MATHEMATICA — REVUE D’ANALYSE NUMERIQUE
ET DE THEORIE DE IL’APPROXIMATION

L’ANALYSE NUMERIQUE ET LA THEORIE DE L’APPROXIMATION
Tome 12, N° 2, 1883, pp. 113—123

GENERAI, SOLUTION OF THE ARCTANGENT
FUNCTIONAI EQUATION

by
BORISLAV CRSTICI, IOAN MUNTEAN and NECULAE VORNICESCU
(Timigoara) ! (Cluj-Napoca)
Abstraet

We shall show that every solution f: R— R of the functional equa-
tion

f(x) + f(») =f(1x+:y) for all x,y< R with xy <1,
which is bounded or measurable on an interval of positive length, possesses
a finite derivative at the point x# = 0 and has the form f(x) = f(0) +
. arctan x, x « R. Nonmeasurable solutions of this equatiod are exhi-
bited. The general solutions for functional equations considered by I. Sta-
mate and N. Ghircoiagiu and by H. Kicsewetter are derived from our
results under weaker hypotheses on unknown functions.

1. Introduction

There are many méthods to define what is commonly called arctangent
function. The methods of Euclidean geometry first introduce the direct
trigonometric functions sine, cosine and tangent by quotients of lengths
of some adequate straight line segments, and then the arctangent function

f, by inversion of the restriction to the interval |— =}, 4 2| of the tan-
t 2 2

gent function. The method of definite integrals generates the values of
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the arctangent f, by

x

folx) = g—d‘_ for x = R
1+
0
(see [6], p. 389, and [4]). The method of recurrent sequemnces, proposed
by A. Hurwitz [7] and subsequently developed in [9], pp. 33—36, and
[10], pp. 20—27, introduces the arctangent function f; by

Fo(x) = lim 2"-z,(x) for x = R,

where
ll(x)

2o(x) = x and 2, ey v oy Y for] #1421 0s

o{#) T NT @R
Other methods to define the arctangent function are reviewed in [10],
pp. 2—5.

The number =, defined in the Euclidean geometry as the quotient
m, of the length of any circle of positive radius by its diameter, appears
into later methods through the formulae 7, = 4-/5(1) and 7y, = 2-1im fy(x),
X—+00

respectively.
It is to be expected, of course, that the enumerated methods are no-

thing else but different proceedings to introduce one and the same func-
tion, that is the following equlities

(1.1) fulx) = fa(x) = fo(x) for all x = R,

are true, which then imply m; = m, = w5 Each of the functions f;, f; and
/5 satisfies the same conditional functional equation

'(1..2) f(x) + f() :f(fil) for all %,y « R with xy <1
—
(see [6], pp. 390—391, for f,, and [7] for fs), the strong condition of diffe-
rentiability on R and the equalities

(1.3) f1(0) = £2(0) = f3(0) =1.
We intend to derive (1.1) from (1.2) and (1.3) and some weaker regularity
conditions on the functions f;, fy and f;

Denote by arctan one of the functions fi, fa and fy and by = the
corresponding number. The functional equation in (1.2) has been considcred
by W. Alt [2] even in a more general setting, but without taking into
account of its conditional character. When the condition xy < 1 in (1.2)
is replaced by xy > 1, the function f(x) = arctan x, ¥ = R, satisfies ano-
ther functional equation:

f) + f(») ——‘f(f—_‘—l)—l—n . sign x for all x, ye R with xy > 1;

1 —xy
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further, when the condition xy <1 in (1.2) is replaced by xy # 1,
H. Kiesewetter [8] showed that the null function f(x).=10, x e R 'is
the single continuous solution of the functional equation

(1.4) (%) + fy) = f(li_j?yy) for all %, y < R with &y # L.

