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Anal. Numér. Théor. Approx., Tome 12 (1983) no. 2, pp. 131–140
ictp.acad.ro/jnaat

A DIRECT METHOD FOR THE CONSTRUCTION OF

GAUSSIAN QUADRATURE RULES FOR CAUCHY TYPE

AND FINITE-PART INTEGRALS

by

N. I. IOAKIMIDIS

(Patras)

Abstract. It is shown how the construction of Gaussian quadrature rules for
Cauchy type principal value integrals, as well as for finite-part integrals with an
algebraic singularity, can be based on the theory of Gaussian quadrature rules
for ordinary integrals by using nonclassical weight functions (distributions), but
classical systems of orthogonal polynomials. A series of quadrature rules for
the aforementioned class of integrals is derived by this new approach and this
illustrates its possibilities.

1. INTRODUCTION

Several quadrature rules appeared during the last few years for Cauchy
type principal value integrals [1–3, 5, 6, 8, 9, 12, 19] and for finite-part inte-
grals [7, 10, 11, 13–18]. Among them the Gaussian quadrature rules (based on
appropriate systems of orthogonal polynomials) are the most interesting in
practice because of their accuracy and their convergence under mild assump-
tions. Furthermore, several approaches for the construction of quadrature
rules have been suggested and used in the above references. Here we sug-
gest a new approach and, to our opinion, the most direct of all: to apply
directly the theory of Gaussian quadrature rules for ordinary integrals (see,
e.g., [4]) to Cauchy type principal value integrals, as well as to finite-part in-
tegrals although the corresponding weight functions are not classical and can
be interpreted as distributions [15]. This approach has been already used by
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Kutt [15] for finite-part integrals, but the orthogonal polynomials used there
(which were recently shown to be shifted Jacobi polynomials [10]) had one or
some of their roots outside the integration interval corresponding to negative
or complex weights. Generally, this situation is uncomfortable. On the other
hand, the results of Kutt [15] can be considered equivalent to the algebraic
approach to the construction of Gaussian quadrature rules.

The approach used here differs from that of Kutt in that we use orthog-
onal polynomials with roots inside the integration interval although we have
nonclassical weight functions. We consider also both quadrature rules for
Cauchy type principal values integrals (where no results analogous to Kutt’s
were ever presented probably because of their lack of interest) and for finite-
part integrals (where the difficulties in the Gaussian quadrature rules of Kutt
led both Kutt [15] and Paget [18] to use interpolatory quadrature rules with
nodes either equispaced [15] or roots of the shifted Legendre polynomials [18].
Although convenient closed-form formulae for the weights exist in all these
cases (in spite of the fact that in [18] the contrary is implied for the results
of [15]), these interpolatory quadrature rules present the usual disadvantages
of interpolatory quadrature rules: low accuracy (compared to the accuracy
achieved with Gaussian quadrature rules) and weights of generally alternating
signs and large absolute values.

Here we will use the above-described approach to construct a series of al-
ready known quadrature rules for the aforementioned classes of integrals with
very little effort and based on the classical results for Gaussian quadrature
rules [4]. Further extensions of the present results to more complicated cases
are quite possible.

2. CAUCHY TYPE INTEGRALS

We consider at first Cauchy type principal value integrals of the form

(2.1) I(x) =

b∫
a

w(t)
g(t)

t− x
dt, a < x < b,

where [a, b] is a finite or infinite integration interval, w(t) a nonnegative weight
function and g(t) the integrand, assumed possessing a continuous first deriv-
ative in [a, b] [3]. For the numerical evaluation of I(x), we rewrite it as

(2.2) I(x) =

b∫
a

W (t)g(t)dt,

where the new weight function W (t) (its dependence on x not denoted explic-
itly) is defined by

(2.3) W (t) = w(t)/(t− x).
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For the construction of a Gaussian quadrature rule for I(x), instead of
looking for the system of orthogonal polynomials with respect to W (t) (which,
if they exist, most probably will not have all their roots real and inside [a, b]
[4]), we use the preassigned node t = x (following a device suggested by
Struble [20] for ordinary integrals) and, next, we apply the theory of Gaussian
quadrature formulae with a preassigned node [4]. Then we have to use as nodes
the roots of the polynomial pn(t) of the system of the orthogonal polynomials
with respect to the weight function

(2.4) w̄(t) = w(t)v(t),

where

(2.5) v(t) = t− x,

which, because of (2.3), coincides with w(t), that is

(2.6) w̄(t) = w(t).

