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In this paper we shall prove a generalization of a cominon fixed point
theocrem [2] in uniformizable spaces and of a fixed point theoremn from
[9]. As an application we shall obtain a common fixed point theorem in
probabilistic locally convex space (S, {§F'},e,, min) and a generalization
of Krasnoscljski’s fixed point theorem..

Let X De an arbitrary set. A mapping d: X X X — R+ = [0, o) is
calied a pseudometric if for cvery x, vy, z € X

Lodix, v) =20, dx, x) = 0.

2. d(x, y) = d(y, x).

3. d(x, v) < d{x, 2) + d(z, ¥).

A pair (X, {d}ie;), where d, is a pseudometric for every ¢ € 7, is called
a unilormizable space. The convergence of the sequences in (X, {d}i<)
is defined by

x,—>x (v, xe X), 1l »—00 <limd(x, —x) =0, i<

H—r 20

and the notions of Cauchy scquence and completness is introduced in the
usual way.'We say that (X, {d,}i<;) is Hausdorff if and only if :

d(x, ¥) =0, for every 1 & [ & x = .

Now, we shall pove a comimon fixed point theorem in uniformizable space.

THEOREM 1. Let (X, {d}i=;) be a complete Hausdorff wumiformizable
space, fi I —1, S and T be continuous mappings from X into X, 4: X —
—SX N TX be continuous so that A commutes with S and T and the follo-
wing conditions are salisfied :
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1. For cvery i < 1, theve exists g,: R — [0, 1] which is a nondecreésing
Sfunction, for which is lim g, () <1 for every i <=1 and every t = R+
and for every i€ I and every x, y € X: '

d(Ax, Ay) < q(dps(Sx, Ty))dy(Sx, Ty).

2. There exists xo= X and %, € X so that Txy = Ax, and for every

ie I, sup dn, (A%, Ad%,) < P, po= R
#neN

Then theve exists 2 € X so that Az = Sz = Tz. If, tn addition, for every
1e 1, sgg dfn(z.)(ijl, A%xy) < M, M, = R+(j € {2, 3}) then there exists one

and only one element w € X such that w = Aw = Sw = Tw and :

sgg A (@, A*%) < Ny, N, € R+, for every i < 1.

Proof : As in [2] let {x,},en be such a sequence from X that Swxy=A%s,_+
and Ty, = A%y, for every & = N where x, and %, are from the condition.
2. of the Theorem. Then for every ¢ € I and every & = N we have:

di(Axor, Axgn—1) < q(dy(Sxar, THar—1))dpiy(Sxar, Txon—1) =
= q,(dsiy(Axon—1, A%or_s)) Aiy(Axor_1, A%xop_s)) <
< q(dsa(Axon—1, Axon—2)) Griy(Apiy(Sxar—s, Txan—1)) X

26—2
X dpsiiy(Sap—o, Txop—1) < ... < 1_% qfs(i)(d/\!+1(1-)(Ax2kfs*1) A5 2))
P

X d -1, (A%g, Axy)

and similarly :
A (A%Xopyr, Axoy) < q(dpi(Axan, Axop—1)dpiy(Axap—1, Axa) <

2k—2

< qlda(A %o, Axa_1)) g G ot (i (A%an— o1, A 3))X

X df-.u-([)(A X, Axq).

Since ¢,(¢) < 1, for every ¢ € I and every £ € R* it follows that for every
i< I and every n < N:

d(A%,; Axs_i)< P, for every j <0G, f) ={f@G)s< NU{0}}
and so:

2k—2

d‘(szk, Ax2k-—-1) < ].—.[ q]"(,')(Pi)Pl

§s=0
2k—1

d‘(szk-l—l, Ax2k) '~<\ 1_-.[ qf'(;)(Pi)Pl'

s=0
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Let #,= N be such that:
qfn(i)(P,) < Q; < 1, for every n > n(i = I).

