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sup {ll/(ø)ll :.f = s'} < +co for øl'l' x e X'

Tlten holds

sup{ll/ll :f eff\ <+oo.
plication of this theorr m to the problem of .the _pointwise
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1HEOREM 1.2. Let x be a Bøna.ck sþace, Y a normed, linear sþace,

ønd. ff a famil'y of continuous linear møþþings from X to Y uitk

sup{ll/ll :f etr}:+co.
Then tke set Ss of all x e X for ahich

sup {ll/(ø)ll:.f = e} : +@

is resid,ual.
This classical result, which generalizes Theorem 1.1, is known as

tke þrinciþle oJ cond.ensat'ion of singul,arities. Ít has been found to be very
usefïl in þroving the dense divergence of many well-known approximation
methods.

Both the above-merrtioned theorems are based on the same result,
namely Baire's Category Theorem (see for their proofs [10, pp. 11+-1901).
They irave been genãralized by numerous authors and in several directions.

rti"tfåi13""?:ñt3ät1Jitff l",nt"""ä,
s). In other paPers the familY tr of
d by a family of nonlinear functions

f unctions, r atíonally s-convex func-
iled information we refer the reader

the present Paper
of a new type, wh
d.ered. spaces and
are concerned. Th
setting of topological spaces, .mofe precisely for lower semicontinuous
functiäns defiied. ãn a tãpological s1 ing values in the power

.ãl of a topolo eld.s several known p_rin-

ãiff"" of cónde now by using individual
methods, amo

2. Residual Sets. In this section we shall briefly review some notions
frot r g"tt"tal topology and. results con-cerning resid'ual sets which we sha11

need. îhe terminology used. is that of [B].
Let x bé a topõlogical space. we assume that x as well as all topo-

logica-ispaces whic^h *11 o""1it in our paper are noxempty' For any subset

A"of. X ïe denote by int ,4 its interlor and by cl -A its.closure.
A subset of X ii said to be rare (or noah'ere d'ense) if its closure has

"" "t"ptt-interior. 
llf. A is a dense open subset of. X, then it is easily

of rare sets is rare, but the union of
always rare.
the fi,rst category (or meagre) if it can
b1e'family of rãre subsets of X. AnY

subset of X which is not of the first category is said. to be of the second,

cøtegory (or nonmeøgre). A, subset of X is called resid'uøl' if its complement
is of the first category.

A charactêrizatioir of residual se en by the f em'
TTTEoREM 2.7. A subset A of a t al sþace X ønd'

only if there exists a nonemþty cõunta ly {G,:n e þen
subsets of X such that

(?.r) At, = A.

, If each resid.ual subset of the to pological space x is d.ense in x, then
X is said to be a Baire sþace. A numbir of iseful charactêrizations of
Baire spaces are collected in the next theorem.
." ,:rrrions*r 2.2. Tke fol,l,ouing þroþerties of ø toþol'ogical sþøce X øre,

equiaalent:
1' X is a Baire sþøce.
2" The intersection of ,aery nonenr.þty countable famil,y of d.ense oþen

subsets of X i
'3" Eaery subset of X is
,1" Eøcí h' is of íhe first inteñor'
Theorem m 2.2 imPlY erization

aire sþøce. A subset A of X is resi'

'! 
"9, 

ïi.",.::::^'!:i"i,,!. 1"o, 
" 

o,, 
",.topological linear space is a Baire

space if ancl only if it is of the se

One of the most imPortant

which are Baire sPaceS, even
e [9, Exercise 6.23, P. 461])'
sþace of the second' cø-tegorY,

ttie second categorY ønd' kence

nonemþty.
niíof . Assume i¡hat A is of the first.categ-ory. Then X must be also

of the fírst category, since it is the union oJ the two sets of the first
category A and' X''. 1. E_

lA. trrot" relevant result about the

'X. 
Th,en A is closed',

of x suck that

vìA={x\.
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. Pyoof, Since X is- a Tr-space, eâc.h subset of X consisting of a single
point is closed. ,,4 is, the union of a finite family of such setl arld theie'
fore it must be closed..

I.9t x be any point of X. The set ,4 \ {ø} is finite, and hence closed.
since it does not contain x, there exists'â ieighbourhood. z of ø suchthatV n(4\ {*},).:Ø. Thuswe:naieVaAe{*}. 1 . ,

By applying this lemma we get the following-proposition.
pRoposrTroi.r 2.6. Let x be ø øtisfying the seþøration

øxiom T, and uítho þoints, ø TbsiiuøI søbset oÍ X.
Tken A is of the se ry ønd.

