MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 12, No 2, 1983, pp. 125-129

ON THE CONVERGENCE OF THE MONOTONE SEQUENCES OF OPERATOR-VALUED FUNCTIONS

A. TIDJANE DIALLO (Cluj-Napoca)

1. In this paper, we shall extend some results of [4] to the monotone sequences of operator-valued functions.

regularity with the sometime (1) in the districts of T in the decide counter

In what follows, we shall denote by X a real Banach space X endo-

wed with a cone K and with the order relation defined by this cone.

We denote by L(X) the Banach algebra of linear continuous operators $U: X \to X$.

Let $T: [a, b] \to L(X)$ be an operator-valued function and $x \in X$.

In [1] the following notions have been introduced:

DEFINITION 1.1. The expression $[t_1, t_2, \ldots, t_{n+1}; T(\cdot)x]$ defined by the relations are any fished and the model would be and and the dome

$$[t_1; T(\cdot)x] = T(t_1)x$$

$$[t_1, t_2, \ldots, t_{n+1}; T(\cdot)x] = \frac{[t_2, t_3, \ldots, t_{n+1}; T(\cdot)x] - [t_1, t_2, \ldots, t_n; T(\cdot)x]}{t_{n+1} - t_1}$$

is called the generalized divided difference of order n, associated to the point x, of the operator-valued function T, for the distinct points $t_1, t_2, \ldots, t_{n+1} \in$ $\in [a, b].$

DEFINITION 1.2. We say that an operator-valued function $T:[a, b] \rightarrow$ $\rightarrow L(X)$ has a bounded divided difference of order n on [a, b] with respect to a subset $M \subset X$, if for any $x \in M$, we have

$$\sup_{\substack{t_1, t_2, \dots, t_{n+1} \\ \text{distinct } \in [a, b]}} || [t_1, t_2, \dots, t_{n+1}; T(\cdot)x] || < +\infty$$

DEFINITION 1.3. An operator-valued function $T: [a, b] \rightarrow L(X)$ is called non-concave of order n, on the interval [a, b], if for any system of n+2 2

distinct points of [a, b], the following condition is fulfilled:

$$\forall u \in K \Rightarrow [t_1, t_2, \ldots, t_{n+2}; T(\cdot)u] \in K$$

Let $T_1: [a, b] \to L(X)$ and $T_2: [a, b] \to L(X)$ be two operator-valued functions. Denote by K a generating cone in X.

DEFINITION 1.4. We say that $T_1 \leq T_2$ if for any $t \in [a, b]$ and for any $u \in K$ the following condition is satisfied:

$$T_2(t)u - T_1(t)u \in K$$

This is an order relation in the real linear space F([a, b], L(X)) of all operator-valued functions defined on [a, b].

2. Consider a monotone sequence $(T_m)_{m=1}^{\infty}$ of operator-valued functions $T_m: [a, b] \to L(X)$, strong continuous on [a, b]: $T_1 \le T_2 \le \ldots \le T_m \le T_{m+1} \le \ldots$

$$T_1 \leq T_2 \leq \ldots \leq T_m \leq T_{m+1} \leq \ldots$$

LEMMA 2.1. Assume that the cone $K \subset X$ is generating and normal. If there is an operator-valued function $T: [a, b] \to L(X)$, strong continuous on [a, b] such that the sequence $(T_m)_{m=1}^{\infty}$ converges to T in the strong operator topology, then the sequence $(T_m)_{m=1}^{\infty}$ converges to T in the strong operator topology, uniformly with respect $t_0t \in [a, b]$.