Such number #, exists since qu,.m(P,) < 1. Let 26 — 2> n,
Then "

"y
i 31;[0 Qfs(i)(P()

A A, A1) < TL gy (P@)Q)#=2— P, ==

gyt (Q)* P(i< 1).

So it is obvious that there exists R, > O such that for every » > #,
a(Ax,, Ax,_1) < R(Q,)" <<= I, which implies that {Ax,},eny is a Cauchy
sequence. Let z =1im Ax,. As in [2] it follows that

Az = Sz = Tz.
Now, we shall prove that:
(1) sup da, (A%, A%x,) < M(i<])

neN

implies that w = Aw = Sw = Tw for w = Az. First, we shall prove that
(1) implies that:

(2) sup d,(A%, Az)< M (i s I).
70, f)
Since d,(A%, Az) = lim d,(A% A%gu11, AAxs,) it is enough to prove that:

dy(A3%24 41, Axoy) < M,, for every ne N and j= (s, f) = 1) It
follows that :

d,(A"’xZn,H, Azxz,,) < qj(df(])(S(Axg,,), TAzxZ,,H))de)(S(sz,,), TAzxzn_l_l) <
< dpg(ASxan, AT %ony1) = dpj) (A2%20—1, A3%2) < ... <
S dyn (A%, A20) < M,, for every neN, j=00, /) (i< 1)

and so (2) is proved. Now, let us prove that 4,(4%, Az) = 0, for every
1 € 1. This follows from the inequalities :

d,(A%, Az) < q(dy(SAz, T2)) dy(SAz, Tz) =
= qi(do) (A%, Az)) dypy(4%, Az) < ... <
< Guldno(A%2, Az)) qroldpa (A%, AZ) ... g (g, (A27, Az)) X
X Ay (A%, Az) < (M) gpo(M) ... gy (M) M,
for every i< I. Since Eqﬂm(M‘) <1 it follows that d,(A%, Az) =0,

for every ¢ € I which implies that A% = Az, Now, from Az = Tz = Sz
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it follows that A% = SAz = T Az = Az and so w = Az is the common
fixed point for 4, S and 7. '
Let M = {x[YLX ¥ = Ax = Sy = Tx, there exists {T }ie/(T, = R",
i< I) so that for every <= I:d,(x, A%x,) < T, for every j = O( f)}
We shall prove that:

d(A%x,, Axy) < M, 7= 0(z, f), for every 1€ ]
implies M = {w}. Fns‘r we shall prove that the cardinal number of M
is less or equal to’ Suppese that #, v @ M and prove that « = v.
It w, ve M then u = Au = Tu= Su, v=Av = Tv = Sv and.:

d(u, A%xy) < T, d,(v, A%xy) < Ti, for every j< 0@, f){i = I).
Then we have:

di(uw, v) = d,(Au, Av) < q,(dy (Su Tv))dsn(Su, 1v) =
= qldpa(, 0))pra(w, v) <
< ¢y (1, ©)) gy (dp(n, u)) oo Gy (G (11, ) X
X df..(-l(i)(u, ’U) < (lfn-{-l(i)('[/v, ‘Z)>
Further for every j  O(z, f) it follows that :
dy(w, v) < T, + 17 (for every ¢ e [)
which implies that:

d(u, v) < gL+ THau(L, + 1Y) . .qf"({)(T, + Ti(T, - 17), for cvery
ie [ Since lim Gy (T + 7)) << 1 it follows that d,(u, v) = 0, for every

i< i and so u =wv. We shall prove that w = M. This means that there
exists {1, }i=(T, < Y, i€ I) so that

d(w, A?xy) < 13, j = 03, f), for every i € 1.