Proof. By Prop ,4 is o category. So it remains
only to be shown that A is uncountable. : .

Suppose \hat /. is countable. Since it can not be emptSr; there is
a seqllence (ar),-w,in X such that A: {a,^:n eN}. On the-oiher hand,
by Theorem 2.l there e-xpjs a_nonemp,_t1}. countablê family {G,ln e Nj
of dense open subsets of X such that (2.1) holds, put now

E, : Go\ {or, . . ., øn} for every n e N,
For each n e N the finite set {ør, . . ., ø,} is closed in view of f.emma 2.5,
andtherefore.E" is open. We clàim that ali the sets Eo, m e N; are dense
ín X.

ume that there is a positive integer m sucln that8.. ale ag¡' p:,ir:t x =ï'\c1.8., ãrid. let U he anei that U)E^:Ø. Ifence we have i i

(2.2) U)G^e{or,...,ø^}.
But according to -I,emqa 2.5, there exists a neighbourhood V of. x for which
V f){or, 1..,a^} ç {x}.From (2.2) we theã obtain
(2.3) UaVaG.c{x\.
On the other hand, taking int
tjJat. U ÀV )G. * Ø. Thas
is. open, this equalitlz shows t
have arriveð. at a contradictio
X, as claimed.

Applying now Theorem 2.2, it results that the set

E:OE,
freN

is dense in X. fn'consequence, E must be nonempty. Let u o denote any
point of E. Then we harle

3. Lower Semieontinuous Set-Valued Funetions. Set-valued function
occur in diverse fields of mathematics, such as optimization theory, con-
trol theory, calculus of variations, perturbation theory for ordinary diffe-
rential equations. A survey of the principal topological properties of set-
value<l functions has been given by sltrrrrsoN R. E. [13]. Concerning
set-valued functions we recall here only the notion of lower semicontinuity
which has been introduced by nnncn c. [1, p. 114] and which will be
fundamental in the investigations of the next section.

I,et X and, Y be topological spaces, 2Y the set consisting of all sub-
sets of Y, F a function from X to 2', and, xo a point oL X. We say that
F is loaer setnícontinuous at xoif,lor every open subset Yo of Y with F(øo) O
(\Yo,*Ø, there exists a neighbourhood V of xo such that

: ' F(*)ÀYo*Ø forall xeV'
If F:is lower semicontinuous at each point of X, then $/e say that F
is l,ouer semicontinuoas on X.

pRoposrTroN 3.1. Let X ønd, Y be toþologicøl' sþaces' xo ø þoint o
X, and. ú afamily of functionsfrom X toY ukick ere continuous at xo. Then
the function F : X -,2" d.efined. by

(3.1) F(*) : {Í(*),f = s} for øtt x e X

s louer. semicontinuous øt xr.
Proof .If e is empty the assertion is trivial. In order to prove the asser-

tion in case & * Ø, consider any open subset Yo of Y such llrat F(xo))
ìY¡,t Ø. Consequently there exists a function .fo =8 with fo@) eY..
Since/o is continuorts at xs, there is a neighbourhood V of xoso ihat Íoþ) =eYo for all x e Z. Hence we have F(x) )Yo*Ø f.or all x eV. û

Each function f from a topological space X to a topological space
Y induces a set-valued function F : X -* 2Y if wc define F by particulari-
zing (3.1), more precisely by

F(x) : {J(x)\ for a77 x e X.

If /is continuous at a point x¡ e X, then this function .F is lower semi-
continuous at xo by Proposition 3.1. Conversely, if the induced function
F is lower semicontinuous at xo, t};'en it follows immediately that f is
continuous at xo. These remarks show that in the special case when a
set-valued. function is single-valued, i.e. an ordinary function, its lower
semicontinuity at a point ii equivalent to the usual requiremênt of conti-
nuity at that point.

4. Singularities of Lower Semicontinuous Set-Valued Funetions. I,et
X and, Y be to'pological spaces, 1a nonempty set, B: I x N-2" a func-
tion whose values are closed subsets of Y, and. let F be a function from
X to 2u.

tco and xo e A,

But this contradicts (2.1). Thus / must be uncountable. I
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We say tlnat F is uniforml,y B-bounded. if for every I e 1 there exist
a positive integer n and a nonempty oper subset X o of. X srrch that

F(x) c. B(i, n) for all x e Xv
-F is saíd to be oínt xo e X if. for every i e I there'

exists a positive int F(x) = B(i, n).If .F. is B-trouirded
at each point of X, Þ- ís þointuise B-bounded on X.

