
and P is o — w.u.(K)s.c. at every ¥ = Dom(P). Then there exists s, =
= Y, N Dom(P) such that

(3.7) 5,11 = inf{[|y.l [y, = Y, N Dom(P)}

and {s}s—o satisfies (3.3).

ii) If dim M < co the same conclusion holds if Dom(P) is closed and
P is w.(K)s.c. at every x = Dom(P).

o show i) we first note that Y, (M Dom(P) is sequentially weakly
compact for all =0, 1, 2, .... Indeed, for # = 0 this being obvious,
suppose that Y (M Dom(P) is sequentially weakly compact and we show
that V, .. () Dom(P) has the property. Let {wie1 < Yyp1 ) Dom(P).
Then w, = z, — P(z) where 7, e Y, () Dom(P) and P(2) e P(z). Since
Y, (| Dom(P) is sequentially weakly compact, we can assume w—lim z, =
— 7 =Y, N Dom(P). Hence {||z||}i=1 is bounded and by (2.1), {p(z)}i’,
is a bounded sequence of the reflexive space M. So we can assume @ —
lim p{z,) = plz), where p(z) = P(z) since P is w—w.u.(K)s.c. at z. Therefore
{w}7  has a convergent subsequence to z — #(2) & Yy () Dom(P) (by
hypothesis Dom(P) is sequentially weakly closed). Now, since all Y, N
N Dom(P) are sequentially weakly compact, there exists s, =V, N
N Dom(P) such that (3.7) holds. Indeed, for each #, le]: Y = Y, N Dom{P)
with lim ||yl = inf{ ||l 3 e Y,y N Dom(P)}. Since Y, M Dom(P) is

£

i —+ 00 =
sequentially weakly compact, we may assume w—limy,=s, =Y, N
]

(N Dom(P). We show that {s,},’-o satisfies (8.7) and (3.3). We havee||s,|| <
< limvinf || vl :;,-Hm Iyl = inf{||2 ]| |y, € Y, N Dom(P)} < [[s,]],

fe—+ro
hence (3.7) is proved. Now, since s, — P(s,) ¢ Y,41 and by (3.6), (s, —
— P(\ﬂ)) m DDIn(P) ?E g; there EXIS‘!JS j)(sn) e P(Sn) S-ueh that Su T ?(S"} =
e Y, () Dom(P). Hence || $u41]| = inf{|| Yur1 |l [Pns1 € Yoo Dom(P)}: <
< |I's, — pls,) |l - Since P is a B-set-valued mapping, we have (3.3), which
completes the proof of i). The proof of ii) is similar and simpler than that
of i).-Note that in this case ¥, N Dom(P) is compact for all #.

32 KExample ILet X =R® with the Euclidean norm, M =
= {(«, 0)|o. = R} and define the B-set-valued mapping P on }\g , with
Dom(P) = X, in the following way: Py, o) = {[”—;l, 0]_, {% 0)}

i, 6y 20, and Plloy ) =
w.(K)s.c. at every ¥ e X. For 2= (1, 1) we have Yo={(L, 1)}, ¥y ==
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! 1 5ot 3 gl s 4 1 L
_{(E! 1]! {'_'"2_11)}» Yﬂ_{(411J; ( l.’ ]}) [81! l}l { 8.; 1]}:
and so on. Take the following sequence {s}u-s, s,e Y, which satisfies

(3.7): 5o = (1, 1), sl=(%, 1], 5= [% 1), antd the other s, % > 3,
only to satisfy (8.7). Then {s,}u.o is not of the form (3.5).

3.3. rupornM. Let P be a B-sel-valued mapping on the finile dimen-
sional subspace M, with Dom(P) closed and P is w.(K)s.c. at cvery x <
e Dom(P), and let x e Dom(P) M. Suppose the sequence {Y,} defined
by (8.1) satisfies (3.2). Then a sequence {s,};"o, s,e Y, ) Dom(P) which
satisfies (3.3), has comvergent subsequewces, and. for eackh convergent subse-
quence %s“i};?’;n < {2, we have lim s, = x — py(x) for some py(x) =
= Pylx) which depends on the subsequence.

