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1. Introduection

After the introduction of the Accelerated Overrelaxation Iterative
Method (ADR), by Hadjidimos, in 1979

(1.1) 26+ = (I — +E)2[(1 — w)] + (w — 7)E + wF ]2 + w(l — rE)™b
i=01,2 ...

many improvements on the. corresponding convergence have appeared.
As, for different values of the parameters w, #, this method includes other
known methods (Jacobi method for » =0, w = 1; Gauss-Seidel method
for » = w = 1, Successive Overrelaxation method (SOR) for » = w and
Simultaneous Overrelaxation (JOR) for » = 0) it is of large use for com-
puting the solution of a linear system

(1.2) Ax =b

Here, A =1 —E — F is a real # X # iatrix, b a real, known, »
column vector and x the unknown # column vector.

Papers [1], [2], [3] give some results on the convergence of this
iterative method. Such results have been improved for strictly diagonally
dominant matrices in [5], [6].

Later, we took the idea of generalized diagonal dominance (see defi-
nition 3 of [4]) and improved the last results for various types of matrices
(see [7]). In this paper we generalize the theorem 2 of [5]: "If A of
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(1.2) is a strictly diagonally dominant matrix and @ >"# > 0, then a suffi-
cient condition for the convergence of the (AOR) method is

0<w <2
1 + max (¢, + f3)
1

With this generalization we improve the results of [5], [6] and [7].

2. Convergenee’s Conditions of the AOR method

THEOREM 1. — If A of (1.2) is.a strictly diagonally dominant n X n
matrix and w < v, then the AOR method is convergent, for : ' '

21 @ O<r<g  and  fi)<w<1
or
2.2) (i) l<w<m and w<r<s(u),
where
14— 2e0 1 _
¢ i R S e
m = minl—i%:'f‘ and  s(w) = n:;inz-q‘"[lze;‘g‘m

where e, and f, ave respectively the i-vow sums of the moduli of the entries of
E and I, respectively

Proof. Bearing in mind Theo. 1 of [5] and considering w < 7, we
can define the function:

g(7‘) T (7’_ Ne, + )‘ft + 11 — A + 7¢,
If 0 <A<, g(2) is a decreasing function and g(0) = 27e¢, + 1 > 1 with

3 Ze, v 2e¢ 7 .
AN <lif a> " — . As A <1 we see that < 1or equi-
8() Lo —fi 1+e —fi 1
valently » < 1—%1‘ .
5
“For A > 1, we have g(d) = (» — Ne, -+ M, + A — 1 + re,. Now, g(A)
is an increasing function and g(A) < 1if » < o e W
[ &4
As r > A > 1, we must have i—M=ﬁ>lor7\<2;_2e‘— )
e 26, 1—e 4+ fi

With this conditions we conclude that the AOR method is convergent
for w and 7 given by (2.1) and (2.2).
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THEOREM 2. If A of (1.2) is a strictly diagomally dominant matrix,
then the AOR method is comvergent, o(L, ,) < 1, for:

(7) O<r<qg and f[firi<w<l
or

(¢7) l<w<m and w<<r<s(w)
if w < ¥
or

(117) O<r<w and 0<w<t
with

gL 2

1 + max (¢; + f))

Proof. This result comes immediately from the preceding theorem
and from theorem 2 of [5], and is a generalization of this one,

We give a geometric intepretation of th. 2 of [5] (fig. 1) and the
theorem 2 (fig. 2). We can see that the area of convergence given by
(fig. 2) is larger than that which is given by fig. 1.

W AN

Fig. 1.
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Fig. 2,

With Theorem 1 we can generalize th. 6 of [5], which becomes.

. T]I(—_IEOREM 3. If A of (1.2) is strictly diagonally dominant, i.e., p(L, ») <
<1, for: s

() 0<r<1and 0 <w < max (g(v, f)
or

(v2) l<r<tand v <w <t
o

(i47) 1<y <gand fr) <w <1
or

(iv) l<w<mand w <<r < s(w)
.’Ef

5 w <7

with gy) = ———— - '

q( ) 1 4 p{L:.5)
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Tt is evidente that this result is an improvement on th. 6 of [5], as we
can see from the fig. 4. for the theorem 3 and from fig. 3 for the th. 6 of [5].
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The Theorem 6 of [5] as improved by theorem 5 of [6], which can be
stated now, ‘in a generalized form.

rHEOREM 4. If A of (1.2) is strictly diagonally dominant, then oL, ) <
< 1, if:

) 0 <7<t and 0 <w < max (g(r), t)
or
(#7) t<r<qand fr)y <w <1 |
or
l<w<mand w<<r <s(w)
if

w <7

Let us give now the geometric interpretation of th. § of [6] (fig. 5)
and of the theorem 4 (fig. 6).

w
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/

Tig. 5.
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il

Fig. 6.

