MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 12, No 1, 1983, pp. 77-81

Truccurred & Live all h ∈ 12413. A chapitanthee halden u =

SOME RESULTS FOR CONVEX SEQUENCES OF ORDER k

GRADIMIR V. MILOVANOVIĆ and IGOR Z. MILOVANOVIĆ (Niš)

Let S_k^* be the set of all real sequences $a = \{a_n\}_{n \in \mathbb{N}}$ which are convex of order k, i.e.

$$S_k^* = \left\{ a \mid \Delta^k \ a_n = \sum_{m=0}^k \left(-1 \right)^m \binom{k}{m} a_{n+l-m} \ge 0 \right\}.$$

In the set S_k^* , a subset S_k

$$S_k = \{a \mid a \in S_k^* \land a_1 = 0\},$$

can be defined.

In this paper we shall prove some results for sequences from the set S. First we shall give an auxiliary result.

LEMMA 1. For $0 \le r < k < n$ the identity

(1)
$$\sum_{m=0}^{r} {k \choose m} (n-r+m)_{k-1} = \frac{(-1)^r {k-1 \choose r}}{n+k-r-1} (n)_k,$$

holds, where $(p)_s = p(p+1) \dots (p+s-1)$. Proof. We shall deduce the proof by mathematical induction. For r=0, 1 we can directly check that (1) holds. Suppose that (1) holds for some fixed r. Then.

$$\sum_{m=0}^{r+1} (-1)^m \binom{k}{m} (n-r+m-1)_{k-1} = (-1)^{r+1} \binom{k}{r+1} (n)_{k-1} + \frac{(-1)^r \binom{k-1}{r}}{n+k-r-2} (n-1)_{k-1} = (-1)^{r+1} \binom{k-1}{r+1} \frac{(n)_k}{n+k-r-2},$$

which completes the proof.

2

Define the sequence $b^{(r)} = \{b_n^{(r)}\}_{n \in \mathbb{N}}$ (r is a fixed positive integer) by

(2)
$$b_n^{(r)} = \begin{cases} 0 & (n=1), \\ \frac{a_n}{(n-1)^{r-1}} & (n=2, 3, \ldots). \end{cases}$$

THEOREM 1. For all $k \in \{2, 3, ...\}$ implication holds, $a \in S_k \Rightarrow b^{(2)} \in S_{k-1}$.

Proof. According to (1) we have

$$\sum_{r=0}^{k-1} \frac{(-1)^r \binom{k-1}{r}}{n+k-r-1} (n)_k \ a_{n+k-r} \ge 0,$$

i.e.

(3)
$$\sum_{r=0}^{k-1} (-1)^r {k-1 \choose r} \frac{a_{n+k-r}}{n+k-r-1} \ge 0,$$

wherefrom, according to (2),

$$\sum_{r=0}^{k-1} (-1)^r \binom{k-1}{r} b_{n+k-r}^{(2)} \ge 0,$$

i.e.

$$\Delta^{k-1} b_n^{(2)} \ge 0.$$

This completees the proof.

On the basis of the preceeding conclusions the following result can be derived.

THEOREM 2. If the sequence $a \in S_k$ $(k \ge 2)$ is monotonically increasing, then the sequence $b^{(k)}$ is also increasing.

Proof. Since the sequence a is convex of order $k \geq 2$, it follows from Theorem 1 that the sequence $b^{(2)} \in S_{k-1}$. Iterating this statement, we conclude that $b^{(k-1)} \in S_2$. Applying the result from [3] (also, see [1]), we obtain the statement of Theorem 2.

Theorem 2 facilitates generalization of the Chebychev's inequality for convex sequences of order $k \geq 2$.