Proof. For 5, Y, we have:

(3.8) s, = &, m, e M

u {0
But ||s,|| < ||#|| and so {m,}i—o is a bounded sequence of the linite
dimensional subspace M, and so it has a convergent subsequence, say,
lim m, = m < M. Hence lim s, = x —m, whence {s, wo has convergent
subsequences. Let now {s,‘ﬂ};’;n be a convergent subsequence of {si®
By (3.8) we have lim m, =m < M, whence lim Sy =& — & Do ().
We show that m e Py(x). Since P is a B-sct-valued mapping, using (3.3)
we abtain ||, || < ||$w_, || — £(Sn_y)|| < [$n,_,|| for all 4. Since [|5,]] < ]
for all », by (2.1) the sequence {j)(sw)}:iu is bounded, and we may assume
lim p(s,,) = p(¥ — m) e P(x — m) since P is u.(K)s.c. at & — . We have:

| % —m| = lim |[s, | =lim|s, — 2(s,,)|| = Uz — m) — p(x — m) ||

Then x —m & PHO) N M, and'so x — m < Pi;'(0). Hence m = pyl¥) =
e Py(x) and so lims, = % — pj(x).

An immediate consequence of Theorem 3.3 is: :

3.4, cororrAry, Under the same hypotheses as in Theorem 3.3 if
Py(x) = {pul%)}, then for each sequence (b, 8, Y, N Dom(P) satis-
fymg (3.3), we have lim s, = x — p,(%).

Let P be a B-set valued mapping on M and suppose that all the hypo-
theses of Theorem 3.3 are satisfied. Then we can define another B-set-
valued mapping P on M, Dom(F) < Dom(P) in the following way : if
¥ e (M () Dom(P)) U (X~ Dom(P)) then P(x)=P(x); if ze
e Dom(P)\ M and the sets Y, delined by (3.1) satisty (8.2), and there
exists s, e ¥, () Dom(P) such that {s}..o satisfies (3.3) then P(x) =
={x —lims,|s, =Y, {s.}3. o satisfies (3.3) and {s, }» , is a convergent sub
sequence of {s,}i-o; otherwise [I(x) =@. By ’Theorem 3.3 we have
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for each % & M that P(x) c Py(x). Then cleatly P is a B-set-valued
mapping, and to show that it is on M we must only check that if 0 & Py(%)
then 0 |e P(x) for x & M. If 0 & Py(x), x & M, since P is on M we
have 0 = P(x), whence ¥ < Y, () Dom(P) for al n=0, 1, 2, ..., and
(3.3) is satistied for s, = x and p(s,) = 0. Hence 0 = P(x).

3.5. ranoreM. Let X be a uniformly convex novmed linear space and
P an orthogonal B-set-valued mapping on the reflexive subspace M. Let x <
= Dom(P) M and suppose that the sequence {Y }oo defined by (3.1) satis-
fies (3.2). Let s, « Y, () Dom(P) such that {s,}i-o satisfies (3.4). We have:

i) If P> Py then lims, = x — pulx) where Pylx) = {pu(#)};

i) If P is demi-compact and w.(K)s.c. at cvery x e Dom(P) and
Dom(P) is closed then lim s, = % — () where Pu(x) = {pp(%)}

iii) If Dom(P) is sequentially weakly closed and P is o—w.u.(K)s.c.
at every x « Dom(P), then w—lim s, = % — pulx) where Py(x) = {pu(x)}-

Proof. The assumptions on X and M imply Py(z) = {pulz)} for

all 7 « X. Tet us first note that since {s,}no satisfies (3.4) and P is ortho-
gonal, by Lemma 2.13 we have

3.9) lim p(s,) = 0

—

i) We have s, — pyls,) = % — pul®), hence dist (s, M) = |[¥ —
pulx)]| >O0forallne =0,1,2, ..., since x & M. By P > Py, s, |l <
|l#]] for all #, and (3.9) we obtain lim py(s,) = 0, whence lim s, =
% — pu(%).