From corollary 1 of [7] we know that the AOR method Nfor 4 =D +
+ H + K, is convergent if and only if it is convergent for A=D+ H+
+ K, where 4 is a matrix obtained from A by a scaling by rows or

colums. Moreover the rate of convergence is the same for both A and A.
Then, by th. 4 of the present paper and by that corollary we can
now state: . N
THEOREM 5. If the matrix A =1 + E + F, obtained from A is-a.
strictly diagonally ~dominant matrix, then the AOR method is convergént

for A, if:

(2.3)  (4) 0<7 < and 0<w< max( g()
or .

(24) () T<r<q and Jin<w<l
or

(2.5) 1<w<ﬁandw<r<s~(w)
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if
w <7,
where
~ 2 ~ el N = .
t:~——ﬁ,q=m1n—+e‘—h’£ 1=12, ..., »n
1 4 max (¢, + f)) ¥ 2e;
~ 2%, ~ .2 —w(l — e 4 )
f(y): max__fL’_V, ('ZB)) = min _w(_.Ni-l__f‘),
ol 4 e — i 2 e,

where e, j: are, vespectively the i-row sums of the moduli of the entries of
E and F. :

It is evident that the last theorem is a generalization of corollary
2 of [7].

The geometric interpretation of corollary 2 of [7] will be similar to
fig. 5 with ;replacing 12

The area of convergence for theorem 5 will be similar to fig. 6 with
) qN, m, ?(w), 7(1) replacing respectively £, g, m, s(w), f(v).

THEOREM 6. If A of (1.2) is drreducible wearkly diagomally dominant,
then the AOR method is convergent, for:

(7) 0<7<1and 0<w < 1 :
or |
(44) l<r<qand fr) < w < 1

or
l<w<mand w <r < s(w)
if

w <7.

Proof. This result comes from th. 1 and Corollary 1 of [6] and from
last th. 1, applied to this type of matrices.

If we consider the geometrical meaning of the Corollary of [6] (Fig. 7)
we see that its area of convergence is larger than that which is given by
theo. 6 (Fig. 8). BRTS '

THEOREM 7. If A of (1.2) is an irreducible weakly diagonally dominant
matviz, then the AOR method is comvergent for w and v given by (2.3), (2.4)
and (2.5). < , .

Proof. This result is obtained from the theorem 6 and from the const-
derations of Walter [10] about irreducible weakly diagonally dominant
matrices, ) ; | a ; (.8
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11
= THEOREM 8. If A=1—E —F is a M-matrix, then P(Lr, w) <7 fO?’ N AN
; ) :
(7) 0 <7r<mand 0 <w < max (g(r), )
or
" ~r ~ -l
(i) n<r<qgand fry <w<1 : , i L
or - il : ’
. ~ ~ S(w 1 4
l<w<mand w <r < s(w) . S g(r)/’ | it
if by // 1 ’ E{cp
w <7 and ¢ > n. . / | ca P
!, where it )l T
| Frd 2’
| n = 42_ th--=- 4 R _ 7o
| L+ p(Lyn) b= /v—~;,’—|\l', P
| groof. Th1_:fire51;11t is obtained from theorem 5 and from th. 5 of [7] ,/ 2 : P .
we ¢ i 1 5 Q j A : - v
and for the (;);151 esr tf e7geo§qetr1ca} interpretation for this theorem (Fig. 10) A ll 4 ~ .
| em 5 of [7] (Fig. 9) it is easy to see that the area of conver- . “ ,’ 2 {/‘, P b
s PRSI Ty
! W e 5 . L : j : : ~ . N
‘ -7 ol .
) = D T — e
P 1 tng 1
=iy’ e.
| l : / s g 1
e ,
- 47 Fig. 10.
4 l ’
/ I // - . - .
g(r%’ 'I / : gence given by Fig. 10 is an improvement on that which is shewn in
, .
/ I . Fig. 9. . _
! | 7 rarorEm 9. If A=1—E —F is an H-matrix, then the AOR me-
{ o7 . thod is cowvergent for w and r given by (2.3), (2.4) and (2.5).
fjnrediae .,.r{.& = A Proof. This conclusion is obtained from the Theo. 5 and from the
i /..r'f : results given in [9].
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