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Abstract

At first in this paper we give fixed point theorems for mappings
with a contractive iterate at the point. Theorems 2.1 and 2.2 give us pos-
sibility to get fixed point theorems in some generalized metric spaces.
For example we can obtain fixed point theorems of L.A. Rus [13] —[15]
type in (X, d), where d: X2+ R%, n « N (see Remark 2.3). Next we
prove O. Hadzié¢ [5] and W. Netes [12] type theorems about fixed
points of contractive mappings in locally convex and sequentially com-
plete spaces. We use here the comparative method of Wazewski type and
therefore our theorems are slighty general and stronger than the above
cited results of O. Had?i¢ and W. Netes.

1. Auxiliary netes

Let (G; +, 0, =) be the algebraic system where + and = denote a
commutative binary relation on G and binary reflexive, antysymmetric
and transitive relation on G, respectively.

Assume that the partial order has the additional property:

(2. 1) gy =g imply g, +g <g,+ g for g1, g, & =G.

Take G, = {g «G: g 2 0} we will consider the algebraic system
(Gy; +,0, £,}), where | denotes the limit operator on the set S(G)

y =

of all non — increasing sequences with values from G,. Let the limit —
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operator have the additional properties :

(D) ealeeale=g+alet+e

(12 elegeleg g g formweN =g =g,
(1-3) (&) =(¢g) >gle

(14) glg=gulg

In the sequel Sy(G, ) will denote the subclass of all sequences of S(G,.)
convergent to null.

Assume that (G, ; £) has the additional property

(s2) g1+ e Sg=>g. 8 Sgforg, g g =G,.

~ We say that a sequence (g,) e GY is (0) — convergent to 0 and that
0 is the (0) — limit of this sequence, 'if there exists a sequence (g;) <
e S¢(Gy) such that g, < g/ for # « N. We denote this fact by 0 = (o) —
— lim g, or g, % 0.
neN
In this paper we consider also the second algebraic system (Py; +,
0, £, 1), which has the same properties as the fi first one bnt in addition
(P+; =)isa ¢ — conditionally complete lattice, i.e. every countable and
upper bounded subset included in P, has the least upper bound.
. Let now X be some nonempty set. The pair (X, o) (X, d), respec-
tively) is called M, — space if p: X2—»G,(d: X2— P, respectively).
We will use the following additional conditions

(M.1) o(x, x) =0 for x « X,

(M.2) o(x, ) =0 implies x = y for %, y e X,
(
(

(M.3) p(x, ) = p(x, 2) + p(z, ) for %, ¥, 2 = X,
(M.A4) o(x

If M, — space has properties (M .4,) — (M .3), s=1, 2, 3, 4,
then (X, p) is Mil,...,is — space, 7y <1y << .., <<1, s=1,..., 4. The
pair (X, o) is a generalized metric space, if (X, p) is M 5 4 — space.

In M,—space we may introduce some class of conv'erg'ent sequences.
The sequence (x,) = X¥ is convergent to x e X iff there exists a se-
quence (g,) = Sy¢(Gy) and a positive integer 7, such that e(x, x) = ¢,
for n = ny; we write then x,— x.

Let T: X— X and w: X—- N be given mappings. The sequence (%,)n=n,

y) = po(y, %) for %, y « X.

~

%y =X, Zppy= Ty =0, 1, ... we call an w — orbit of T starting
from %y or (T, w, x,) — orbit,

Let (X, p) be M, — space. Then (T, w, x,) — orbit is said a Cau-
chy w — orbit of T or a Cauchy (7', w, x,) — orbit, if there exists

a sequence (g,) = S¢(G+) such that for n « Ny, me N, p(%,, %prm) < ¢,
We say that (X, p) is (T, w, x,) — orbitally complete M, — space, if
a Cauchy (7, w, x,)—orbit is convergent to x < X. Obviously, (X, )
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is (I, w)—orbitally complete if (X, o) is (T, w, x,)—orbitally complete
for any x, = X.

The mapping F: X— X is (T, w, x,)—orbitally continuous if it has
the property : if (7, w, x,)—orbit is convergent to some ¥ « X then Fx,—
—Fx and I is (T, w)—orbitally continuous if F is (7, w, x,)—orbitally
continuous for any x, e X.

Remark. 1.1. It is well known that if (X, p) is a metric space and
T:X— X is a Banach contraction, then T is for example uniformly
continuous on X. On the other hand the above property do not occur
for generalized contractions. In general the generalized contractions are
at the most orbitally continuous.