ii) P being demi-compact, by (3.9) there exists a convergent subsequence
of {s,}® ., say, lims, =s & Dom(P), since Dom(P) is closed. Because
P is u.(K)s.c. at s, by (3.9) we obtain s = P-1(0). On the other hand
3.8) holds, whence since { s"i}:?f’: , 18 convergent, we have im m, = m E.ﬂf{
and so s — x — m. Now we have x —m < P-}0)\ M, and P being
on M it follows x — m < Py;!(0) and so m = pylx). Hence lims, = % —
— pa(%). Since {s"i};‘; , was an arbitrary convergent subsequence, the sequence

N

{s,}ano converges to x ~ Py(%).

ifi) We have (3.8) {m,}io is bounded, so it has a weakly convergent
subsequence, say, w—lmm, =m = M. Thus w—lims, =x—me
= Dom(P). Hence by (3.9) and since P is o—w.u.(K)s.c. at ¥ —m 1t
follows 0 e P(x — m). Hence 0 e Py(x — m), and we have m = Pu(x)
and w—lims, =% — Pu(x). Since {m,,{}';’;o was an arbitrary weakly
convergent subsequence of {m,}, it follows w—lims, = x — pu(¥), which
completes the proof.

We remark that under the hypotheses of Theorem 3.5 i) or ii), the
B-set-valued mapping, P defined above, equals Py, at each x = (Dom(P))™\
(M A{0}).
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4. Examples and applications

If P,, P, are two B-set-valued mappings, we shall denote by ),
i =1, 2 the corresponding ¢, given by Definition 2.1 for them. We shall
define another B-set-valued mapping P for which the notation ¢, is main-
tained.

We recall (see e.gl, [3]) that a normed linear space X is called smooth
if for each ¥ e X \_{0} there exists a unique f < X*, |[[f|| =1 such
that f(x) =] %||.

4.1. proposITION. Let X be a normed linear space and let Py, P, be
B-set-valued mappings with Dom(P,) = X and such that for each x = Dom ()
¢? i = 0s_for all $,(%) e Py(x). Then the sci-valued mapping P with
DomiP) = Dom(Py) defined by  Plx) = {p,(x) + Po(x — p1(2) | $1 () =
< P,(x)} for & = Dom(P,y), is a B-sel-valued mapping. If P,and P, ave
on M, and M, vespectively, and X is smooth, then P is on M = M, +- M,.

Proof. For ¥ « Dom(P) let ¢,= b,. Then for p,(x) « Py(x) we have

(4.1) 0 < =oPpm < 15— pa(®)] <l #ll

For p(x) e P(x), there are Pi(%) = Pyx nd pu(x — Pi(%) e Po{x —
— pu(x)) such that p(x) == p1(%) + pa(x — p2(¥)). We have:

1% — p(@) | = l# = pu(x) — pal@) || = &L s i(¥) == b, = ¢,
Since p(x) = P(x) was arbitrary, condition 1) of Definition 2.1 holds.
Suppose now ¢, = || %||. Then by (4.1) it follows || % — p1(x) ]| = [[%]|
and so 0 e P,(x). Hence P,(x) C P(x) and we have o= b, =, = || x|,

whence 0 e P,(x) C P(x), and condition 2 of Definition 2.1 is satisfied.
Note that if ¢, = || ]|, then 0 e Pi(x) N Pa(x).

Suppose now X smooth and P; on M,1=1, 2| Let! x'2 M. and
X = P;,l(O). Then ¥ & M,, and % = P;/,(O), i = 1, 2, whence since P,

are on M, it follows 0 e Py(x) N Py(x), and by the definition of P, 0’
e P(x). Conversely, if 0 e P(x) for x & M, then as we have remarked

above 0 e Py(x) () Py(x), hence x = P3.(0) N P (0) = Py (0) since X
is smooth (see e.g., [6]).