A point in X aL -bounded is said to be a singul,ar,ity"
of F. l'he set of all singularities of F is denoted by S.. Obviously F is point-
wise B-bounded on X if and only if S" is empty. ,:

The following theorem constitutes the rnain result of our paper and
points out some properties of the set S" when the set-valued function,
F is not uniformly B-bounded.

THEoREM 4.1. Let X øùd, Y be toþol,ogicø|. sþeces, and F: X*ZY ø
Loaer s function on X not Iy Tken.
S. is If ín ød.d,ition the cat :S" is
of tke ory and, heøce , u X sþacè'
sa-tisfying tlte seþøration øxiont, Tr gnd. aitkout isol.ated þoinls, the:n SF is
of tke second, cøtegory and, uncountable. : i.

Proof. Choose i e I such that ;

p.:(-)t n tv\ B(i, n)l + Ø

for every n e N and every nonempty open subset Xo of X. Since F is'
not uniformly B-bound.ed such an ¿ exists. Put

(4.1) G,,: {x e X: F(x) O tV'... B(i, n)) + ø¡ '.

for all n = N. We claim that all the sets Ç,, n e N, are open and dense
in X.

Indeed, 7et n be any positive integer, and xo any point o1 G* Accor-,
cling to (4.1) we have

r.(øJ ñ tY \ B(i, n)l + ø.

Taking now into consideration that F is lower semicontinuous at xo at!
that Í \ B(?, ø) is open, it follows that there exists a neighbourhood
V of øo'such that

F(x)l [Y\B(i, n)l +Ø f.or all x eV.

IIence we have V c G,,.Therefore xo ís an inter-ior point of G"' Siuce
xo was arbiLrary in G, the set G,, is open." 

Suppose now that there is a positive integer ø for lvhich G, is'not
dense iir-X. Then X \ cl G, is open and nonemþty. fn view of the choice
of i ít follows that there exists at least a point fr e X \. cl G" with

(4.2) F(*) I tY \ B(i, n)l + ø. ..
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But, on the other harid, we lnave x e X \G", hence fr ê Gn, because

X \cl G, - X \G,,.
Fror.i (4.1) we then obtain

F(*) À [Y\ B(i, n)] :Ø,
which contradicts (4.2).

So wc have shown thal all the sets G;, n = N, are open and dense
in X as claimed. Since

,0""'= t"'
it follows by Thecrem 2.T tlnat So is residual.

The seconcL part of the assertion results from Proposition 2.4 and
Propositiol 2.6. H

Theorem 4.1 í:; a plinciplc of condensation of the singularities of a
lower semicontinuous set-vaiueci function. It yields the following corollary,
which is a principle of unjform B-boundedness of a lower semicontinuous
set-valued function.

Corollary 4.2. LetX andY betoþologicølsþøces,X of tke seconil
cøtegory, ønd let F: X-,2" be o furoct'ion ah'ick 'is loaer semicontinuous
and. þoiøtwi.se B-bound,ed. on X. Then F is uniformly B-bounded.

5. Singularities of FarnÍlies of Lolvcr Semioo¡rtinuous Funetions Taking
trIalues in an Or,¡lered Set. I'ei. X be a topological space, Y a nonempty
tota.1ly ordercd set, and tr a lanily of functions from X to Y. The ordering
on Y is denoted by (, and its associated strict ordering by (.

We say that tr is locøl,ly bounderJ fron+ øboue øt a þoint xs e X if there
exist a point ! =Y and a neighborrrhood. V of xo such that

f(*)<yf.orall .f =tr andall xeV.
If there is no point in X at which & is locally bounded from above, then
we say that ff is nouhere local'ly bounded, froru aboue.

the family & is said to be bou,nded, from øboae at a þoint xo e X if
there exists a point y =Y such that

Í(xo) < y for all f <= P,¡.

It & is bounrled from above at each point of X, we say that ff is þoint-
uise bounded, from aboae on X.