Example 1.1. The function T,:R,—R,, Tyx = ax for irrational

x 2 0 and Tyx = O for rational x 20, 0 £ a < %, is a generalized con-
traction: | Ty — Ty |Sa(lx —y| 4|2 —Tix| + |y — Ty |+ 2 — Ty|
+ |y — Tix|), x, v « R, x =0 is the unique fixed point of T, which
is incontinuous on [0, ) but T, is (7,, 1) —orbitally continuous on X.

The above definitions of (7, w)—orbitally completeness and (7, w)—
orbitally continuity of F are slight modifications of the well — known
corresponding definitions considered, e.g. in papers of L. Ciric [3] and

[4].

2. Fixed point theorems for mappings with a contraetive
iterate at the peint

At first we will formulate the fixed point theorem for the Sehgal-
type selfmappings on a non-—void set on which two generalized metrics
are given.

Let X be a nonempty set and let p: X2—G,, d: X?*—+ P, T: X—X
and w:X—~N be given mappings. Assume that (X, d) is Ms4 —space
and for x, ¥y e X the inequality holds

(2.1) AT, Tetly) < a(d(x, 5), d(x, T=x), d(y, Toy), d(x, Towy),
a(y, T=#x)),

where the function a: PS5 — P, is non—decreasing and has the additional
properties :
a) A is upper semicontinuous, A(») := a(r, », 27, 7, 2r), v « P,,
b) A, (rg) >0 for some 7, 20, where 4,:=4", =0, 1,....
Suppose that
(2.2) there exist ¥y & X and s « N that
a) d(xg, T"%y) =7, for £ N,
b) (X, p) is (T, w, x,)—orbitally complete M54 —space,
c) T* is (T, w, x,)—orbitally continuous with respect to p.
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(2.3) for (T, w, x,) —orbit, (x,) & '
" ) 3 3 R W/ P(xw T xn) é b d xn! TL X, ’
eNy % = N, where b: P, —G, is non — decreasin a(n(g upper szgznigone-
tinuous function such that 5(0) = 0.

THEOREM 2.1. If the assumptions (2.1)—(2.3) are fulfilled

' ; . 1/ assu . : 2 fulfilled th

ejnsts_a Sfixed point % of T* in X. Moreover if s is a ﬁ{iv{sor of 11;% fng——g
= w(x) and (X, d) is M,—space then % is a unique fived point of, T in
By(%, 7o) = {x « X: d(%, y) < 7)) and if A.(r) >
% 18 a unique fixed point gf) T M?&} X. R itientzastur. <, P Yehen

Proof. We denote p,, = d(x,, T* %), x, = TV oo, m=1 2
o P =sup{pui: 1 = 1} and p, = sup {p,: k = n}, n <« N, Then';b,,;l. <

S A(p,) s .. 2 Ausi(ry) (see the proof of Theorem 2.1 0

LIS < 1 ([11]) and
Thus (x,) is a Cauchy (T, w, x,) —orbit in (X, d).( [Fr]o)n? 11(2.7;5’ _Zxoj
is a Cauchy (7, w, xo)—orbit in (X, p). Thus from (2.2) ¢) there exists feX

that p(x,, %) 2 0 as #—»00. On the other hand fr =
= ‘ > 00. : rom (2.3), p(T°x,, =

as #—-00. Obviously in Mygs —space (X, p) 1111151;( bc) mp(: Tz x“I)f fo(r}
:son]‘}e leN,m=1. S where m = w(#), then also # = T"z. If (X, d)
1i 2’3'4<_i1p6(w€3 and d(f\? ) dg yﬁ for § = I™y, then d(%, ) = A(d(z y)}' =
S ... 24,07), » eN, and thus 2 = 9. If 2 = T'% i y unique fixed
point of 7° in X then % is a unique fi}J{}'ed point of A'T linaXumque fxh

Remark 2.1. In the case G, = P, = R, we obtaj ‘ i
L —_ : . tain th -
sion of lh@r_e\m 2.1. In particular the wcfl——known 1'esu§:t n;?g\liﬁl V[e21]
is included in Theorem 2.1. For this purpose it is sufficient to take (X, o)
and (X, ci)_ as metric spaces, (X, p)-a complete w(x) = 1 for «x é X ;lnpd
I' — continuous with respect to p, a(r, ..., vg) =k -, 7 (R =1
o5, 035 k<1and b= idy,. R

THROREM 2.2. Let (X, d) be Mysy —space, d: X2— P
. : ) 34 —Space, d. X2 d let T:
XX *and W ! X—-—N be _suc}z that the assumptions (2.1)—(5.2)6120%: wz;k
d = p. Then theve exisis & = Bxg, 7o) such that & = Tz, If s is a divi-
sor of m, m = w(%), then % is a unigue fixed point of T in B(x, r,) U