For x « X and #» > 0 we denote B(x, 7) ={y e X|||ly — %|| <7}
and S(x, 7) ={y € X| ||y — || =7}

4.2. LEMMA. Let X be a strictly comvex mormed linear space and heR,
0< A< 1. Let V:X —2%X be a set-valued mapping such that

42 V@ C(-=S(=% n)NBO Ixl) FeX)
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wheve v, > 0. Then P(x) = ANz — V(x)), x € X, is a B-set-valued mapping
with Dom () = Dom(V), and we have :
-1

{4.3) (0) = {x « Dom(V)|V(x) = {x}}
Proof. Let x « Dom(P) and p(x) e P(x). Then p(x) = r(x —
— (%)) for some v(x) e V(x). By:(4.2), there exists z e S(—x, r,) with

u(x) = ]_)“_7‘. z. We have:

(4.4) lo — p@) )] = (L — Nx + )| =1 —=N|lx+z2]|=
= (1 T 7\)7/.1:

and

(4.5) (1 e R g a1 — )

+ Ao I < 1 %l

So, for cy= (I — W), we have 0 < ¢, < || %], and by (4.4), P satislies
condition 1 of Delinition 2.1, If ¢ 6y = = (| x|l, then by (4.5) we obtain || x]|| =
=i He(E) | = | (L = 224 7'U( i, hence since X is strictly convex we

A

g u(x‘) and so O e F( \) Thevefore P.is a B-set-valued mapping.

W ox e P~3Y0), then ¢, = || x|, and as we have scen above v(x) = x

for each w(x) e (%), which proves the inclusion (C in (4.3). Since the other
inclusicis i1 obvious, this completes the proof.

4.3, ruUROREM. Let X be a uniformly convex normed linear space h < R,
0 < n<1, and V, P as in Lemma 4.2. Suppose Dom(V) =X, I — T
is demi-compact, where I as the identily operator on X, and V is u.(K)s.c.
al every ¥ & X. Lt v e Dom(P') and suppose Y, # D, n==1, 2, ...
where Yn are defined by (3.1) where we veplace P by P’. If s, @ Y., 1=

=0, 1, 2, ..., satisfy Jim ||s, || = lim ||s — ps )l 2(s,) e ( ), then
there exsis a comlmgam‘ sabseq uence o C s o, with lims, = s e
B0, dren 0 V.(s)iks{s}

Proof. binu P( Y # O forall =0, 1, 2, let p'(s,) e P'(s,),
(s = np(s,), p(s) = ]( O AR By Lemma 42 P is a B-set-
-valued mapping and so we have for all #, ||s, — (sl <|s, —
— pls) ] < |'s, || . Hence by the assumption on {S"}n ‘i we get Tim II's, i| =
= lim ||s, — #(s,) || = lim dist (s,,, [p(s,)]), whence by. Iemma Z2.13,

it follows lim ]5( ) == 0. Now P is dmi-compact (since so is I—V), hence

{s.}2.o being bounded, there exists a convergent subsequcnce of {s,}n 0,
say, Hin §, = s. Because V is u. (K) s.c. at s, P is also u. (K) s.c. at

s, hience s e _P—”*(O). By (4.3) it follows V(s) = {s}, which completes the
proof.

For a set-valued mapping V : X - 2% let us put:
(4.6) M'=="sp{y L V() |y & Dom (V)}

We denote by ML= {f e X*|f(m) = 0for all me M} and by V] Dom(V)
the restriction of V' to Dom(V).
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4.4 1EMMA. Let X be a strictly convex normed linear space and V@ X —
— 2% q set-valued mapping suchthat V(x)C B(O, || x||) for all x = Dom(V).
Then we have: ¥
(4.7) Py (0) C (X~ Dom(V)) U {x e Dom(V)|V(x) = {x}}
where M is defined by (4.6).

Proof. Let V,: X —»2%be defined by V(%) = V(x) for x = Dom(V)
and V,(x) = {x} othervise. Then for M defined by (4.6) we have M =
= sp{y — Vy(x)|y e X}. By the assumption on V and the definition
of T, we no’mcc that V,(0) = {0}, and we always have 0 Py 0). So,
let & e Py (0)~.{0}. ‘Then by [10], Chapter I, Theorem 1.1, there exists
fe M|l J || -1 such that f(x) = || x|l =1 such that f(») = j|x].
Tet vy(x) & Vi(x). Then f(x — vy,(x)) = 0 and so || x|l = f(x) = f(v,(x)) <
< @) < [1x]f.

