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1. Let C(K), K = [—1, 1], be the normed linear space of real func-
tions defined and continuous on K ; this space is considered normed by
means of the uniform norm. We shall consider £, the set of all poly-
nomials with real coefficients, of the degree <#, and Py, P, ..., P, ...
the sequence of Legendre polynomials defined as

(22 — 1)

1 ar
2 nl  da®

P,(x) =
Likewise,

(1) ' x0n<x1n<--- <xn"

are the roots of Pyt
If L,: C(K) — 92, is the Lagrange interpolation operator with respect
to (1), ie.

(2) (Lof)(%) = Eka,.) 2half)

(# — %ea) Poya(#in)
then ||L,]| > ;Tyi, n=1,2,...([8]). This means that there is at
k7
least one function f,, f,<= C(K), so that 11m I fo — Lafoll # 0.

The aim of this paper is to ,,modify” the operators L, n =1, 2, ...
so that the new sequence of operators converges p01ntw1se on the whole
space C(K), to the identity operator.

Using the Christoffel-Darboux formula ([5]), that is

K, (%, t) = ”: L Pn+1<x>Pn<t>x - l:’n("“)Pnﬂ(f)
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(3) K%, 1) =
from (2) we get

()l

- 1 'Pﬂ Pn kn
K, (%, %) = ": —“:’) - (Fin)
= kn

On the other hand (1 — #%) Pj11(x) = (# + 1)[P,(x) — 2P, 41(x)] and, the-
refore

Pn+1(x) — 2(1 '— ”En) K,,(x, xlcn) _ K,,(x, xkn)

(x 7. xl:u) Pr:+1(xkn) ('” + l)zlpn(xlm) 12 Kn (ka xkn)
It follows that Lagrange operator L,:C(K) — &, can be represented as

(4) (Luf)(%) = Z Cin(f) Pif2)
where the functionals Cj,: C(K)—R, j =0, 1,...,%, are defined by
(5 Crlf) = 2+ L (= Zu)® Py(n)
(%) lf) = L 53 ) L=l Dt
From (4)
1
Cunlf) = j £(2) (Lof)(x
that is
1
(6) Cul(P) =52 | PAnP(0)ix = 8y,  0<j, k<

1

2. Taking into consideration the representation (4) as a starting point,

we define the operators A,: C(K)—C(K), n=1, 2, ..., by

(7) (4.f)(x E i Crn(f) Pi{)

where the functionals C,, k=0, 1, ,#, had been defined by 5),

while M = Hmk”H M = R, 1s a tr1angular matrix still undetermined.
Now we give poss1b111t1es of choice of this matrix M so that || 4,]|| <

<Coy n=1, 2 , and moreover

11rn Nf— A4.fIl =0 for every f e C(K).

In this case the numbers m,, are called ,,convergence multipliers”.
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In the following we shall prove that there are matrices M for which
1) ;
' — ; — =12 ...,/ e« C(K),
8) If— A4Sl <Colfs =], = f

where C is a constant independent of # and w (f;.) is the modulus of con-
tinuity, Since 4,(C(K)) < 2,, the inequality (8) implies that among the
operators of the type (7) there also are Jackson-type operators, i.e. poly-
nomial operators which furnish us an approximation of the order of best
approximation of continuous functions by polynomials.

remma 1. If A,: C(K)— C(K) 14s defined by (7), then

©) (A,.f 2 D,(x, 2w M)f(20)

k=0

where

n(x: Xins M)

#(%kny Yin)

D,(x, %p; M) =

with K,(x, t) given by (3) and

~ w 2 + 1
Rx, t; M) = my, 2 E
7=0

P,(x) Py(t).
Moreover

(10) (4,P) (%) = mjPyx), j=0,1,...,n
and wusing the notation e (t) = t* we have

(A, e0)(x) = moneo(x),  (A,01)(%) = muyen(2),

Mon :

() (A, 2a)(5) = mamea(®) +
Proof. From (7) and (5)

% gt < P
0) =g omp TP 3 T gy
i=o

520 Ky (%pny i)

7\5 (% % )f(xk" z‘ x Xpn | M)f(xknj-

=0 1L(xl>n xl.ﬂ)
At the same time, (6) and {7) imply (10), while the equalities Pg(x) = 1,
Pi(x) = x, Py(x) = % (8x% — 1) together with (10) prove (11).

N‘
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Let us denote by & the set of all sequences Q = (¢,)n—~: with the
properties :

1) g, 4,;

2) g, 20o0n K;

3) 5 g.(t) dt = 1.

If g, « 8 and gq,(x) =, mk,.ZkT+l P.(x) then
k=0

1
(12)  my = m(q,) : = 5 OPMd, §=01,...,0;,n=12 ...,

-1
and
mo(g,) = 1.