Proof: Let $u \in K$; $\lim ||T(t)u - T(t)u|| = 0$. Consider a point $t_0 \in [a, b]$. For any $\varepsilon > 0$, there exists a natural number $r(t_0)$ such that, for every $m \ge r(t_0)$, we have

$$||T(t_0)u-T(t_0)u||<\frac{\varepsilon}{3}.$$

Since T and $T_{r_{(b)}}$ are strong continuous on [a, b], there exists $\delta(t_0)$ such that for any $t \in [a, b]$, for which $|t - t_0| < \delta(t_0)$, we have ||T(t)u - $-T(t_0)u||<\frac{\delta}{3}$ and $a(\mu) x = [a(1)x] + \mu)$

$$||T_{r_{(t_0)}}(t)u - T_{r_{(t_0)}}(t_0)u|| < \frac{\varepsilon}{3}$$

Hence $||T(t)u-T_{r_{(t)}}(t)u||<\varepsilon.$

Set $V(t_0) = (t - \delta(t_0), t_0 + \delta(t_0))$ for $t_0 \in (a, b)$ and $V(a) = [a, a + \delta(a)), V(b) = (b - \delta(b), b]$. For any $t \in V(t_0)$ we have $||T(t)u - \delta(t_0)||$ $-T_{t_{(1)}}(t)u||<\varepsilon$. Since [a, b] is compact there exist $t_1, t_2, \ldots, t_j \in$

 \in [a, b] such that [a, b] = $\bigcup_{i=1}^{n} V(t_i)$. Denote by $r_0 = \max_{1 \le i \le j} r(t_i)$. For $t \in$ $\in V(t_i)$, $u \in K$ and $m \ge r_0$, we have:

$$\theta \leq T(t)u - T_m(t)u \leq T(t)u - T_{r_0}(t)u \leq T(t)u - T_{r_{(t_j)}}(t)u.$$

Since the cone K is normal, there exists a constant d > 0 such that: $||T(t)u - T_m(t)u|| \le d||T(t)u - T_{r_0}(t)u|| \le d^2||T(t)u - T_{r_{(t)}}(t)u|| < d^2\varepsilon$

Since the cone K is generating, from the preceding inequalities we obtain:

 $\forall x \in X$, $\lim ||T_m(t)x - T(t)x|| = 0$ uniformly with respect to $t \in$

Let $(T_m)_{m=1}^{\infty}$ be a sequence of operator-valued functions $T_m: [a, b] \rightarrow$ $\rightarrow L(X)$ with bounded difference of order n on [a, b] with respect to X, $n \geq 1$.

LEMMA 2.2. Assume that:

(i) $\forall x \in X, \exists C_x > 0 : \forall m \in \mathbb{N}, \sup_{\substack{t_1, t_2, \dots, t_{n+1} \\ t_{n+1}}} || [t_1, t_2, \dots, t_{n+1}; T_m(\cdot)x] || \le C_x$

(ii) there exists an operator-valued function $T:[a, b] \rightarrow L(X)$ such that the sequence $(T_m)_{m=1}^{\infty}$ converges to T in the strong operator topology, then T has a bounded divided difference of order n on [a, b] with respect to X.

Denote by $H_{-1,n} = \{T \mid T : [a, b] \rightarrow L(X) \text{ non-negative and non-con-}$ cave of order n on [a, b] n = 0, 1, 2, ...

Consider two operator-valued functions $T_1: [a, b] \rightarrow L(X)$ and $T_2:$ $[a, b] \rightarrow L(X)$.

DEFINITION 2.1. It is said that $T_1 \leq T_2$ is the following conditions are fulfilled:

a) $\forall u \in K, \ \forall t \in [a, b] \Rightarrow T_1(t)u \leq T_2(t)u$

b) $\forall u \in K, \ \forall t_1, t_2, \ldots, t_{n+2} \ distinct \ in \ [a, b] \Rightarrow [t_1, t_2, \ldots, t_{n+2}; T_1(\cdot)u] \leq [t_1, t_2, \ldots, t_{n+2}; T_2(\cdot)u]$

Consider a sequence $(T_m)_{m=1}^{\infty}$ of operator-valued functions, strong continuous on [a, b].