Hence f attajns its norin at x and v(x), and since X is strictly convex
we have x == ul(x). Since v,(x) = Vl(x) was arbitrary, it follows 17,(x) =
=3t {13} nud () ’j_u {x e X|V,(x) = {«}}, whence (4.7). follows

4.5. Remarl Under the assumptions of Lemuua 4.4 and in ad-
dition Dmu(V) = X and M is reflexive; then M = x if
(x « X|V(x) == {a}} = {0}.

4.6, y,:mA, Let X be a smiooth normed linear space, and V : X ~» 2% a
set-valued mapping, its domain, Dow(V), being a lhnear subspace of X,
and such that V{x) B(O Hzll) for @l x e Dom(V), and for cach v <
e Do V) and (ac/z voly) e V(y) there cmsZs a lvnear selection fwf V|
Doin(V), say, v(x) & V(x)(x « Dom(V)) with v(y) = vo(y). Then:

(4.8) {x < Dom(V) |V(x) = {x}} C Pi/'(0)
where A is defined by (4.6).
Proof. Since V(0) = {0} and 0 P;}I(O), let e Dom(V), x # 0

such that V(x) = {x}. Choo% y e Dom(V) and o o) e V(y). Let now
(%) = V(z), 7 « Dom(V) such that v is a linear selection for V|T)om(V)

with v( ) = wy(y). We have v(x) == x. Since X is .smooth, let f, & X¥ De
the unique norm-one linear fun( tional with f(x) = ||%||. We define ¢ =
= (Dom(V))* by @) = fiv(®), 7z Dmn(V} Then clearly o is linear
and o]l =1 since |o(z)| = [f ()] < o) < |2l and q(x) =
= f(v(x)) = f.(x) = |j¥]]. Let f be a norm-preserving extension of ¢
to X. Since ||f)l =1, f(x) = ||'x|| and X being smooth, it follows f, —f

We have
Ly — vo() = fily = v(®)) = 3} ~ L= L) —f(3) =0
]

Since y e Dom(¥) and yo(s) e V(y) were arbitrary, it follows f, = M ™,
whenee again by {10], Chapter I, Theorem 1.1, ¥ « PM 0).
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47. Remark. Under the assumption of Lemma 4.6, if {x « Dom(V) |
V(x) = {x}} # {0} then M # X.

48 TKxample. Let {T,},<4 be afamily of linear operators 7,,: X —
— X with || T, || <1 and define for x e X, V(x) = {Ty(%) |a = 4}. Then
Vi X — 2% satisfies all the assumption of Lemma 4.6.

4.9. coroLLARY. Let X be a strictly convex and smooth wnormed linear
space and V : X — 2% g set-valued mapping with Dom(V) = X, satisfying
all the assumptions of Lemma 4.6. Then

(4.9) Pi(0) = (& e X |V(x) = {}}

where M 1s defined by (4.6). Moveover, if M is Chebyshev, then Py is linear.

Proof. By Lemmas 4.4 and 4.6 we obtain (4.9). Suppose M is
Chebyshev., We show that {x « X|V(x) = {x}} is a linear subspace of
X, whence by (4.9) and [10], P, is linear. Let x;, %, « X such that
Vi) =1{x}, +=1,2 N eR, i=1, 2 and vo(Mx% + M%) & V(M2 +
+ ro%). Let v(x) e V(x) (x « X) be a linear selection with v(Ax, 4
+ Ra%) = 0o (Mg - NoXp).  Then vy (R + Apxp) = Mo(%1) + Agv (%p) ==
= M% 4 M, and so V(A% -+ Ag%g) = {M¥; + A%}, which completes
the proof.

TLet us note that in [12], Section 4, I,emma 4, the assumption on
X to be reflexive is superfluous.

4.10. TunoreM Let X be a stricily convex and smooth normed linear
space and A e R, 0 < A<<1l. Let V:X -+2% be a set-valued mapping
which satisfies (4.2) and all the assumptions of Lemma 4.6. Then P(x) =
= Mx — V(x), x « X, is a B-sct-valued mapping on M, where M 1s
defined by (4.6). P is always 1.(K)s.c. and o — w.1.{K)s.c. at every x = X.
Moreover P is u.(K)s.c., respectively u.s.c., vespectively o — w.u.(K)s.c. at
¥ e X, if and only if V has the corrvesponding semi-continuity property
at x.

