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i. Introduction. Many books on functional analysis consider the follo-
wing theorem, called the principle of uniform boundedness, as one of the
most important results in the theory of real or complex normedlinear
spaces.

raroreM 1.1, Let X be a Banach space, Y a normed linear space,
and § a family of continwous linear mappings from X b0 Y such that

sup {If(x)|| :f e F} < oo for all x = X.
Then holds i

sup {||fll:f « &} <. +0.

But an application of this theorem to the problem of the pointwise
convergence of sequences of continuous linear mappings already reveals
a disadvantage. Indeed, if (f;) <~ is a sequence of continuous linear map-
pings from the Banach space X to the normed linear space Y such that

csup {lIfll % = N} — 1o,

then Theorern 1.1 implies the existence of at least one point % = X for

which )
sup {[If(@)|: 7 e N} = +o0.

In other words, by applying the principle of uniform.boundedness we can:
conclude only that there exists at least one point in X at which the
sequence (f,)u=y diverges. By far more informations about the set of those
points of X at which (f,)u=y diverges ar¢ obtained, if one applies the follo-
wing theorem instead of:the uniform boundedness principle.



102 WOLFGANG W, BRECKNER 2

raHEOREM 1.2. Let X be a Banach space, Y a normed linear space,
and § a family of continuous linear mappings from X to Y with

sup {|fll: f e &} = +o0.
Then the set Sg of all x & X for which

sup {If(#)|:f e F = +o

is vesidual.

This classical result, which generalizes Theorem 1.1, is known as
the principle of condensation of singularities. It has been found to be very
useful in proving the dense divergence of many well-known approximation
methods.

Both the above-mentioned theorems are based on the same result,
namely Baire’s Category Theorem (see for their proofs [10, pp. 134—136]).
They have been generalized by numerous authors and in several directions.
In some papers, instead of the normed linear spaces X and Y, more gene-
ral linear spaces have been considered (for instance topological linear spaces,
barrelled spaces, ultrabarrelled spaces). In other papers the family & of
continuous linear mappings is replaced by a family of nonlinear functions
of a certain kind (for instance convex functions, rationally s-convex func-
tions, preconvex functions). For detailed information we refer the reader
to'the original papers by coBzas . and MUNIEAN I [7], KOSMOL P.
[12], BRECKNER W. w. [4], RoLuMBAN 1. [11].

Unlike the previously mentioned investigations, the main aim of
the present paper is to state a principle of condensation of singularities
of a new type, which does not require any algebraic structure of the consi-
dered spaces and no assumptions as to the shape of the functions that
are concerned. The principle we shall prove is valid in the very general
setting of topological spaces, more precisely for lower semicontinuous
functions defined on a topological space and taking values in the power
set of a topological space. By particularizing it yields several known prin-
ciples of condensation of singularities stated until now by using individual
methods, among them also Theorem 1.2.

2, Residual Sets. In this section we shall briefly review some notions
from general topology and results concerning residual sets which we shall
need. The terminology used is that of [8].

Let X bé a topological space. We assume that X as well as all topo-
logical spaces which will occur in our paper are nonempty. For any subset
A of X we denote by int A4 its interior and by cl 4 its closure. '

A subset of X is said to be rare (or nowhere dense) if its closure has
an empty interior. If A is a dense open subset of X, then it is easily
seen that X\ A is rare.

The union of any finite family of rare sets is rare, but the union of
a countable family of rare sets is not always rare.

A subset of X is said to be of the first category (or meagre) if it can
be written as the union of a coutitable family of rare subsets of X. Any
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subset of X which is not of the first category is said to be of the second
category (or mommeagre). A subset of X is called residual if its complement
is of the first category.
A characterization of residual sets is given by the following theorem.
THEOREM 2.1. A subset A of a topological space X is residual if and
only if theve exists a nonempty countable family {G,:n < N} of dense open
subsets of X ‘such that :

#HeN

If each residual subset of the topological space X is dense in X, then
X is said to be a Baire space. A number of useful characterizations of
Baire spaces are collected in the next theorem.

o rEBOREM 2.2. The following properties of a fopological space X are:
equivalent ' j
1° X 4s a Baire space. '
2° The intersection of every nonempty countable family of dense open
subsets of X s dense tn X.
-3° Ewvery nonempty open subset of X is of the second category.