The proceeding in [1], pp. 59—62, would allow the redﬁction of the
functional equation (1.2) to a Cauchy functional equation for the function

* ¢+ f(tan?) on a restricted domain. Avoiding the difficulties concerning

the formulation and integration of the last equation,:we :shall:directly
prove-in this paper that every solution f: R— R of the functional equa-
tion (1.2), which satisfies one of the following regularity conditions :

1. f is differentiable at a point in R,

2. f is continuous at a point in R,

3. f is bounded on an interval of positive length,

4. f is monotone on an interval of positive length, »

5. f is measurable on an interval of positive length, .
possesses a finite derivative at the point x = 0 and has the form

(1.5) flx) = f(0)-arctan x, = x <R

As an application of these results, the general solutions for. functional
equations considered by I. Stamate and N. Ghircoiagiu ' [12] and by
H. Kiesewetter [8] are derived under general hypotheses of boundedness
or measurability of unknown functions.

2. Differentiable solutions and continuous solutions

, et us first remark that for a function f: R— R satisfying (1.2) we
ave

2.1) £0) =0

(put ¥ =y =0 into (1.2)), and .

(2.2) fl—x) = —f(x) for x <R - A= -
(put y = —x into (1.2) and use (2.1)) ; from (1.2) with y = x we also obtain
(2.3) 2f(x) =f( 1 i”x) for |x| < 1.

Under the differentiability condition of f on R, the following theorem
is essentially due to G. H. Hardy [6], p. 360: .

ragorEM 2.1. If f:R—R is a differentiable function at the point
x = 0 and satisfies the functional equation (1.2), then (1.5) holds.

Proof. We shall show that f is differentiable at each point x =R
For all numbers # = R having its absolute value sufficiently small we obtain
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—x(x + h) <1, whence by (2.2), {(1.2), (2.1) and the differentiability
of f at 0 we derive

mf M —=J) o 1 ( h __) — 1 gyimfW=fO _ 1
h=+0 h K—=0 h 14+ %%+ h) 14 2% p=o k 14 a2

Thus, fis differentiable at each point x « R and

0y — S0
i = L9
hence there is a ¢ e R such that f(x) = f’(0)-arctan x + ¢, x « R. The
equalities (2.1) and arctan 0 = 0 yield f(x) = f'(0)-arctan z, x « R.

In the case of continuous solutions we have:

THEOREM 2.2. If f: R— R is a continnous Junction at the point x = 0
and satisfies the functional equation (1.2), then f is differentiable at this
point and (1.5) holds.

Proof. We shall first transfer the continuity of f from x = 0 to any
point x « R. For all 2 « R suff1c1ent1y close to x we have —xh <1
and by (1.2) we obtain

f@) + f(= 1) =7

14 xh
Using (2.2), (2.1) and the continuity of f at 0 we get
LTE)F=Thler)usalimilf (k) >=a fz).

To prove the differentiability of f at x = 0, choose a positive number
a such that a < 1, integrate (1.2) with respect to » in [0, 1] and obtain

(2.4) f(x)_b+sf(x+y)dy, % e [—a, a]
where b is a constant. After the change of variable
r=212 . yalf01],
1—xy
we have
ze[x,l+x]c[—a,1+a] and 1+ %z > >0
1 —x 1—a . 1+4a

and (2.4) becomes

[

®

f(%)=b+(1—l-%2

dz, x = [—a, al.
1+xz

The theorem on differentiation of integrals with rekpect to a parameter
ensures the differentiation of f at x = 0 and Theorem 2.1 applies. \
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3. Bounded solutions and monotone solutions

THEOREM 3.1. If f: R—R is a bounded function on an interval of
positive length and satisfies the fumctional equation (1.2), then f is differen-
tiable at x = 0 and (1.5) holds.