In the following we consider that m,, are defined by (12), i.e. the
matrix M is generated by an arbitrary sequence Q = (¢,), Q 8. In
order to underline the above mentioned dependence, we denote

”

(13) (4.N)(x) = (Auf; Q) : = 2 mi{g) Can(f) Pil)

k=0

where m,(g,) is given by (12).
LEMMA 2. If Q = (9,), Q = 8, then the polynomial operators A, : C(K)—

—C(K), n=1, 2, ..., defined by (13) are linear and positive, with the
properties
1) A,eq=e4 A,e, = my(q,) ex, Ay ey = ma(g,) €3 + = ;na(q,.) ;

2) ”Au” =1'M’=1: 2:"';

3) (A, Qu)(%) = [ma(g,) — 2my(g,) + 1] eyx) + =2 ;"a(q»)_

where
Q,(t, x) = (t — x)2
Proof. Taking into account a result established by T. KOORNWINDER
[1], for (x, ) e (—1, 1) we have
1 1
; L 1 AP . g
PA9Py) =~ | PO Uoln 1) *at

-1
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where

¢(% 3, ) = (1 — 23)(1 — )2 — (t — xy)>

+ .
and |z|, =2 zlﬂ, If M= |lmJq,)]ll, then for x = (—1, 1) we get
1 : 1
Du x; xn; M = L . . —E
( * ) nKn(ka X};“) S gil(t)(I(P(x, xk"’ t) I+) dt 2 O.
Also
Dﬂ(_ 1; xlm; M) == _q“(—_xkn) 2 0
I(ﬂ(ka xlm)
and
D11(ll Xbn 5 M) — ﬂn) > O
I{" (xlm: xku)
Hence

D, (%, %wm; M) > 0 for every x < [—1, 1], k=0, 1, ..., «.

By 9), 1 > 0 implies (4,f; Q) > 0 on K.
The equalities 1) and 3) are consequences of (11) while the monotony
of 4, as well as the fact that A,e,= eg prove that || 4,||=1,n=1,2,...

THEOREM 3. The convergence multipliers m, = my(q,) gemerated by a
sequence Q = (q,) = 8 verify the inequalities ’ | 7

ImjlglJ ]:0, 1,...,74/,'

[, — Mgy | SEA+DT —m), k=0,1,...,n —1;

J+ 1)(1 _ 1,”1)

1 —m, < >
Proof. Since |P,(t)| <1, P(l) =1, t = [—1, 1], from (10) we get
[m,| = | (4, P,)(1)] <j 1. Simulténeously g &
(14) Pult) — Pepa(t) = (2 + 1)(1 — )R ()

where by R%™® we denote the Jacobi polynomial of the degree %, normali-
zed by the condition R{*P(1) = 1. It is known that for « =z B> — 2 we
2

have || R || = 1; therefore, (14) implies
D) = 12,0) — Pasl®)| < (& + 1){1 — ey(9).
On the other hand
|~ mia | = [(4,P)(1) — (4, Py ()] < (4,D)(1) = (h + (1 — m).
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From

)
l—m,:ZO'(m\,~mH_,)<};;]mv—m\.+1|<(1—m1) v+ 1)

one finds

l—m,sj(j:”(l—ml).

Similarly it is proved that |m,| < 1.
THEOREM 4. If Q 8, Q = (q,) and Him wm,(q,) = 1, then for every

f f e C(K), we have. e
lim Hf_ (Anf; Q) H =

H— 0

Moreover

(15) ILf — (Af5 QU < (1 + A2)o(f; JT = m(g,).

Proof. We have my(g,) = 1, 0 < 1 — my(g,) < 3 (1 — my(q,)).
This means that 11m ml(q,,) =i 1mp11es lirn mz(g,,) = 1 and from lemma

H—0

2 we conclude W1th lim ||A— (4%; Q)| =0, for every polynomial %

#H—CO

of the degree two. According to 7T. POPOVICIU ([4]) and P. P. KOROV-
KIN ([2]) it follows that lim ||f— (4,.f; Q)||= 0 for all continuous

functions f, f = C(K).
By means of lemma 2 and theorem 3 we obtain
” (An Q2! Q) ” < 2(1 - %11(Q7l))'
But for f « C(K) and 3 > 0, the inequality

1

(16) I = (s QI < (1o 5 1A, Q3 QT /5 3)

is verified. For 3§ = «/1 — my(g,) we give (15).

3. In the following we shall stick to some sequences of linear positive
operators, illustrating the generality of the method presented in the pre-
vious paragraph. For this, we consider the sequences of polynomials

Qv =(a),  Q*=(1), Q= (ca)

where
—rt (1 +x»
aﬂ(x) - 9 ( 9 )
, (iy= RO (5)]*
(17) ) = Lo e[ 220
214 ¥ — oz
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2y = z;(n) being the greatest root of the Jacobi polynomial

)

R and s =s(n) = 1 [2], 4= ) =n —2

(2
1) — 2 207\ 2
Czn(x) 2(%2 + 31 + 3) ' R‘” (x) I .