4° Each subset of X which is of the first category has an empty interior.,

Theorem 2.1 and Theorem 2.2 imply the following characterization
of - residual sets in Baire spaces. '

_ .Corollary 23. Let X be a Baire space. A subset A of X is resi-
dual if and only if there is a dense Gy-set G in X such that G S 4.

By Theorem 2.2 any Baire space is of the second category. Moreover,
it can be shown that a real or complex topological linear space is a Baire’
space if and only if it is of the second category.

One of the most important results concerning Baire spaces is the
famous Baire Category Theorem [8, p. 390]. It asserts thata complete
pseudometric space, and hence also a complete metric space, is a Baire
space. Consequently any Banach space is a Baire space, But it should be
noted that there exist normed linear spaces which are Baire spaces, even
though they are not complete (see for instance [9, Exercise 6.23, p. 461]).

 proPOSITION 2.4, Let X be a topological space of the second category,
and A a residual subset of X. Then A is of the second category and hence
nonempty.

Proof. Assume that A is of the first category. Then X must be also
of the first category, since it is the union of the two sets of the first
category 4 and X 4. &

A more relevant result about the cardinal number ofj a residual subset
of the topological space X can be obtained if X is a Baire space satisfying
the separation axiom 7, and without isolated points. Before  deriving
this result, we state the following elementary lemma.

LEMMA 2.5. Let A be a finite subset of a Ty-space X. Then A is closed,
and for every x < X there exists a neighbourhood V of x such that

VN A < {s}.
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Proof. Since X is a T)-space, each subset 'of X consisting of a single
point is closed. A4 is the union of a finite family of such sets, and there-
fore it must be closed. boagli

Let x be any point of X. The set 4 \_{x} is finite, and hence closed.
Since it does not contain x, there éxists a neighbourhood V' of x such
that V' (4 \ {x}) =@. Thus we have VY 4 < {x}. & -. ‘

By applying this lemma we get the following proposition. |

PROPOSITION 2.6. Let X be a Bairve space satisfying the sepavation

axiom Ty and without isolated points, and let A be a residual subset of )

Then A is of the second category and uncountable.
Proof. By Proposition 2.4 4 is of the second category. So it remains
only to be shown that A4 is uncountable. { e :
Suppose that 4 is countable. Since it can mot be empty; there is
a sequence (a,)yen in X such thet 4 = {a,: % = N}. On the other hand,
by Theorem 2.1 there exists a nonempty countable family {G,'n & N}
of dense open subsets of X such that (2.1) holds.  Put now

) el omN Al el | for every # < N,

For each # < N 'the finite set {a;, ..., @} is closed in view of Lemma 2.5,
and therefore E, is open. We claim that all the sets E,, n « N, are dense
in X.

: -To prove this, we assume that there is a positive integer 7 such that
E, is not dense in X. Take any point x « X \_cl E,, and let U
neighbourhood of x such'that UNE, = @. Hence we have A

(2.2) UNG, < {ay, ..., a,}.

But according to Lemma 2.5, there exists a neighbourhood V of x for which
V.N{a, ..., a,} < {x}. From (2.2) we then obtain

(2.3) ; UNVvNG, € {x.

On the other hand, taking into account that ¥ « X = clG,, we conclude
that U NV NG, # 9. Thus (2.3) implies U NV NG, = {x}. Since G,
is open, this equality shows that x is an isolated point of X. Hence we
have arrived at a contradiction. So all sets E,, # = N, must be dense in
X, as claimed.

Applying now Theorem 2.2, it results that the set
' E=()E,
neN

is 'dense in X. In“consequence, E must be nonempty. Let %, denote any
point of E. Then we have

%y e )G, and x, & A.

s

But this contradicts (2.1). Thus A must be uncountable. W

he a
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3. Lower Semicontinuous Set-Valued Functions. Set-valued function
occur in diverse fields of mathematics, such as optimization theory, con-
trol theory, calculus of variations, perturbation theory for ordinary diffe-
rential equations. A survey of the principal topological properties of set-
valued functions has been given by smrrmson rR. E. [13]. Concerning
set-valued functions we recall here only the notion of lower semicontinuity
which has been introduced by BERGE c. [1, p. 114] and which will be
fundamental in the investigations of the next section. :

‘Let X and Y be topological spaces, 2¥ the set consisting of all sub-
sets of Y, F a function from X to 2%, and x, a point of X. We say that
F is lower semicontinuous at %, 1if, for every open subset Y, of Y with F(x¢) N
M Y4 O, there exists a neighbourhood V of x, such that :

Fx) VY, # @ for all x e V.