Proof. Let %, « R, a > 0 and suppose that there is an L > 0 such

"that |f(y)| < Lforally e [x, — 4, %, + a]. Choose b > 0 with b|x,] < 1

and b(1 + #2) < a(l —b|x,)). I x & [—0b, b], then xx, < b|xy| < 1
and for
y = Ix+ %o
— %%,
we have
M <5b. iﬁ_ <a

— %l = lx| -
ly 0| l ’ 1 — xx, iy l—b[xol\

and so (1.2) yields
y ¥+ x,
@A) 1ft) 1= | —stw) +f (722 | <

where M = |f(xo)] + L.
Now, we assert that f is continuous at x' = 0. Supposing the contrary,
there exists an & > 0 such that for each integer # > 1 we can indicate a

number x,,e[—l, »1—] with |f(x,)| = e It follows from {(3.1) that
» »n

If(xo) | + If(¥)] < M, xe [—b, b],

there is a subsequence (denoted in the same manner) of the séquence (%,)u»1
and there is a number ¢ such that |¢| > ¢ and

3.2) lim %, =0 and lim f(x,) = c.

#—+00 H—00

By induction we associate with each integer 2 > 0 a sequence (x%)y54,
having the properties
(3.3) lim #* = 0 and lim f(x¥) = 2*.c.

H—-0 #—+00
Namely, for £ = 0 we put #, = 1 and %% = x, for all # > 1, and we see

that the equalities (3.3) revert to (3.2). Admitting that the sequence
(%F)u>s, With the properties (3.3) is constructed, we first determine an

index #441 so large as |x*| < 1 for all # > 74, and then we put

E+1 2

Xy = ——— for = My,
1 — (%)
Then lim x#*+! = 0 and f(#}+!) = 2f(«x%) (see {2.3)), hence

#=—+-00

limf(xﬁﬂ) =0 .9 . g o= k1, ¢
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Now choose an integer 2 > 0 such that 2. ¢ > M + 1. It follows
from (3.3) that there exists an # > #, so large that |#F] < band [f(«F)| >
> 2]c] — 1 > 2% — 1 whence, in virtue of (3.1), we arrive at the con-

tradiction : M >+ |f(x})| > 2*¢ — 1 > M. Consequently, f must be conti-

nuous. at ¥ =0 and Theorem 2.2 applies. . ) :
COROLLARY 32, If f: R— R s a monotone: function on an interval
of positive length ‘and satisfies the functional equation (1.2), then f is diffe-
rentiable at'x'= 0 and (1.5) holds. b 2e
COROLLARY 3.3. If f: R — R satisfies the functional equation (1.2)
and there is an interval I of positive length, 0 < I, such that xf(x) = 0

Jor all x = I (or xf(x) <O for all x < I), then f is differentiable at x — 0
and (1.5) holds. R

Proof. Using (2.2) we may admit that I has the form I = [0, 4],
where @ > 0. We shall prove that if xf(x) > O for all x = I, then fis increa-

7 —

singon I. Let %, 2 = I with ¥ < 2. Theny = 3
and f(y) > 0, hence

+ x.

1) = F[E22) = 19 + 1) > o).

1

" Similarly, if xf(x) < 0 for all ¥ < I, then fis decreasing on I. In both

cases Corollary 3.2 applies.- ‘
!t coronrary 34. If f: R~ R is a differentiable (or continmous ) func-
tion ab, a_point in R and satisfies the functional equation (1.2), then f is

diffeventiable at x =0 and (1.5) holds.

4, WMeasurable solutions and nonmeasurable sclutions

" Let b, q, % = R with ?#9¢ |p| < qgandglx] <1 The homographic
function # = h,: [p, q]— le_—l—;i_{’ Fah , defined by

—xp 11— g
(4.1) .- Wy) =222, 5 = (5, 4),

is strictly increasing and continuous together with its inverse. Consequently,
h maps open (closed) sets into open (closed, respectively) sets and the image
by % of an open interval la, [ C [$, ¢), @ < b, is the open intetval -

(4.2) h(la, b[) = Jo, 'd[, where ¢ = *F % andd = * b
1l — ax 1—bx

Moreover,

(4.3 Ll . mpieg ke 0. P geattlshe® vy

(&2 iy ) a = )

> 00387 w<l
z
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rEMMA 4.1, The image by h of anwy measurable set E C 1p, q[ is measu-
vable and satisfies

- mes E.