I,et Su denote the set of those points of. X at which &; is not bounded
from above. Under certain additional assumptions we shal1 show that
So is a residual set. One of these assumptions will require the functions
o1 t to be lower semicontinuous. From 16, pp. 319-320] we recall that
a function f : X-,Y is said to be Louer sew'ticontinuous at tlte þoint x¡ e X
if for each ! eY, y <-f(xo), there exists a neighbourhood. V of xo sucln
that y < f @) for all x e V. We say thar f is louer semicontinuows 'on X

WOLFGANG W. BRECKNER 6 7
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if it is lower sernicontinuous at each point of X. If we merely say that f
is lower semicontinuous, we mean that it is lor,ver semicontinuous on X.

'Ihe lower-. setricontirruity of a function f : X -" Y can be considered
as continuit), in the usual sense if Y is topologized in a suitable manner.
Indeed, the system consisting of Y and all intervals

ly, -,1== þ =y : y <. z) with y ey
is the base of a topoiogy on Y which rvill be denoted by t". It is easily
shown that J: ){-" Y is lower semicontinuous at x¡ = X if and only
if /, considered as a f¡-rnction from the topological space X to the topolo-
gical space (Y, {"), is contintLous at øn.

pRoposrrrorit 5.1. Let X be a toþctlogicøl sþace, Y a nonemþty totølly
ord.ered, set end,oaecl zøith tloe. toþoLogy {r, ønd, Iet ff be a famil,y of louer
senùcotot4notows funct'ions frottr, X toY. Then the set-uøl,ued. function F: X-"
-,2v d.efined, by (3.1) is Louer setnicototinuo'u,s on X.

Proof. Apply Proposition 3.1. ffi
pRoposrlroN 5.2. Let X be ø toþological sþace, Y ø nonemþty totølly

ordered set encloued uítlt, tke toþo|,ogy ûr., let {y,,: n = N) be a nonemþty
countable subset of Y zultich, is not bouttded from, aboue, q.n¿ lel' ff be a fømily
of fwnct'ions from X to Y. If F : X -> 2 'is the set-ualued. function d,efined,
by (31) and. i,f B : {1} x N* 2v ís tke functiott, defined, by

B(1, n): {y =Y:y ( y,} .for øll, n e N,

then the fol,l,ouing a.sseú'ions ltold, :
1 " F is uniformly B-bounded if ønd. only if there exists ø þoint in X

at wlticlt, & i.s locøll,y boutøded. from øboue.
2" F is B-bound.ed. øt ø þoint x¡ = X i.f and only if ü is bounded from

øboua øt xo.
3" We høue Su, - Ss,.

The proof of this proposition is sbraightforward and is left to the
reader.

In view of Proposition 5.1 and. Proposition 5.2 the results stated
in Section 4 yield:

TlrEoREIvr 5.3. Let X be ø toþological' sþøce, Y ø totølly ovd'ered, set con-
tøining a nonernþty countøbl,e subset ak'iclt, is not boutøded' fronr. øboae, ønd,

let ff be a fømi,ly of lower sùnicontinuous functions from X to Y uhich is no-
where locølly bootncled, ftom, øboue. Then Sy is a. resid,ual set. If in ød'd'ition

X is of tløe second cøtegory,tken Sr is of the second cøtegory and, hencenonernþ-

ty, uhile i.f X is ø Bøíre sþace satísfyí'ng the seþørat'ion øxiom T, ønd, without
isolated, þo'ints, th'en Su 'is of tke second cøtegory ønd' uncountabl'e.

Coroll.ary
Y ø totølly orclered.
bounded front, aboae,

from X toY whi,ch
ct þoint in X qt wkick t is l,ocal,l,y bound.ed. from aboae.

When in Corollary 5.4 Y is taken to be the set of all real núinbers,
we obtain the following well-known result from topology (see for instance
[6, Theorern 22 8,3, p. 384]), which is often used in functional analysis
to derive uniform boundedness principles.

Corollary 5.5. IÍ X is ø toþologicøl sþace of the second. category,
tken there exist, for each family ff of real-aalued lower semicontinuous func-
tions on X ah,ich is þointuise bounded. frorn øboue on X, a,nonemþty oþen
subset Xo oÍ X ønd, ø real nu,mber a., suclo tltat

f(*) < ø. for all, f = û and. all x e Xo.

We should like to emphasize that the converse of this corollary is
also true (see [6, Theorem 22 8.4, p. 385] or [5, 'Iheorem 1]).