Hence, the nodes are the n roots of pn(t) plus the preassigned node tn+1 = x.
As regards the weights, we easily find them on the basis of the theory reported
in [4] as

(2.7) Ai =
1

(ti − x)p′n(ti)

b∫
a

w(t)
pn(t)

t− ti
dt =

µi
ti − x

, i = 1(1)n,

where µi are the corresponding weights for the Gaussian quadrature rule (for
ordinary integrals) with w(t) as a weight function and the same integration
interval. These weights are given by [4]

(2.8) µi = qn(ti)/p
′
n(ti), i = 1(1)n,

where

(2.9) qn(x) =

b∫
a

w(t)
pn(t)

t− x
dt.

As regards the weight corresponding to the preassigned node tn+1 = x, it is
determined from [4]

(2.10) An+1 =
1

pn(x)

b∫
a

w(t)
pn(t)

t− x
dt =

qn(x)

pn(x)
.

These results hold true if x 6= ti (i = 1(1)n). Then the quadrature rule for
I(x) takes the form

(2.11) I(x) =

n∑
i=1

µi
g(ti)

ti − x
+
qn(x)

pn(x)
g(x) + En(g;x), x 6= ti, i = 1(1)n,
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where En is the error term. This quadrature rule was obtained for the first time
in [6,12] as a generalization of the results of [1,5,19]. Finally, it is trivial to say
that both the nodes ti and the weights µi (i = 1(1)n) depend on n. Moreover,
the quadrature rule (2.11) has n+1 nodes (one of which is preassigned). Hence,
it is exact for integrands polynomials of up to [2(n+ 1)− 1]− 1 = 2n degree
as is well known [6, 12]. The convergence of the quadrature rule (2.11) was
considered in [2, 3].

Now, we proceed to the case where x coincides with a root tj of pn(t). In
this case, instead of assuming tj to be a double node (working in a manner
analogous to the previous one), it is more convenient to apply directly the the-
ory of Hermite quadrature, based on the Hermite (or osculating) interpolation
formula [4], with no preassigned node. Then we have the quadrature rule [4]

(2.12)

b∫
a

W (t)g(t)dt =

n∑
i=1

Hig(ti) +

n∑
i=1

H̄ig
′(ti) + En(g; tj),

where W (t) is given again by (2.3), ti are the roots of pn(t), as previously, and
Hi and H̄i are appropriate weights to be determined.

As regards the weights H̄i, they are determined from the formula [4]

(2.13) H̄i =

b∫
a

W (t)(t− ti)l2i (t)dt,

where

(2.14) li(t) = pn(t)/[(t− ti)p′n(ti)].

By taking into account that

(2.15)
1

(t− x)(t− ti)
=

1

ti − x

(
1

t− ti
− 1

t− x

)
, x 6= ti, i = 1(1)n,

we find for i 6= j from (2.13) (because of (2.14))

H̄i =
1

p′2n (ti)(ti − tj)

 b∫
a

w(t)
p2n(t)

t− ti
dt−

b∫
a

w(t)
p2n(t)

t− tj
dt

 = 0,(2.16)

i = 1(1)n, i 6= j,

since we have assumed that pn(t) is the polynomial of degree n of the system
of orthogonal polynomials with respect to the weight function w(t) along [a, b]
and ti and tj are roots of pn(t). Moreover, the weight H̄j (for x = tj) is equal
to

(2.17) H̄j =

b∫
a

w(t)l2j (t)dt = µj

because of (2.3) and the results reported in [4]. In (2.17) µj is determined
again from (2.8).
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Now, as regards the weights Hi, they are determined from [4]

(2.18) Hi =

b∫
a

W (t)l2i (t)dt− 2l′i(ti)H̄i.

For i 6= j, by taking into account (2.8), (2.9) and (2.14) to (2.17), we directly
find from (2.18) that

(2.19) Hi = µi/(ti − tj), i = 1(1)n, i 6= j.