THEOREM 2.1. Assume that the cone $K \subset X$ is generating and regular. If the following conditions are fulfilled:

(i) the sequence $(T_m)_{m=1}^{\infty}$ is monotone with respect to the cone $H_{-1,n}(n \ge 0)$, that is

$$T_1 \leq T_2 \leq \ldots \leq T_m \leq T_{m+1,n} \leq \ldots$$

(ii) there exists an operator-valued function $T:[a, b] \rightarrow L(X)$, strong continuous on [a, b], such that

$$T_{m} \leq T$$
 $m=1,\,2,\,\ldots$

(iii) $\forall x \in X$, $\exists C_x > 0$; $\forall m \in \mathbb{N}, \sup_{\substack{t_1, t_2, \dots, t_{n+2} \\ \text{distinct } \in [a, b]}} ||[t_1, t_2, \dots, t_{n+2}; T_m(\cdot)x]|| \leq C_x$

then there exists an operator-valued function $S:[a,b] \rightarrow L(X)$, strong continuous on [a, b], such that $(T_n)_{m=1}^{\infty}$ converges to S, in the strong operator topology, uniformly with respect to $t \in [a, b]$.

Proof. Let $t \in [a, b]$ and $u \in K$. From (i) and (ii) it follows that:

$$T_1(t)u \leq T_2(t)u \leq \ldots \leq T_m(t)u \leq T_{m+1}(t)u \leq \ldots \leq T(t)u$$

Since the cone K is regular, there exists an element $y_i(u) \in X$ such that

$$\lim_{n\to\infty} ||T_n(t)u - y_t(u)|| = 0$$

Define a mapping $S(t): K \rightarrow X$ by $S(t)u=y_t(u).$

$$S(t)u = y_i(u)$$

Since the operators $T_m(t)$ are linear, S(t) is a positively homogeneous mapping of K into X. S(t) is also additive on K.

Since the cone K is generating, S(t) can be extended to the whole space X according to a well-known method [3], by setting for $x \in X$

$$x = u - v, \qquad u, \ v \in K$$

$$S(t)x = S(t)u - S(t)v$$

S(t) is independent of the choice of $u, v \in K$ such that x = u - v. Observe that $S(t): X \rightarrow X$ is a linear operator.

From the definition of S(t) it follows that for any $x \in X$, we have $\lim ||T_n(t)x - S(t)x|| = 0.$

According to the Banach—Steinhaus Theorem, the operator $S(t): X \rightarrow$ $\rightarrow X$ is continuous. Hence $S(t) \in L(X)$.

From the conditions (i) and (ii) it follows that for $u \in K$ and for any system of n+2 distinct points $t_1, t_2, \ldots, t_{n+2} \in [a, b]$, the sequence

 $([t_1, t_2, \ldots, t_{n+2}; T_m(\cdot)u])_{m=1}^{\infty}$ converges and the limit is $[t_1, t_2, \ldots, t_{n+2};$ Since the cone K is generating, for every $x \in X$ and for every system

of n+2 distinct points $t_1, t_2, \ldots, t_{n+2} \in [a, b]$ $\lim_{m\to\infty} [t_1, t_2, \ldots, t_{n+2}; T_m(\cdot)x] = [t_1, t_2, \ldots, t_{n+2}; S(\cdot)x].$

From (iii) and from Lemma 2.2, it follows that $S: [a, b] \rightarrow L(X)$ has a bounded divided difference of order n + 1 on [a, b], with respect to X. From Corollary 3.4 [1], it follows that S is continuous on [a, b], in the strong operator topology. Since a regular cone is normal [2], it follows by Lemma 2.1 that the sequence $(T_m)_{m=1}^{\infty}$ converges to S in the strong operator topology, uniformly with respect to $t \in [a, b]$.

For $X = \mathbf{R}$ we find the result established by Elena Popoviciu-Moldo-

van in the paper [4].

REFERENCES

- [1] Diallo, A. T., Une notion de convexité pour les functions opératorielles, L'Analyse Numérique et la Théorie de l'Approximation, 10, 2, 155-178 (1981).
- [2] Krasnosselskij M. A., Positive Solutions of Operator Equations, Moscow, 1962 (in Russian).
- [6] Peressini, A. L., Ordered Topological Vector Spaces, Harper and Row Publishers New York, Evanston and London 1967.
- [4] Popoviciu-Moldovan, Elena, Sur la convergence de certaines suites de fonctions. Mathematica (Cluj), 7, (30), 327-331 (1965)

Received 25, VIII, 1982.

Facultatea de matematică Universitatea Babeş-Bolyai Kogălniceanu 3400 Cluj-Napoca