6. Singularities of Families of lonúinuous tr inear Nflappings. I.et X
and Y be topological linear spaces over the same field 1{, where K deno-
tes either the field of real numbers or the field of complex numbers. I,et
L(X,Y) denote the set of all continuous linear mappings fuom X toY,
and 1et &. be a subset of L(X, Y).

& is said to be equicontinuous (at 0) if for every neighbourhood. Z
of the origin of Y there exists a neighbourhood U of the origin of X such that

{Í(*),Í etr} c.V ¡or all x eU.
ff is said to be bound.ed. qt tke þoint xo e X if the set

{fØo), f = s}
is bound.ed in Y, i,e. if for every neighbourhood. V of the origin of Y there
exists a positive integer n sucln that

{f(*r),f =s} cnV.
If S is bounded at each point of X, we say that ff is þointuise boun,
d.ecl on X. I,et So denote tfe set of those points of X atïtict. & is not
bounded.

pRoposrTroN 6.1. Let X ønd,Y be toþol,ogical lineør sþaees oaer K, &
a neighbourhood bøse at the origin of Y conoþosed, of cl,osed, sets, B: & X N-+ -
-,2t tlte function d.efined, by

B(V' n) : nV for al'l' (V, n) e & X -ðy',

ff ø subset oÍ LVt Y), ønd, F: Xn 2" the set-ual,ued. function d,efined, by
(3.1). Then tke folloaing asseytions hold.:

l' F ls lower sem'icont'inuous on X.

B CONDENSATION OF SINGULARITIES

B-bound.ed. íf and. onl,y if I is eqwi
i,f and, only if &

109

continuous.
is bound.ed at'xo.

2"F
3"F
40w
Proof ,

tion 3' is

at ø þoint x¡e X1,5

e kaae S, ss.

Assertion 1' follows from Proposition 3.1. The'proof of asser-
immediate, while assertion 4" is a consequence of 3o. So it

remains only to be shown that assertion 2" is true.
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t5l

t6l
t7)

t8l
tel

tl0l

[11]

lt2l
t13l

CONDENSÀTION OF SINGULARITIES 11r

Assume that F is uniformly B-bounded. ff I is not equicontinuous
one can choose a neighbourhood Z of the origin of Y such that in every
neighbourhood U of the origin of X there is at least one point u with
F(u) À(y\Z) *Ø. I.et Vs eß be such tlnat Vo-Voe Z. Since F
is uniformly B-bounded, there correspond to V o a posilive integer øo
and. a nonempty open subset Xo of X for which

F(x) c B(Vo, no): noVo for a71 x e Xo'

Let xo be any point of Xo, and Uo a neighbourhood. of the origin of X
such that xol Uo 9 Xo.Then we have

, (:".) :, (:,@o + ù - !"*,)ç

- !FØr+ x) _ 1¡'(rJ e vo- vo - v
tøo no

for all x e fJ ¡. Since 1 Uo is a neighbourhood of the origin of X, we have

arrived. at a contra¿i"íi'oo with the choice of the neighbourh ood. V. There-
fore & must be equicontinuous.

Conversely, it is obvious that F is uniformly B-bounded if &- is equi-
continuous. This completes the proof of assertion 2o. g

In view of this proposition the results stated in Section 4 imply:
THEoREM 6.2. Lel X ønd' Y be toþol,ogical lineør sþctces ouer K, a.nd'

Iet û be ø swbset of L(X, Y) uhich is not equicontinuous. Then Ss is a

resid,ual set. If in ød,d,ition X i.s of tke second. category, tken So i's of tke second.

category a.nd, hence nonernþty, while if X is of the second, category ønd' satisfies
tke leþaration axiom Tr,- lken So is of the second, category and uncountøble'

Corollary 6.3. Let X be a toþological' Iinear sþøce oaer K of the-

second, category, Y a toþol,ogícal, I,ineør spøce oaer K, ønd' ff a subset of
L(X, Y) wkich is þointwise bound,ed, on X. Then ü is equicontinuous.- ft should bê remarked. that Theorem 6.2 includ.es results due to
BouRBAKT N. [2, Exercise 15, p. 371, anð. to conzaç ç. ancl MUNTEAN r.

[7, Theorem 3.1, (Ð]. Obviously it is a generalization of Theorem 1.2,
while Corollary 6.3 is a generalization of Theorem 1.1.

r{ o 1 m e s R. 8., Geometric Functional Anal,ysis and, its Aþþticalions. springer-verlag,
New Yotk 1975.
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