If F is lower semicontinuous at each point of X, then we say that F
is lower semicontinuous on X.

PROPOSITION 3.1. Let X and Y be fopological spaces, x, a point o
X, and & a family of functions from X to Y which are continuous at x,. Then
the function F: X — 2% defined by

(3.1) Fx)y={f(x):f =&} for all x =« X

s lower. semicontinuous at x,.

Proof. If & is empty the assertion is trivial. In order to prove the asser-
tion in case & # &, consider any open subset Y, of ¥ such that F(x,)N
N Y, # 9. Consequently there exists a function f, e § with f(x,) e Y,.
Since f, is continuous at x,, there is a neighbourhood V of %, so that f(x) <
eY, for all x € V. Hence we have F(x) NY,# 3 forall x =« V. @

Each function f from a topological space X to a topological space
Y induces a set-valued function F: X — 2¥ if we define F by particulari-
zing (3.1), more precisely by

F(x) = {f(x)} for all x  X.

If f is continuous at a point %, = X, then this function F is lower semi-
continuous at x, by Proposition 3.1. Conversely, if the induced function
F is lower semicontinuous at x, then it follows immediately that f is
continuous at x, These remarks show that in the special case when a
set-valued function is single-valued, i.e. an ordinary function, its lower
semicontinuity at a point is equivalent to the usual requirement of conti-
nuity at that point.

4. Singularities of Lower Semicontinuous Set-Valued Funetions. Let
X and Y be topological spaces, I a nonempty set, B: I X N—2¥ a func-
tion whose values are closed subsets of Y, and let F be a function from
X to 2v.
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We say that I is wuniformly B-bounded if for every ¢ « I there exist
a positive integer # and a nonempty open subset X, of X such that

F(x) € B(i, n) for all x e X,.

F is said to be B-bounded at a point x, = X if for every ¢ = I there’

exists a positive integer # such that F(x,) < B(¢, »). If F is B-bouiided

at each point of X, then we say that F is ﬁvointwise B-bounded on' X.
A point in X at which F is not B-bounded is said to be a stngularity’
of I. The set of all singularities of F is denoted by S,. Obv1ou51y F is point-

wise B-bounded on X if and only if S, is empty.

The following theorem constitutes "the main result of our paper and'
points out some properties of the set S, when the set-valued function:

F is not uniformly B-bounded.
THEOREM 4.1. Let X and Y be topologwal spaces, and F: X 2% a

lower semicontinuous function on X which is not unifornly B-bounded. Then,

Sy 1s a vesidual set. If in_addition X is of the second catégory, then S, is

of the second calegory and hemce momempty, while if X 15 a' Baire space
satisfying the separation axiom T, and without ¢solated pomts then “F is

of the second category and uncounmble
Proof. Choose ¢ « I such that

[UF@®IN Y\ B, #)] # 93

reX,

for every # « N and every nonempty. open subset X, of X. Since F ‘s

not uniformly B-bounded such an 7 exists. Put
(4.1 G,={x « X:F(x) N[Y~ B(@ n)] # 3}

for all # & N. We claim that all the sets G,, #, « N, are open and dense
in X.

Indeed, let # be any positive integer, and x, any point of G Agcor-,

ding to (4.1) we have
F(xo) N [Y N\ B(z, n)] #3.

Taking now into consideration that F is lower semicontinuous at x, and
that Y \_B(i, #) is open, it follows that there exists a neighbourhood
V of x, such that

Flx)N YN\ B, n)] #90 for all x V.

Hence we have V < G,. Therefore x, is an interior point of G,. Since
%, was arbitrary in G,, the set G, is open.