THEOREM 3. Let $p = (p_1, \ldots, p_n)$ be a sequence of positive numbers. If the sequences $x_i = (0, x_{2j}, \ldots, x_{nj}), x_{ij} > 0$ $(i = 2, \ldots, n; j = 1, \ldots, r)$ are convex of order $k \geq 2$, then

(4)
$$\left(\sum_{i=1}^{n} p_{i}\right)^{r-1} \left(\sum_{i=1}^{n} p_{i} x_{i1} \ldots x_{ir}\right) \geq N_{r,k} \sum_{i=1}^{n} p_{i} x_{i1} \ldots \sum_{i=1}^{n} p_{i} x_{ir},$$

where

$$N_{r,k} = \frac{\left(\sum_{i=1}^{n} p_{i}\right)^{r-1} \left(\sum_{i=1}^{n} p_{i} (i-1)^{r(k-1)}\right)}{\left(\sum_{i=1}^{n} p_{i} (i-1)^{k-1}\right)^{r}} \ge 1.$$

Proof. If we substitute $q_i = p_i(i-1)^{k-1}$, $a_{i1} = (i-1)^{(k-1)(r-2)}$, $a_{i2} = (i-1)^{r(1-k)} x_{i1} \dots x_{ir}$, in inequality (see [1])

(5)
$$\left(\sum_{i=1}^{n} q_{i}\right)^{r-1} \left(\sum_{i=1}^{n} q_{i} \ a_{i1} \ \dots \ a_{ir}\right) \geq \sum_{i=1}^{n} q_{i} \ a_{i1} \ \dots \ \sum_{i=1}^{n} q_{i} \ a_{ir}$$

for r=2, we obtain

$$(6) \sum_{i=1}^{n} p_{i} (i-1)^{k-1} \sum_{i=1}^{n} p_{i} x_{i1} \dots x_{ir} \ge \sum_{i=1}^{n} p_{i} (i-1)^{r(k-1)} \sum_{i=1}^{n} p_{i} \frac{x_{i1} \dots x_{ir}}{(i-1)^{(r-1)(k-1)}}$$

By the new substitutions $q_i = p_i(i-1)^{k-1}$, $a_{ij} = \frac{x_{ij}}{(i-1)^{k-1}} (j=1,\ldots,r)$ the inequality (5) becomes

(7)
$$\left(\sum_{i=1}^{n} p_{i} \ (i-1)^{k-1}\right)^{r-1} \sum_{i=1}^{n} p_{i} \frac{x_{i1} \ldots x_{ir}}{(i-1)^{(r-1)(k-1)}} \ge \sum_{i=1}^{n} p_{i} \ x_{i1} \ldots \sum_{i=1}^{n} p_{i} \ x_{ir}.$$

Combining inequalities (6) and (7) we obtain (4). Let us note that the previously stated substitutions provide the conditions for which the inequality (5) holds (see Theorems 1 and 2).

Let us show that the constant $N_{r,k}$, for fixed r, increases as the parameter k increases, i.e. inequality (4) becomes sharper as k increases. Namely, if in the inequality (see [2])

$$\left(\frac{\sum\limits_{i=1}^{n} p_{i} \ a_{i}^{r}}{\sum\limits_{i=1}^{n} p_{i} \ b_{i}^{r}}\right)^{1/r} \geq \left(\frac{\sum\limits_{i=1}^{n} p_{i} \ a_{i}^{s}}{\sum\limits_{i=1}^{n} p_{i} \ b_{i}^{s}}\right)^{1/s} (r \geq s, \ r, \ s \neq 0, \ |r|, \ |s| < +\infty),$$

we put s = 1, $a_i = (i-1)^{k-1}$, $b_i = (i-1)^{k-2}$ (i = 1, ..., n), we obtain that $N_{r,k} \ge N_{r,k-1}$. It should be noted that the given substitutions satisfy conditions stated for Theorem 2 in [2].