Since w = Az and 2z = lim Ax,, it follows that:
H—+ 0
di(w, A?xy) = lim d,(AAx,,, Ax,)
H—¥rCO

and we shall prove that there exists {7}, (T, € R+ i< I) so that
d,(AA %y, AAx,) < T, for every ¢ [ and. every j<=0(, f) ne N
Further, we have: :

d (AA%Q,,, AA%Q» 1) q{(df i)(Azx'zn—ly AzxZn—.Z)) X
><Qf(i)(df2 ')(A Ko 2, A xZ" 3) e gfzﬁ—z(i)(d = (A X1 Azxo))
X(]zn —% (A X3, A xo)

and since Vo
d, (A2, A2xg) <M, fot every 4 € 1, j = 01, f)
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it is easy to see that:
A A A%y, AA%pu_1) < g(M) ... g 3, (M) M 7<= 0@, f)
and similarly :
d(A%%9y_1, A2%3,_0) < q,(M) ... Gpau—s ;) (M) ML,
So we have :
d(Asz,,, AAxg) < d(AA%g, AAxs_1) + ... + d,(A%x,, A2xy) <
M1+ (M) + ... + q(M,) ... gea—s, (D))

and since lim I (M) < 1 it follows that there exists {7 }i=r so that:

P (AAxs, AAxy) < T, for every ne N, 1=0(, f), 1< I

COROLLARY [9] Let (X, {d}ier) be a complete Hausdorff uniformizable
space, A be a mapping from X in X satisfying the following conditions :

a) For each © = I there exists a nondecreasing function q,: B+ — [0,1]
so that:

d(Ax, A4y) < q(dxn(x, ¥))dsa(, ¥)
Jor cvery %, y e X.

~

b) For each 1€ 1 and ¢ = }Jﬁ fim Gy (£) << 1.

n— COo

c) There 1is xy = X such that for each i< I:
sup da, (%, dx) = K, K, & R,

n<EN
Then there exists a zmique x* e X such that x* = Ax* and for cach ¢ = I,
sup d,. (xo, ¥y =5, S, € Rt
neN
Proof : We shall prove that all the conditions of Theorem 1 are satisfied.
The condition 1. follows from a) and b) if S =7 = Id. Tet us prove
that the condition 2. is satisfied. Since:

A (A%o, Ax) < Gy (@i (Ko, %1))d iy (0, "21)

f
and x; = Ax, it follows that sup d (Axo, Ax) € P, Pi= RH. Letus
neN
prove that c) implies that for every 7 < I,
(3) sup d,. o A2, APx) < M, M, < R+(j = {2, 3}).

neEN
Since for every 7 < I and every n = N :

df”(‘l:)(Ale’ Azxo) S df1|+1(_i)(x1, %0)

4 — L'analyse numérique et la théorie de l'approximation — Tome 12, No. 1. 1983,
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it follows that (3) is satisfied for ¢ = 2. Further, for every ¢ < I and cvery
neN

df,.m(Ai*xl, APx,) < df

—|_ dfn+2(1-)(Axo, x()) < dfn+s(i)(x1, %0) —l— dfn+z(1.)(x1, xo)

n+2m(Ax1: %g) < df"+2(¢)(Ax1: Axg) +

and so (3) is satisfied for ¢ = 3.
From Theorem 1. it follows that there exists one and only one element
we X such that Aw = w and:
(4) sup do (@, A%xy)) < N, N, = R+,

neN
This implies that there exists one and only one element w = X such that
Aw = w and:
(5) sup do, (@, %o) = S, S, = R+

#nEN

since (5) implies (4). _

From ‘Theorem 1 we obtain the Corollary on the existence of the
common fixed point in probabilistic locally convex spaces.

DEFINIUION [7] Let X be a linear space, I a sel and & : X — A+
for every i< I, where A+ is a family of distribution fumctions such that
F(0)=0 for every F = A+. The triplet (X, {§F}icp, t) is a probabilistic locally
convex space if t is a T-norm and for every ¢+ = I the following conditions
are salisfied (§(x) is denoted by F) :

1. Fiu) = H(u), for every i< I and u = R < x =0.

IT. Fi(u) :Fi(l), for every i1, x€ X and # S (S is the

s|

scalar field).
IIL. For every i < I, every u,, u, = R and every x, y = X

I“;ix+:v(”1 +uy) = HI(uy), Ffv(”z))

In X is introduced the so called (s, A)-topology (s = R*, A< (0, 1)) in
the following way :

The fundamental system of neighborhoods of zero in X is defined
by {Uisleoreo 1y =l where U, = {x|Fy(c) > 1 — A} and if T-norm ¢
continuous X is, in the (e, 2)-topology, a topological vector space which
is Hausdorff.