Finally, for i = j we use again (2.18) and the aforementioned formulae and we
find after some simple calculations that

(2.20) Hj =
[
q′n(tj)− 1

2µjp
′′
n(tj)

]
/p′n(tj),

where, because of (2.9), q′n(tj) is the Cauchy type principal value integral

(2.21) q′n(tj) =

b∫
a

w(t)
pn(t)

(t− tj)2
dt

(tj being a root of pn(t)). On the contrary, qn(tj) is an ordinary integral.
Now, because of (2.16), (2.17), (2.19) and (2.20), the quadrature rule (2.12)

takes the form

(2.22) I(tj) =

n∑
i=1
i 6=j

µi
g(ti)

ti − tj
+ µjg

′(tj) + vjg(tj) + En(g; tj)

with

(2.23) vj =
[
q′n(tj)− 1

2µjp
′′
n(tj)

]
/p′n(tj).

This quadrature rule was obtained for the first time in [12] as a generalization
of previous results of [5]. It was also rederived in [3], where the results of [12]
were taken into account, but without reference to [12]. The convergence of
(2.11) and (2.22) (which are essentially one quadrature rule) was considered
in [2, 3].

3. FINITE-PART INTEGRALS

We restrict our attention to finite-part integrals of the form

(3.1) J =

1∫
0

g(t)

tλ
dt, 1 < λ < 2.
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Generalizations of the present results to more complicated cases (with other
integration intervals, weight functions or stronger algebraic singularities) are
quite possible. For the construction of a Gaussian quadrature rule for the
numerical evaluation of the finite-part integral J , we can be based on the
definition of this integral [15,16].

(3.2) J =

1∫
0

g(t)− g(0)

tλ
dt+ g(0)

1∫
0

dt

tλ
.

Next, we apply a Gaussian quadrature rule of the form

(3.3)

1∫
0

t1−λg(t)dt =

n∑
i=1

µig(ti) + En(g)

with nodes the roots of the shifted Jacobi polynomial p̄
(0,1−λ)
n (t) for the ap-

proximation of the first integral in the right-hand side of (3.2) (assuming that
g(t) possesses a continuous first derivative in the neighbourhood of t = 0) and
we find

(3.4) J =

n∑
i=1

µi
g(ti)

ti
+

(
1

1− λ
−

n∑
i=1

µi
ti

)
g(0) + En(g),

since [15,16]

(3.5)

1∫
0

dt

tλ
=

1

1− λ
.

The construction of quadrature rules for finite-part integrals on the basis of
their definition is not recommended by Kutt [15], but the author believes that
it is the best possibility because of its accuracy (when it is combined with
Gaussian quadrature rules as previously) and its simplicity.

Now we will reconstruct (3.4) on the basis of the approach adopted in this
paper since our aim is to illustrate this approach and not to construct new
quadrature rules. To this end, we work with the weight function

(3.6) W (t) = t−λ, 1 < λ < 2,

and we choose the preassigned node t = 0 to transform it to the classical
weight function

(3.7) w̄(t) = W (t)v(t) = t−λ

with v(t) = t. Next, we use the nodes ti of the Gaussian quadrature rule
corresponding to w̄(t) (along [0, 1]) plus the additional node tn+1 = 0. By
applying the corresponding theoretical results reported in [4] for quadrature
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rules with preassigned nodes, we obtain in our case (with pn(t) = p̄
(0,1−λ)
n (t))

(3.8) Ai =
1

tip′n(ti)

1∫
0

t1−λ
pn(t)

t− ti
dt =

µi
ti
, i = 1(1)n,

(3.9) An+1 =
1

pn(0)

1∫
0

t−λpn(t)dt.

By applying (3.4) with g(t) = pn(t) (whence this rule is exact), we see
directly that

(3.10)

1∫
0

t−λpn(t)dt = pn(0)

(
1

1− λ
−

n∑
i=1

µi
ti

)

and the quadrature rule derived now coincides with (3.4). As regards its
accuracy, it is equal to 2n as was the case for the corresponding quadrature
rule for Cauchy type principal value integrals constructed, in a similar manner,
in the previous section.