(4.4) mes A(E) = S
Proof. We use the following well-known characterization of measu-
rable sets in R (cf. [11], pp. 73—76): a set M in R is measurable if and
only if for each € > O there exist an open set G C Rand a closed set F.C R
such that F C M C G and mes (G \ F) < e. :
Let € > 0. Since E is measurable, there exist an open set G C Jp, ¢l
and a closed set F (R such that F (C E C G and

7 Tt e s (IS¢ 22
(4.5) mes (G N\ F) < 6 e

The open set G  F can be represented as union of a countable family of
mutually disjoint open intervals: GN_F = (J {I,: k > 1} (cf. [11], p. 54),
and so the measure of G _F is given by

(4.6) mes (G “\ F) =} mes1,

k=1 i
The images G, = #(G) and F, = h(F) are open and closed, r'espectively,
and verify F; (C ME) C G,. From (4.3), (4.6) and (4.5) we derive
(4.7) mes (G, F,) < mes 2(G ~ F) < mes (U {#(l,): £ > 1}) <

1 4 x° el 14 »2

< Emes ML) < g g mes L=

- mes (G “_F) < ;a, |

i.e. the measurability of A(E) is proved.

The inequality (4.4) can be deduced from a known result (cf. [11],
pp. 228—229). However, for the sake of completeness we present here
a direct proof of (4.4). The open set G, can also be written as union of a
countable family of mutually disjoint open intervals: G, = |J {J.: % > 1},
where J, = Jc,, 4,[. Denote by a, = a and b, = b the numbers obtained
from the last two equalities in (4.2) for ¢ = ¢, and d = d,. Clearly, J, =
= h(L,), where L, = Ja,, b.[. Moreover,
(4.8) GC ULk =1}
Indeed, supposing the contrary, there exists an y e Gwithy & U {L,:k >
> 1}. For the number z = A(y) = M(G) = G, it must exist an integer B=1
such that z e J, == &(L,), hence there is an »' L, with z = h(y"). Now,
the injectivity of % leads to the contradiction y =y < L..

Using (4.3) and (4.8) we obtain
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w_h%(clh together with G; = A(E) U (G, \_#(E)) C #(E) U (G, \F) and (4.7)
yie
mes A(E) > mes G; — mes (G, \ F,) > 2R E
(1 +qlxl?
Since ¢ is an arbitrary positive number, (4.4) is proved.

THEOREM 42, If f: R— R is a measurable function on an interval
of positive length and satisfies the functional equation (1.2), then f is diffe-
rentiable at x = 0 and (1.5) holds.

Proof. Our argument is based on the Banach’s method [3] for the
integration of Cauchy functional equation.

Suppose that f is measurable on the interval [x, — a, %, + @], where
%, = 0 and a > 0. In virtue of Theorem 2.2 our theorem will be proved
whenever we show that f is continuous at the point x = 0. By the well-
known Lusin’s approximation theorem (cf. [11], pp. 118—119) there
is a continuous function g: [x, — @, %, + a]— R such that

(4.9) mes H < %, where H = {x e lx, — a, %, -+ a[:f(x) # g(%)}.

Let & be a positive number. Since g is uniformly continuous, there is a
3 > 0 with

(4.10) |glu) —g)| < s for u, v e [y — a, %o+ a], |[# —v]| < 3.

Put p:xo——;,q=x0+% and

(4.11) 7 = min { S ol L }
2% + @) 2[1+q(x +a)] 2(1+4¢)

Let x e R with [x]| <9%. Clearly, [p| <gq, p#¢ and g|x| < 1. Accor-
ding to (4.11) the function % = A, defined in (4.1) fulfils A(p) > %, — a
and A(g) < %, + a, hence

(4.12) (1, q) C 1% — @, %o + al.
By (4.9), the measurable set E = ]p, [ \_H satisfies mesE > a —

In virtue of Lemma 4.1 we have

a 3
—==a.
4 4

(4.13) mes WE) > 2= F megi B

1 a
> —mes E > —
1+ qlx|)? (1 + gn)? 3 7 4

since g7 < \/5 — 1.
The inequalities in (4.9) and (4.13) show that the set A(E)\ H is
nonvoid, hence by {4.12) there is a number

z  WE) C M1p, q1) C 1% — @ %o+ al
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9

with z & H, and so there exists an y = E such that li—'——y— = hiy) = 2.