According to a formula given by Bateman (see [5]), if

(l—}-x) chn

Likewise, we define

then
(18 Can P, (%) Py( —(’””-”P 1+ny'
(18) ; w5 Bi() 2 ) k‘ ¥ty
where '
(m )2 (2& + 1)
Chn =
(o — R (n+ k4 1)1
Using the above equalities, we have
A 241 g, o nln + 1)1
x) = ), Wiy P, (x), == ) = :
) ]_Z:(/) . A (%), m; my(a,) TR

Also, from (18) with M = ||m,(a,)]||, we find

A q T D U A 1+ ¢
e Vo]

In conclusion, from (9)

n 1 .
£ (1 50 (e + 1) P — 2
A f; %) = LU= ).
(4.f5 Q)(#) T Ty e TR (f(xe)
For these operators 1 — m,(a,) = __-%—2; therefore
n

lim || = (4,f5 Q)| = 0.

for every f which belongs to C(K).
Since

(4,Q,; Q1)(%) (n+2)(n_|_:3)+(n+2)(n+3)
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we have
(4, Q,; Q,) | <

’

SRS

so that from (16) one obtains
. 5 1
= Af <+ VDo), fe<c®)
Let us consider the sequence Q% = (b5) defined by (17). We have

my(b,) = z,(n) and

3 2
s (L — 2.

myfb) = 1= 3(1 — 5(n)) + = (1 — z ()2 +

If 7,(n) denotes the greatest root of the Legendre polynomial P,, then
21(n) = 7y(s) for n even
and the equality

P,,(x) -+ Ps_H(x) - (1 1+ x)Rﬁo'l)(x)
furnishes us
z(n) < 7i(s + 1) for » odd.
Thus

2u(n) < (s + 1), s=1+[§], n=1,2, ...

But (see [5], Theorem 621.1 and pag. 139) z(n) = 7y(s), w =2m + 1,
and 7(s + 1) << cos 5 T

sequence v,, v, < (%, -n:\/f) , such that

st This enables us to assert that there exists a

n=23,...

From (15) we conclude that there exists a positive constant C, C < (2 4
-+ /2)7 such that

If =S I < Calfin) /=),

This proves that the polynomial operators f—(4,f; Q*) are operators
of the Jackson type.

It remains to estimate the order of approximation given by the
operators Az, generated by the sequence (), = (Con).
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Since

RV = 50 (0 + b+ 2)(n — h+ )2 Py (y)

it is easy to see that

n? 4- 3n . _ 3(2n 4+ 1) — 3x2((2n — 3) )
nt+ 3n 4+ 3 (A%Qz ’ Qz) (x) (2n + 3)(n% + 3n + 3)

By means of (16) we conclude with
If = (Aunf 5 Q)1 < (1 V3o (f5 1),

ie, Ag:f—(Aof; Qu), n=1,2, ..., are of Jackson-type.

In a natural way, the following problem of optimal approximation
may be considered: to find in § a sequence Q, = (g%) of polynomials for
which

(19) A(Q,) = min A(Q) where
0=8

We have shown that there exists a sequence Q, which satisfies (19), and

moreover that Q, = Q* = (b)), by being defined in (17). It may be noted

that the linear operators A, furnishes us some summability methods for

Lagrange interpolation (see [6]).

My (Con) =

AQ) = /T =m,(g,).

REFERENCES

(1}JKoornwinder, T. Jacobi polynomials (II}. An analytic proof of the product formula.
SIAM J. Math. Analysis, 5 125—137, (1974).

[2] Korovkin, P. P., Linear operators and approximation theory. Gordon and Breach,
New York, 1960.

(3] Natanson, I. P., Constructive function theory. Vol. III, Fr. Ungar Publ. Co., New York,
1965.

(4] Popoviciu, T, Asupra demonstvatiei teovemei lui Weisrstrass cu ajutorul polinoamelor
de interpolare. Lucririle sesiunii generale stiintifice Acad. R.P.R. 1950, 1664 —1667.

[5] Szegd, G., Orthogonal polynomials. Colloquinm Publ., vol. XXIII, Fourth edition, 1978.

(6] Varma, A, K, Mills, T. M., On the summability of Lagrange tntevpolation. J, Appro-
ximation Theory, 9, 4 349—-356, (1973).

Received 10.I11,1982.
Facultatea de wecanicd

Str. 1. Ratiu wnv., 7
2400 SIBIU, R.S. Romdnia