Suppose now that there is a positive integer #» for which G, is not
dense in X.Then X \_ cl G, is open and nonempty. In view of the choice
of 7 it follows that there exists at least a point ' « X \/dl G with ;

(4.2) F(x) N [Y \\ B(i, #)] #O.
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But, on the other hand, we have x « X \ G,, hence x & G,, because
XN\ G, € X\ G,
From (4.1) we then obtain

F(x) N Y\ B, )] =0,

which contradicts (4.2).
So we have shown that all the sets G,, » « N, are open and dense
in' X as claimed. Since

(1 G, = S,
neN
it follows by Thecrem 2.1 that S, is residual.
The second part of the assertion results from Proposition 2.4 and
Proposition 2.6. @
 Theorem 4.1 is a principle of condensation of the singularities of a
lower csemicontinuous set-valued function. It yields the following corollary,
which is a principle of uniform B-boundedness of a lower semicontinuous
set-valued function.
Corollary 42 Let X and Y be topological spaces, X of the second
category, and let F: X — 2% be a function which is lower semicontinuons
and pointwise B-bounded on X. Then I is uniformly B-bounded.

5. Singularities of Families of Lewer Semicontinucus Funetions Taking
Values in an Grdered Set. Let X be a topological space, Y a nonempty
totally ordered set, and & a family of functions from X to Y. The ordering
on Y is denoted by <, and its associated strict ordering by <<.

We say that & is locally bounded from above at a point x4 = X if there
exist a point ¥ «Y and a neighbourhood V of x, such that

f(x) <y for all f =« & and all x « V.

If there is no point in X at which & is locally bounded from above, then
we say that & is wowhere locally bounded from above.

The family & is said to be bounded from above at a point x4 = X if
there exists a point ¥ «Y such that

f(xe) €y for all f < &.

It & is bounded from above at each point of X, we say that & is poini-
wise bounded from above on X.
Let Sg denote the set of those points of X at which & is not bounded

from above. Under certain additional assumptions we shall show that
Sg is a residual set. One of these assumptions will require the functions

of & to be lower semicontinuous. From [6, pp. 319—320] we recall that
a function f: X —Y is said to be lower semicontinuous at the point x, = X
if for each ¥y eV, y < f(x,), there exists a neighbourhood ¥V of x, such
that y < f(x) for all x « V. We say that f is lower semicontinuous on X

-
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if it is lower semicontinuous at each point of X. If we merely say that f
is lower semicontinucus, we mean that it is lower semicontinuous on X.

The lower semicontinuity of a function f: X—Y can be considered
as continuity in the usual sense if Y is topologized in a suitable manner.
Indeed, the system consisting of Y and all intervals

>l ={reYiy <z withy eV

is the base of a topology on Y which will be denoted by &,. It is easily
shown that f: X—Y is lower semicontinuous at %, € X if and only
if f, considered as a function from the topological space X to the topolo-
gical space (Y, &), is countinuous at x,.

PROPOSITION 5.1. Let X be a lopological space, Y a nonempty totally
ovdered set endowed with the topology ., and let § be a family of lower
semicontinuous functions from X to Y. Then the set-valued function F: X —
— 2% defined by (3.1) is lower semicontinuous on X.

Proof. Apply Proposition 3.1. H

PROPOSITION 5.2. Let X be a topological space, Y a nomempty totally
ordered set endowed with the topology &, let {y,:n = N} be a nonempty
countable subset of Y which is not bounded from above, and lel & be a family
of functions from X to Y. If F: X — 2¥ {s the set-valued function defined
by (3.1) and if B: {1} X N—2% is the function defined by

B(l, n) ={y eY:y <y,} for al n « N,

then the following assertions hold .

1° F 4s uniformly B-bounded if and only if theve exists a point in X
at  which & 4s locally bounded from above.

2° F s B-bounded at a point xy = X of and only if & is bounded from
above at x,.

3° We have S, = Sg.

The proof of this proposition is straightforward and is left to the
reader.

In view of Proposition 5.1 and Proposition 5.2 the results stated
in Section 4 yield:

THEOREM 5.3. Let X be a topological space, Y a totally ordered set con-
tainming a nonempty countable subset which is not bounded from above, and
let & be a family of lower semicontinuous functions from X to Y which is no-
where locally bounded from above. Then Sg is a vesidual set. If in addition
X is of the second category,then Sg is of the second category and hence nonemp-
ty, while if X is a Baire space satisfying the separation axiom T, and without
isolated points, then Sg is of the second category and uncountable.

