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1. In this paper we present some results referring to the divergence
of Lagrange interpolation methods in a domain of complex plane as an
addition at the results obtained by S. Y. A'LPER [1] D. L. BERMAN
(2], A H. GERMAN, [4] and P. VERTESI [7] and as an extension
of the theorems for Tagrange interpolation on a real interval, that are
already known from the works of I. MUNTEAN gand $. COBza$ [3], [6].

2. In the complex plane € we consider a bounded domain D with simple
connected complement and rectificable boundary. Denote by A(D) the
space of all continuous functions %:D — G which are analytical on D;
endowed with the uniform norm

ol = max{|s()]:¢ < D}, x < A(D)

A(D) is a Banach space. We use the notations Dy = {f = C: |t| < 1} and
I' =t € Yt

Let M be an infinite triangular matrix:
(1) M={ =0, 6 ... 6)sC: neN}

where tf, eD =12 ..., n neNand# # £ for 4 4. We associate
with any line ¢, of this matrix the Lagramnge interpolating operator, L, :
A(D) — A(D) defined by
7 P — Y, .|E-—-||lIFB 1 k+l O (T e .
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for x = A(D), t= D,
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As in the real case, we can study the uniform or pointwise convergence
of the sequence (L,(%; .))sexn to x & A(D).
S. Y. AL'PER [1] proved that if the nodes of the matrix M satisfy :

(2) ffif=1,i=1,2, ..., » and » € N,
then there exists x, & A(D;) such that the sequence (L,(%,; .))nen does
not converge uniformly to x,. An extension of this result is the following
theorem obtained by D. L. BERMAN {2]:

THEOREM 2.1. For every matrix of type (1), there exists iy € A(D)
such that

ﬁ}ﬁ HI‘n(xO; ‘) _xOH P +OO
A. M. GERMAN [4] studies the pointwisc convergeuce of the sequence
(Ly(x; Duen to x € A(D,) when the nodes of M satisty (2) and proves
that for a special class of such matrices there exists x, € A(D;) such that

lim [L,(x,; £)] = +00 a.e. on I,
100
This result is completed by P. VERTESI [7] as follows:

THEOREM 2.2. For every matvix of type (1) which satisfies (2), there
exists xy < A(Dy) such that

lim'[L,(%,; t)] = -0 a.e. on I

3. In the following we determine the topological structure of the set
of all functions x € A(D) for which the sequence (L,(%; .))sex does not
converge uniformly or prointwise to «.

To this end we need some preliminary results. We recall that a subset
of a topological space X is said to be superdense if it is noncountable, dense
and of Gg-type (see [3], [5]) and it is said to be of first Baire catcgory
if it can be written as the union of a countable family of nowhere dense
sets in X.

From [5, Th. 2.4] we deduce:

1EMMA 3.1. If X is a nonzero Banach space and & is a family of conti-
nuous mappings A: X - X satisfying the following conditions :

a) IA{x + 9| < 1@ -+ [[A)]] and [|A@)]] = [1A(— || for each
Ae a and %, ye X;

. b) there exisis x, < X such that sup {]|A(x,)||: A € A} = +co0, then
the set

L= {xe Xosup {|l4(x)]]: A = @) = 400}

is superdense in X.
From [5, Th. 2.3] we have:

LEMMA 3.2. Let X be a nonzero Banach space, T a complete, separable,
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nonvoid metric space, without isolated points and let & be a family of mappings
A: X X T —C satisfying the following conditions :

a) A(.; t): X —C is continuous, |A(x+y; f)] < |A(x; 5] +
+ |A(y; )] and |A(x; ¥)| = |A(—=x; t)| for cach A< @, ts T and 2,y €
e X;

b) theve exists a demse subset T, of T and x,< X such that
sup {|A(xy; 8)]: A € } = 00 for cach t< T,
Then there exists a superdense subset X, of X such that the sct

{te T:sup{|A(x; 1)]: A € d} = + o}

is superdense in T for every x € X,.
The following result is a completion to the theorem 2.1:
THEOREM 3.3. For every matrix M of type (1) the set

X, = {x = A(D):sup {||L,(x; )—all:n =N} = +oo}

is superdense in A(D).

Proof. For each n & N define 4,: A(D) — A(D) by A4,(x)(¢) = L,(x; 1),
x € A(D), t= D. We can apply lemma 3.1 with X = A(D). & = | =
— I:n e N} where I is the identity mapping on A(D) and x, is found by
theorem 2.1. It follows that the set

X, = {x = A(D):sup {||(4, — D(#)|| : » = N} = J-00} =
— {x e AD):sup {||L,(x; .) — #|| :# € N} = +00}

is superdense in A(D). -
Concerning the theorem 2.2 we obtain:

THEOREM 3.4. If the nodes of matrviz M of type (1) satisfy (2) then lhere
exists a superdense subset X, of A(Dy) such that the set

U= {te [:sup{|lLx; t)]:n <N} = oo}

is superdense in [’ for every x = X,.
Proof. We apply lemma 3.2 taking X = A(D,), T = I' with the topo-
logy induced by the metric

et L) = |t — &y

for ¢, t, I and @ = {L,(.; .): »n < N}. Then we apply the theorem
2.2 it follows that there exists a superdense subset X, of X such that U
is a superdense set in I' for every x & X,.

4. Remarks. (i) For every matrix M of type (1) the set of all functions
x e A(D) for which L,(x; .)—=x(n — +o0) is of first Baire category
in A(D).

Indeed, if T is a topological space and S is a subset of T with S C
C TN\S' where S’ T is of Gytype and dense in T, then S is of first
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Baire category in T. Now, from
{xcs AD): L(x; .)—>x, n—>+ow} C AD)\ {x< AD):

sup {|1L,(x; .) — #||:m = N} = 4-00}

and by theorem 3.3 we obtain (i).

(ii) For every matrix M of type (1) checking (2), the set of all func-
tions x € A(D,) for which L, (x; ¢) — x(f) (# — 4-00) for any ¢ < D,, is
of first Baire category in A4(D,).

To prove this, observe that :

{x= AD,): L,(x; 1) > x(t), n — +oo for any ¢t D}
CH{x s A(Dy): Ly(x; t) = x(2),  — +00 for any ¢t € T}
C A(D) N X,

where X, is given by theorem 3.4; after that we proceed as in (i),

(iii) The sets X, and X, in the theorems 3.3 and 3.4 are of second
Baive cateogory (they are not of first Baire category).

Indeed, the complements of X, and X, are of first Baire category in
A(D), respectively in A(D,). Since in a Banach space the complement of
a set of first Baire category is of sccond Baire category, we obtain (iii).

By the same argument we have : ‘

(iv) The set U in the theorem 3.4 is of second Baire category.

This result is obtained in [7] in some other way.

Finally I thank RADU PRECUP for interesting debates on the results
presented in this article,
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