Proof. By Lemma 4.2, P is a B-set-valued mapping. Now P(X)CM
and P is on M by Lemma 4.2 and Corollary 4.9.

We show now that P is 1.(K)s.c. and o — w.1.(K)s.c. at every x = X.
Tet x, e X, lim x, = %, respectively w-lim x, = x, and p(x) « P(x).
Then p(x) = A(x — vo(x)) for some vo(x) = V(). Let v(z) e V(2), 2z X,
be a linear selection with v(x) = vy(x). ‘

If lim %, =« then |[lo(x,) —v(®)]| = lJo{x, —2)| < ||%, — x|
and so lim v(x,) = v(x) = vo(x). Hence for p(x,) = Mz, —v (x)) e P(x,)
we have Hm p(x,) = p(%).

If w-lim %, = x and w-lim v(x) # v(x), then there is f, & X* and
a subsequence {J(x,.)}® , C{v(x,)}2., such that

4.10) fol0(%) — v(%))| = @ > 0for all .

Let f e X* be defined by f(z) = fo(v(2)), 2 « X. We have for all » that
fx, — %) = folv(x, — %)) = fo(v(x,) — v(x)). Since w-lim x, = «x it follows
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0 =lim |f(x, — x)| == lim|fe(v(¥,) — v(%))| contradicting (4.10). Therefore
w-lim v(x,) == v(x) and so for p(x,) = A%, — v(%,)) « P(¥,) we have w-
Hm p(x,) = p(x).

The last statements of the theorem are obvious.

4.11. Remark The above proof shows that in a normed linear
space X, any set-valued mapping V: X — 2% satisfying the assumptions
of Lemma 4.6, is always 1.(K)s.c. and o — w.1.(K)s.c. at every
x < Dom(V).

The following example shows that there exist X and set-valued map-

pings V:X —2% satisfying all the assumptions of Theorem 4.10 (for
single-valued mappings this is clear).

4.12. Example. Let X be a Hilbert space and 7: X — X a nor-
mal operator, ||T]] = 1. Let 0 < A <1 and define V() = {Tx, T*x},

% = X. It is easy to show that [% Tx 4 x ] L S -+ x“ whence
-2 I % ’

V satisfies (4.2) for 7, — ” iJ_X T 4 % ’

and also the other conditions

required in Theorem 4.10.
4.13. provostrioN. Under the assumptions of Theorem 4.10, if M is

reflexive and V o — wu.(K)s.c. at every x = X, thew if {x)ie1c X is a
bounded sequence and for all n theve exists p(x,) < P(x,), where P is defined
as wn Theorem 4.10, such that lim p(x,) = 0, then w-lim Pulx,) =0, where

Py(x,) = {pu(x,)}. In particular, if dim M < oo, then P> P,,.

Proof. Since {#,}a=1 is bounded, {f, (%)}, is bounded, and we
may assume w-im py(%,) = m < M. We have p(x,) = A(x, — v(x,)),
where v(#,) e V(x,), and lim p(x,) = 0 by hypothesis. Since %, — py,(x) <
e Pi/ (0), by Corollary 4.9 we have

(4.11) V%, — tu(%) = {#% — tu(x)}, =1, 2, ...

Let v, =12 ..., be linear selections v,(z) = V(2) (z c—'.X), with
v,(x,) = v(%,). Hence, by (4.11) we get

(4.12) (%) = %, = v(x) + v,(pu(x) n=12, ...

where v,(py
—o(x,) =0

U (Pu(%,)) = m. By the assumption on ¥ to be w — w.u.(K)s.c. at m we
have m < V(m) (hence 0 & P~*(0)), whence by (4.3) and (4.8) it follows
m e Pi'(0). But m < M, and so we have m = 0. Since each weakly
convergent subsequence of {p(#,)}s=:1 converges weakly to 0, we have

w-Him  pp(x,) = 0. The last statement follows now immediately by the
definition of P > P,,.

(%)) = V(pu(x,)). Since lim p(x,) =0 we have lim (x, —
, and since w-lim p,(x,) =m by (4.12) it follows w-lim
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