COROLLARY 2. Let (X, {§F'}i=r, min) be a complete probabilistic locally
convex space, S, T:X —X be continuous mappings, 4:X —-SX N TX
be continuous mapping which commutes with S and T and the following
conditions are satisfied :

A) For every i = I, there exists ¢,: R+ — [0, 1] which is a nondecrea-
sing function continuous from the vight such that fov every i < I and every
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te R+, ﬁr—n_qfn(‘.)'(t)_ < 1 and for every i € I, cvery x, y & X and every i = R+ :
#—+00 »

Faaay(q)t) = FE_1,(0)

B) There exists xy and x, from X such that Tx, = Ax, and for every
e [:

Tm Fliy, 4 (t) = 1, uniformly in j < 0(i, f).

i—=00

Then there exists z € X so that Az = Sz = Tz. If, in addition, for every
iel:

Hm Flye, g, (t) = 1, uniformly in j < (3, f) (s € {2, 3}),

=

then there exists ome and only one element w < X such that w = Aw = Sw =
= Tw and :

(6) Am F_ ey (t) = 1, for every i< I, uniformly in § < 0(i, f).

00
Proff: The space X becomes a Hausdor{l uniformizable space with
the family of pseudometrics d,;(x, y) = sup {{|F,_,(t) < 1 — a} where
a<s (0, 1), el Let g4 4 =gq, for every «< (0, 1) and i< I and
S, 1) = («, f(i)), for every a« = (0, 1) and ¢ < I. Tet us prove that

(7) Ao, (A%, 4Y) < Qi) Alos(S%, T9))diosan(Sx, Ty)

for every x, y € X, every ¢ & I and every o € (0, 1). The proof is similar
to the proof of Theorem 8 from [9]. Suppose that (7) is not satisfied which
means that for some « < (0, 1), i€ I and some %, y = X

Qoi (A%, AY) > Qo (Aisin(S% TY))diesin(Sx, Ty).

Since the mapping ¢, is continuous from the right there exists
> d(a, («;))(Sx, Ty) such that:

(8) o, o(Adx, Ay) < g}t -
and so, since F?, is a distribution function, for every » € X {(8) implies that:
(9) Fao-ayld (A%, 49)) 2 Fasoa(q(0)t) 2 FE_2y(0)

Since ¢ > do,fa))(Sx, Ty) implies that F9_1t) > 1 — « from (9) it follows
that Fl,—ay(dy, o(4%, Ay)) > 1 — @ which is in the contradiction with
the definition of the pseudometric di, 4. As in [8] it is easy to see
that B) implies 2, from Theorem 1 and so all the conditions Theorem 1
are satisfied which implies that there exists ome and only one element
we X, w= Aw = Sw = Tw such that d(a f..(i))(w, A?xy) < N,, N, = R*,
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for every i = I and every » € N, Similary as in. [8] it follows from ‘this
inequality that (6) is satisfied.

Now, we shall prove a generalization of the Krasnoseljski fixed point
theorem.

In the next theorem we shall suppose that X is a locally convex topological
vector space in which the topology is defined by the family of seminorms
{pJier. Then X is uniformizable space, where d4(x, y) = p,(x — y), for
every x, y € X (¢ € 1). .

THEOREM 2. Let (X, {p}ier) be a complete Hausdorff locally convex
topological vector space, K = co K be a subset of X, S and T be additive
continuwous mappings so that SK (" TK is bounded, I': K — X be compact
mapping so that AK --FK < SKN TK € K and S|F(K) = T|F'(K) =
= Id|K. Suppose that the condition 1. in Theorem 1 is satisfied for every
x, v & K. For every 1 € I there exists g(¢) € I so that .