From Theorem 3 the following results can be derived:

COROLLARY 1. For k=2 and r=2 the inequality (4) can be reduced to

$$\left(\sum_{i=1}^{n} p_{i} (i-1)\right)^{2} \sum_{i=1}^{n} p_{i} x_{i1} x_{i2} \geq \sum_{i=1}^{n} p_{i} (i-1)^{2} \sum_{i=1}^{n} p_{i} x_{i1} \sum_{i=1}^{n} p_{i} x_{i2}.$$

5

4

This inequality has been proved in [3].

COROLLARY 2. For k=2 and $p_i=1 (i=1,\ldots,n)$ inequality (4) becomes

(8)
$$\sum_{i=1}^{n} x_{i1} \ldots x_{ir} \geq M(r) \sum_{i=1}^{n} x_{i1} \ldots \sum_{i=1}^{n} x_{ir},$$

where $M(r) = \frac{2^r}{n^r(n-1)^r} \sum_{i=1}^{n-1} i^r$.

The inequality (8) is directly analog to the B. J. Andersson's inequality [4] (also, see [5]). Let us note that

$$M(2) = \frac{2}{3} \cdot \frac{2n-1}{n(n-1)}$$
 and $M(3) = \frac{2}{n(n-1)}$

Since $\lim_{n \to +\infty} n^{r-1} M(r) = \frac{2^r}{r+1}$, the inequality (8) can be reduced to the B. J. Andersson's inequality.

If we apply the method used in [6] on (4) we obtain the following result: THEOREM 4. Let positive sequence of real numbers $(x_{i1}; \ldots; x_{ir})$, $(y_{i1}; ...; y_{i,r-1}), (p_1, ..., p_r)$ for i = 1, ..., n be given. Then the inequality

(9)
$$\sum_{i=1}^{n} p_{i} \frac{x_{i_{1}} \dots x_{i_{r}}}{y_{i_{1}} \dots y_{i,r-1}} \leq N_{r,k} \frac{\sum_{i=1}^{n} p_{i} x_{i_{1}} \dots \sum_{i=1}^{n} p_{i} x_{i_{r}}}{\sum_{i=1}^{n} p_{i} y_{i_{1}} \dots \sum_{i=1}^{n} p_{i} y_{i,r-1}},$$
holds when the sequences

$$\frac{x_{i1}\ldots x_{i,j-1}}{y_{i1}\ldots y_{i,j-1}}, \frac{y_{i,j-1}}{x_{i,j}} \qquad (j=2,\ldots,r),$$

are convex of the order $k(\geq 2)$.

The equality in (9) holds if $x_{ij} = C_i(i-1)^{k-1}$ for $j = 1, \ldots, r$ and $y_{ij} = C$, for $j = 1, \ldots, r$.

The inequality (9) is a generalization of the inequality proved in Theorem 2 in [6] for convex sequences of the order $k(\ge 2)$. At the end, let us note that from the inequality (9), using the method demonstrated in [6], we can obtain generalizations for a number of well known inequalities, for the case of convex sequences of the order $k \geq 2$.

REFERENCES

[1] D. S. Mitrinović and P. M. Vasić: ,, History, variatious and generalisations of the Čebyšev inequality and the question of some priorities". Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No 461-No 497 (1974), 1-30.

- [2] P. M. Vasić and I. Ž. Milovanović: "On the ratio means", Ibid, No 577- No 598 (1977), 33-37.
- [3] P. M. Vasic and R. Z. Djordjević: "Čebyšev inequality for convex sets". Ibid, No 412— No 460 (1973), 17—20.
- [4] B. J. Andersson: "An inequality for convex functions", Nordisk. Mat. Tidsk. 6 (1958), 25-26,
- [5] D. S. Mitrinović (In cooperation with P. M. Vasić): "Analytic inequalities", Berlin-Heidelberg-New York, 1970.
- [6] Lj, R. Stanković and I. Ž. Milovanović: "Some inequalities for convex functions". Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (In prep.).

Received 6.II.1982.

Elektronski fakultet 18000 Nis. Yugoslavia