4. ORTHOGONAL POLYNOMIALS FOR NONCLASSICAL WEIGHT FUNCTIONS

In some special cases, it is possible to use classical systems of orthogonal
polynomials for nonclassical weight functions. We will illustrate this possibility
in this section by constructing the corresponding quadrature rules.

Consider at first the Cauchy type principal value integral

(4.1) K =

1∫
−1

g(t)

t
dt.

In can be seen that the Legendre polynomials P2m(t) = Pn(t) (with n = 2m)
are orthogonal with respect to the weight function

(4.2) w(t) = 1/t

to all polynomials πk(t) of degree k ≤ n along [−1, 1], since

(4.3)

1∫
−1

1

t
πk(t)Pn(t)dt =

1∫
−1

πk(t)− πk(0)

t
Pn(t)dt+ πk(0)

1∫
−1

Pn(t)

t
dt = 0.

This is due to the fact that the Legendre polynomials form a system of orthog-
onal polynomials along [−1, 1] with respect to the weight function w0(t) = 1 [4]
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and, moreover, [πk(t) − πk(0)]/t is a polynomial of degree less than or equal
to n− 1. Clearly, in (4.3) n should be an even positive integer.

Based now on the classical theory of Gaussian quadrature rules [4] for the
weight function (4.2) along [−1, 1], we find the Gaussian quadrature rule

(4.4) K =
n∑
i=1

Aig(ti) + En(g),

where ti are the roots of Pn(t) and the weights Ai are determined from [4]

(4.5) Ai =

1∫
−1

1

t
li(t)dt =

1∫
−1

1

t

Pn(t)

(t− ti)P ′n(ti)
dt =

µi
ti
,

where (2.8) and (2.15) were also taken into account. (In (4.5) µi denote simply
the weights of the Gauss–Legendre quadrature rule with n nodes.) Of course,
since Pn(t) is a Legendre polynomial of even degree, the point t = 0 is not
included among the nodes ti. We can add that the quadrature rule (4.4) is
due to Piessens [19].

As a final application of our developments, we consider the finite-part inte-
gral

(4.6) L =

1∫
−1

g(t)

t2
dt.

At first, we can evaluate this integral on the basis of its definition [15,16] and
we find

(4.7) L =

1∫
−1

g(t)− g(0)− tg′(0)

t2
dt+ g(0)

1∫
−1

dt

t2
+ g′(0)

1∫
−1

dt

t
.

By assuming that g(t) possesses a continuous second derivative in the neigh-
borhood of t = 0, by applying the Gauss–Legendre quadrature rule to the
approximation of the first integral in the right-hand side of (4.7) and by tak-
ing into account that

(4.8)

1∫
−1

dt

t2
= −2,

1∫
−1

dt

t
= 0,

we obtain the quadrature rule

(4.9)

1∫
−1

g(t)

t2
dt =

n∑
i=1

µi
g(ti)

t2i
−

(
2 +

n∑
i=1

µi
t2i

)
g(0) + En(g).
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The same quadrature rule can be obtained by using the classical theory of
Gaussian quadrature rules for the polynomials tP2m(t) = tPn(t) (n = 2m).
Such a polynomial is orthogonal to all polynomials of degree up to n with
respect to the weight function

(4.10) w(t) = 1/t2

as is clear from the previous developments based on (4.3).
Then for the nodes ti, which are the roots of P2m(t) (i = 1(1)n), we find

directly [4]

(4.11) Ai =
1

tiP ′n(ti)

1∫
−1

1

t

Pn(ti)

t− ti
dt =

µi
t2i
, i = 1(1)n.

Similarly, for the node tn+1 = 0 we have

(4.12) An+1 =
1

Pn(0)

1∫
−1

Pn(t)

t2
dt.

This quadrature rule,

(4.13)

1∫
−1

g(t)

t2
dt =

n+1∑
i=1

Aig(ti) + En(g),

is seen, because of (4.11), (4.12) and the fact that (4.9) is exact for g(t) = Pn(t),
to be identical with the quadrature rule (4.9). These quadrature rules are a
special case of a more general quadrature rule for finite-part integrals with a
double-pole singularity considered in [7, 17].
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