U B(%q, #o). Moreover, if A,(27)) >0 as # —» : n -
n—-00 and % 1S a unique fixz(zd (jgoint of T in Bo?p:',ﬁgﬁ)aﬁoBaxa;f iy
Proof. We have as in Theorem 2.1, #,—#, # = X wheor’c (;) e
(T, w, xy)—orbit. We get d(z, %) = d(x,, ) - d(x 1-’) <y —J—?'“ fI:
" e.N, where (7,) e Sy(P.) and thus d(z, Xg) < 7 J”i.(; Ux=: “B(x U?"O)
Obymusly, %= T"x and if s is a divisor of m, tﬁenux 15 a uﬁi( e Ofixgi
point of T* in B(fe, 7o) (see the proof of Theorem 2.1), If s :1 1 th(c;;
for y & B(xo, 7o), ¥ = Ty, (%, §) < d(%, x,) + d(x,, 5) = A,(r)) - 4,(r,)
and consequently £ = ¥ and £ is a unique fixed point of T in }%(:rn ¥ “) L“j

‘0 o

U B(#, 7,). In the case 4,(270) % 9 45 4+ 00 we have for kzm = w(x)

Z:Tﬁ\?,k:l-m—f—g O<g<mm——w(f)t<A
- : , U= ymo=w(x), t, £ A(t,_n), where ¢, =
sup{ti:k 2 u}, n=m, m+1,..., ¢ =d(T*x, %), & « N. From the

%):0 = k< m})we get t, 0, where # =
s g<m and (4;) is the sequence as in (2.1) b).

o
fo]

estimation ¢,

=1-m+q,
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Remark 2.2. In the paper [11] we give some conditions on the func-
tion a which guarante the boundedness of the 1—orbit of T starting {rom
%y « X and the (T, w, x,)—orbitally continuity of 7™, where m = w(),
£ = lim T*%x,.

11—=roC

a) Let the assumptions of Theorem 2.2 be fulfilled without (2.2)
¢) and A,(r) 2+ 0 for any 7 « Py. Then there exists a unique fixed point
of 7 in X. It is enough to prove (see the proof of Theorem 2.2 of [11])
that 7™ is (T, w, x,) —orbitally continuous, where m = w(%£), £ = lim
T % . We have 7,41 < A(@, + », + 7,), » e N, where 7, = sup {d(T"x,,
T"%): k 2 n}, @, = sup {w,: k z w}, w, = d(x,, T" %), 4, sap {d(%,, %pq1) :
k zm#n}, R, n e N. Thus £ is 2 unique fixed point of T"in X and # is a
unique fixed point of T in X.

b) Let (X, d) be Mys, —space, d: X2— R, . Let the incquality (2.1)
of Theorem 2.2 holds with a(ry, ..., 75) =k, - 71+ ... + ks - 75 for &,
v, R, ©=1,...,5 Suppose that

(24)  hy 4 By + kg o ka4 Ry < 1 and ky + 2k + kg + ks < 1

and there exists %, « X such that (X, d) is (T, w, x,)—orbitally com-
plete. Then there exists a unique fixed point % of T in X and T"x,—
—» % as n—w 0. (see Remark 2.2 of [11]). For some less restrictive conditions
on the comparative function a in the case d: X*— R, see J. Matkowski

[9].

Remark 2.3. Let (X, d) be Mjs4 —space with d: X2— R, n e N.
Suppose that the inequality (2.1) of Theorem 2.2 holds with a(ry, ...
o) =K, o+ Ky vy o+ K-, v R =1 ..., D, where
K, 1=1 ,5 are non —negative # X # — matrices such that

3 e

(2.5) a) there exist products
L= — Ky — K)'(I + K, + Ky
L,= (I — K, — K,)7'(I + K; + Kj)
b) v(Ks + Ky) <1, 7(Ly) <1 and 7(L) <1,

where L =K, + K, + K, + K, + K, and 7(M) denotes the spectra
radius of M, and there exists x, « X such that (X, d) is (T, w, %,)—orbi-
tally complete. Then there exists a unique fixed point % of T in X and
T"x,— % as n— 0. (see Remark 2.2 of [11] and Remark 3.4 of (10]).
For fixed point theorems for multivalued contractions and common fixed
point theorems for contractions in such generalized metric space see papers

of T.LA. Rus [13]—[15].