(10) }')},,.m(:\f) < 7ntpg(i)(x)’

for every m < N and every x € U — U where U = SK (Y TK. Then there
exists x € K so that

(11) ¥ =Ax + IF'x = Sx = Tx.

Proof : It is easy to sce that for every u = K the mapping A4, defined by
Ax = Ax 4 Fu (x, w = K) satisfies all the conditions of Theorem 1 and
50 there cxists Ru = SK () TK, for every € K so that Ru = ARu |-
+ Fu = SRu = TRu. We shall prove that the mapping R is continuous
and RK is rclatively compact which implies that there exists #* so that
w¥ = Ru*. Tor this #* we then have that (11) helds for x=u*. Let u,, u, =
e K. Then Ruy = ARu, - Fu, = SRu;, = TRu, and Ru, = ARu, +
- Fuy = SRu, == TRu,. So, for every ¢ < I we have:

p(Ruty — Ruy) == p(ARuy — ARu,) + pi(Iu, — Fuy) < q(pra)(SRuy —
— TRuy)) X pro(SRuy — TRus) 4= p(Fuy — Fus) = q,(pro(Ruy —

— Ruto))preay(Ruey — Raty) + po(Fuy — Fag) < q,(Pray(Roey —

— Ru)) [gp) (brn(Ruwy — Rutp)) X ppan(Ruey, — Ratg) + pro(Fohy —

— Fuy)] + p(Fuy — Fuy) = q(broy(Ruy — Rua))qpo (b (R —

— Rutg)) ppeo(Ruy — Ris) + qu{ P Rty — Rat)) oy (Fry — Ftz) +

+ pi(Fuy — Fuy) < .o < p(Fuy — Fuy) + ..o+ q(pron(Ruy —

— Rutg)) gy (P (Rsy — Rawg)) + o X Gny (Dynoayy( Ry —

— Ruy))pywiagy(Friy — Foty) + qu(pro) (R — Rut)) @iy (o (Rown —

— Rus)) ... quurrpovag (Ruy — Rty) pyuea iy (Roey, — Ru,).
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Further, {rom (10) it follows that for every we N, ¢ & I, Py (Ruy —

— Ru,) < mpgp(Ru, — Ruy)  and since SK () TK is bounded and
Ru e SKN TK, for every u < K it follows that:

mypeay(Ruy — Ruy) < By, for every u,, #, € K

which implics that PRy — Ru,) < B, for every ¢« [ and for every
7<= N.
Now, we have:

j)i(‘Rul i ‘R%EZ) < 751'(1?741 e I;u2) —{'_ v -I‘ q;(Bz)qf(l)(Bi) T qf"(,‘)(Bi)i)j”'f’l(,‘)
(Fuy — Fuy) + q(Bgya(B) - .. (]f"“(q')(Bi)Bi

and since (10) holds for cvery y e FX — FK = Ax + FK — (Ax +
+ IFK) e U — U(x € K) it follows that:

i)f(RZh - R”z) < 7”:‘])g(z’)(Fu1 - F%:z) [I 3t qi(Bi) = (]r(Bi)(]f(f)(Bi) R

+ ¢(B)gra(B:) 4 -+ gy (B) + -]

l.iggf"“')(B") < 1, and so it iz obvicus that there exists M, € BB+

2

such that:

since

(1?) PRy — RMZ) < M, Pt (Ful == F”z)!

for cvery uy, u, € K and for every 7 « I. Since F is continuous it follows
that R is continuous. Since FK is compact similarly as in [6] from (12)
it follows that RI is compact and so R on K satisfies all the conditions
of Tihonov’s fixed point theorem which implies the existence of an clement
¥ <€ K such that Rx =« and so x = dx 4+ Fx = Sx = Tx.

Remark : 1t is easy to sece that in Theorem 1. and 2. we can also suppose
that for every ¢ e I the mapping ¢, is a bounded function such that
lim g, (/) < Q, <1, for any t = R+, /e 1.

"-—+00
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