Therefore, ¥ & H and liﬂ & H. The last relations can be written in
— xy
the form

) I PR ST %+ i
@19 f)=gb) end fIFE)=g(72) =gl

By (4.11) we obtain
o 14 2 1+ ¢® : B
lz —y|=]x] L <n———<2(1+¢) <3
1— xy 1 —gn

hence from (1.2), (4.14) and (4.10) we derive

) — O = 1) =|f[772 = 10| = el — el <o

and the continuity of f at x = 0 is proved.
REMARK 4.3. G. Hamel [5] constructed a discontinuous solution

g:R—R of the Cauchy functional equation
(4.15) gl + v) = g(u) + g(v) for all », v « R.

We shall prove that the function f: R— R defined by f(x) = glarctan x)
is an unbounded and nonmeasurable solution of (1.2) on any interval of

positive length. » A
The function f satisfies (1.2) since, if , ¥y « Rand 2y <1, from (4.15)

we derive

Y
xy

(4.16) f(x) + f(y) = glarctan x) + g(arctan y) =
= g(arctan % - arctan y) =g (arctan %+ J') _ f_x_—;—_;l) :
1 — xy 1 —wy

Now, f is neither bounded nor measurable on any interval of positive length.
Indeed, supposing the contrary, (4.16) together with Theorems 3.1 and
4.2 would imply the continuity of f at » = 0. But g{y) = fltany), v =

e ]— I I, so g would be continuous at y = 0 and the obtained con-

) b

2
tradiction achieves the proof of our assertion. g

5. Some applications

Under the differentiability condition of f on R the following corollary
has been proved by I. Stamate and N. Ghircoiagiu [12]:

COROLLARY 5.1. Let f, g, h: R— R be given functions which satisfy
the conditional functional equation

(5.1 fa) + gly) = h(l—”j'—;;) for dll %, y =R with zy < 1.
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If f i bounded (or measurable) on an interval of positive length, then the
Sunctions, f, g and h are differentiable at x = 0 and they are given by the

Jormulae f(x) = £'(0) arctan x 4 F(0), g(x) = f'(O)arctan x + g(0) and h(x)=

= /'(0) arctan x + f(0) + g(0) for all % = R
Proof. Using (5.1) with x = 0 and then with y =0, we find

(5.2) h(z) = f(0) + g(z) and A() = f(z) 4 g(0) for all z < R,
whence
(5.3) g(z) = f(z) + g(0) — £(0) for all z < R.

Define the function ¢:R— R by e(x) = f(x) — f(0) and remark that,
according to (5.2) and (5.3), the equation (5.1) takes the form AL

¥ 4y
1 — oy

Now, from Theorems 3.1 and 4.2 it follows that ¢ is differentiable at x = 0
and it is given by ¢(x) = ¢/(0).arctan x, x < R, so the conclusion of
Corollary 5.1 is immediate. f :

When the function f is continuous on R the following result has been
established by H. Kiesewetter [8]:

COROLIARY 5.2. If f:R—Ris a bounded (or measurable) function
on an interval of positive length and satisfies the conditional Sfunctional equa-
tion (1.4), then f(x) = 0 for all x = R.

Proof. Since f satisfies the functional equation (1.2) too, from Theo-
rems 3.1 and 4.2 it follows that f is differentiable at x = 0 and it is expre-
ssed by (1.5). From (1.4) and (2.2) we get 2f(\/2 — 1) = f(1), 2/(//2 +
+ 1) =f(—1) = —f(1) and «/

fO) + W2 = 1) =fW2 + 1) = = L 1),

whence f(1) = 0. Using (1.5) with x = 0, we obtain O = f(1) = f'(0) -
- arctan 1 =f’(0)-§ , hence f(x) = 0 for all ¥ < R.

o(%) + o(y) = ¢

) for all x,y « R with xy < 1.
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