'3. Some generalization of O. Hadli¢ and W. Netes theorems

Here we consider the case of HadZié¢-Netes type conditions putting
on the class of operators fulfilling the generalized contraction conditions.
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Let (X, d) be M,4,—space defined by the family of semimetrics
d = (d)jey. Let T: X—+X and w:X—N be given mappings such that

(B.1) &(TeWz, To¥y) < a)(d(x, ), d(x, T9x), d(y, T*y), d(z, Tewy),
d(y, T*9z)),

where q,: (R])*— R, is non—decreasing and
. @) A, is upper semicontinuous, A,(r) = a,(r, 7, 27, 7, 27), r e R,
7=
b) Ai(ro)—>0 as n—o0 for some 7, = RJ, where A7 = idy; and
£

A4 =A,047, n=0,1, ...,

{;-{-l
(3.2) there exist %y « X and s « N that

@) dyxg, T"%) < #o(j) for £ =N and j < J,
b) (X, d) is (T, w, x,)—orbitally complete
¢) T*is (T, w, x,)—orbitally continuous.

. THEOREM 3.1. If the assumptions (3.1)—(3.2) are fulfilled them theve
exists % e Bxo, 7o) = {x @ X:p(x, %) < #4(j), § =]} such that % —
=1I'z. If s is a divisor of m, m = w(%), then % s a unique fized point of
T* in B(x,, 7o) and if s = 1 then % is a unique fixed point of T in B(x,,
7o) U B(_ae, 70). Moveover, if A,(27,) =0 as w—00 then T'xo— % and %
15 a umique fixed point of T in B(x,, 2v,) \U B(x, 2r,).
ax dWe may omit the proof that all assumptions of Theorem 2.2 are ful-
illed.

Example 3.1. Let the function a,, j < J of Theorem 3.1 have the form

5
(3.3) a(ry ..., 75) = Z_\{kf(j) Yosan R(7) 20,
= 1, ...,S,j E], Wherefi:]—vj, v, = (Vi,j)jej, 1 = 1, ,5
In this case we assume that the series
(1) ;An—x(ﬁ %) and  (2) jzz‘fn—n(jr %)

are convergent, where

A4(4, xo) = A1U: %o) = max a(T" xo, %),
_ 5 5
Az =2 ... 2 ki, (Fu(d, o, + 00y 1)) - m(%4, m)

5
Al o) =3 Do, DT Bi ,(Fid, G0, o0 dy)) - (g, 0), =23, ..,
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where
Fii1(j, Zos « o, 1) Zfilofi,_l °...0f.)()
for
1=0,1, ..., fi,=1dd,, k, =k, for 1 {1, 4,5}, k, =0, &, =2k,

and -
m(%o, ) = max {d. (T"%y, %)}, n = N.
w=w(xg)
Remark 3.1. If in Example 3.1 the series (1)—(2) are convergent then
the comparative function 4 = (4,);c; fulfils the assumptions of Theorem
3.1 (see also Remark 2.2 b)).

Remark 3.2. If in Theorem 3.1, (X, d) is a locally convex and sequen-
tially complete Hausdorff space with the topology defined by the family
of seminorms d = (d,)jey, a,(ry, ..., 75) = ky - j7y, fi(j) and T is conti-
nuous then we obtain the stronger version of Theorem of [5]. In [5],

O. Had?i¢ assume that D ) #-A, < 00 (We assume only that » A,,<oo) and
n=1 n=1
She prove the uniqueness of the fixed point of T in the set B(x,, S),

S =>4, (we get the uniqueness in B(x,, S) U B(x, S)). It is easy to
n=1
see that without the assumption that T is continuous we may to prove
in this case that T™, m = w(x),is (T, w, x,)—orbitally continuous and
thus # is a unique fixed point of 7™ in B(%, S).
Example 3.2. Let (X, d), T, w and %, be such as in Example 3.1, and
the comparative function have the form (3.3). Suppose that

5 5 #n—1
DY 3.3 [rzati=3 . 3 T A El s k)
7] MG EN ko(5)<(0,1) =1 i, =1}=0

and

YA d V@ wem) = de ) Ee Tra)s L
JST i) pij)e (0, M) PENo
< ¢(g) - 2"(9)),
where F(j, g, ..., 1) is defined as in Example 3.1, /=0, 1, ... and
kB, =k, for i {1, 2, 4, 5}, %k, =2k,
In this case
5
Au(j! xO) = C(j)j)nil(j) 21' ‘'

and

Z_ZA,,‘(j, %) << 00,
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Remark 3.3. From Example 3.2 we get the generalization of theorem

of W. Netes [12]. For this purpose it is sufficient to place (X, d) as the
locally convex and sequentially complete Hausdorff space with the topo-
logy defined by the family of seminorms d = (d,)je;, T — continuous

and a(ry, ..., 7)) =k j =] vneRLi=1...,5

(1]
(2]
(3]

(4]
(5]

(6]
7]
(8)
[9)
[10]
[11]
[12)
[13]
(14]
[15]
(16]
[17]
18]
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