Corollary 54. Let X be a topological space of the second category,
Y a totally ordeved set containing a momempty countable subset which is not
bounded from above, and let § be a family of lower semicontinuous funcirons
from X to Y which is pointwise bounded from above on X. Then theve exists
a point in X at which & is locally bounded from above.

| 3 [ © £\
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When in Corollary 5.4 Y is taken to be the set of all real numbers,
we obtain the following well-known result from topology (see for instance
[6, Theorem 22 B.3, p. 384]), which is often used in functional analysis
to derive wuniform boundedness principles. j

Corollary 55. If X is a topological space of the second category,
then there exist, for each family & of veal-valued lower semicontinuous func-
tions on X which is pointwise bounded from above on X, a nonempty open
subset Xy of X and a veal number «, such that

f(x) Saforal f & and all x « X,.

We should like to emphasize that the converse of this corollary is
also true (see [6, Theorem 22 B.4, p. 385] or [5, Theorem 1]).

6. Singularities of Families of Continucus Linear Mappings. Let X
and Y be topological linear spaces over the same field K, where K deno-
tes either the field of real numbers or the field of complex numbers. Let
L(X, Y) denote the set of all continuous linear mappings from X to Y,
and let & be a subset of L(X, V).

. & is said to be equicontinuous (at 0) if for every neighbourhood V
of the origin of Y there exists a neighbourhood U of the origin of X such that

{fx):f =&} <V for all x « U,
§ is said to be bounded at the point %, = X if the set

{f(xe) : f = &}

is bounded in Y, i.e. if for every neighbourhood V of the origin of Y there
exists a positive integer # such that -

{f(xo) : f = &} = uV.

If & is bounded at each point of X, we say that & is poimtwise boun-
ded on X. Let Sg denote the set of those points of X at which & is not

bounded. |

PROPOSITION 6.1. Let X and Y be topological linear spaces over K, S
a neighbourhood base at the ovigin of Y composed of closed sets, B: & X N —
— 2¥ the fumction defined by - 3 albde

B(V, n) = nV for all (V, n) « & X N,

F a subset of L(X,Y), and F: X —2% the set-valued function defined by
(8.1). Then the following assertions hold :

1° F 4s lower semicontinuous on X.

2° I s uniformly B-bounded if and only if & is equicontinuous.

3° F 1is B-bounded at a point xy = X if and only if & is bounded at x,.

4° We have S, = Sg.

Proof. Assertion 1° follows from Proposition 3.1. The- proof of asser-
tion 3° is immediate, while assertion 4° is a consequence of 3°. So it
remains only to be shown that assertion 2° is true.
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Assume that F is uniformly B-bounded. If & is not equicontinuous
one can choose a neighbourhood V of the origin of ¥V such that in every
neighbourhood U of the origin of X there is at least omne point # with
Fu) NY N\ V)#D. Let Vy « & be such that Vy— V, = V. Since F
is uniformly B-bounded, there correspond to V, a positive integer #,
and a nonempty open subset X, of X for which

F(x) < B(V,, ny) = nV, for all x e X,.

Let x, be any point of X, and U, a neighbourhood of the origin of X
such that x, 4 U, € X,. Then we have

)= (L )

c LF(xy+ %) — an(xo) IV iV i i

%o
for all x « U,. Since b U, is a neighbourhood of the origin of X, we have

®,

arrived at a contradiction with the choice of the neighbourhood V. There-
fore & must be equicontinuous.

Conversely, it is obvious that F is uniformly B-bounded if & is equi-
continuous. This completes the proof of assertion 2°. &

In view of this proposition the results stated in Section 4 imply:

THEOREM 6.2. Let X and Y be topological linear spaces over K, and
let & be a subset of L(X,Y) which is not equicontinuous. Thew Sg is a

residual set. If in addition X is of the second category, then Sg is of the second

category and hence nonempty, while if X is of the second category and satisfies
the separation axiom T,, then Sg is of the second category and wumncountable.

Corollary 6.3. Let X be a topological linear space over K of the
second category, Y a topological linear space over K, and & a subset of
L(X, Y) which is pointwise bounded on X. Then & is equicontinuons.

It should be remarked that Theorem 6.2 includes results due to
BOURBAKI N. [2, Exercise 15, p. 37], and to coBza$ $. and MUNTEAN L
[7, Theorem 3.1, (i)]. Obviously it is a generalization of Theorem 1.2,
while Corollary 6.3 is a generalization of Theorem 1.1.
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