MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 13, N° 1, 1984, pp. 15-22

DUALITY IN MATHEMATICAL PROGRAMMING IN COMPLEX SPACE. CONVERSE THEOREMS

by

DOREL, I. DUCA (Cluj-Napoca)

1. Introduction

ment for the standard of the same of the same

Consider the pair of dual problems:
Primal problem

(P)
$$\begin{cases} \operatorname{Re} f(z) \to \min \\ z \in M \\ g(z) \in S, \end{cases}$$

and

Dual problem

(D)
$$\begin{cases} \operatorname{Re} \left[f(z) - \langle g(z), u \rangle \right] \to \max \\ \frac{(z, u)}{\nabla_z f(z)} \in M \times S^* \\ \overline{\nabla_z f(z)} + \overline{\nabla_z f(z)} - \overline{\nabla_z g(z)} u - \overline{\nabla_z g(z)} \overline{u} = 0, \end{cases}$$

where M is an open nonempty set in \mathbb{C}^n , S is a closed convex cone in \mathbb{C}^m and $f: M \to \mathbb{C}$ and $g: M \to \mathbb{C}^m$ are differentiable functions on M. In this paper some converse duality theorems are given.

2. Notation and Preliminaries

Let $\mathbf{C}^n(\mathbf{R}^n)$ denote the *n*-dimensional complex (real) vector space with Hermitian (Euclidean) norm $||\cdot||$, $\mathbf{R}^n_+ = \{x \in \mathbf{R}^n : x = (x_j), x_j \ge 0, j = 1, \ldots, n\}$ the nonnegative orthant of \mathbf{R}^n , and $\mathbf{C}^{m \times n}$ the set of $m \times n$ complex matrices. If A is a matrix or a vector, the \bar{A} , A^T , A^H denote

its complex conjugate, transpose and conjugate transpose respectively. For $z=(z_i),\ w=(w_i)\in \mathbb{C}^n:\langle z,w\rangle=w^Hz$ denotes the inner product of z and w and $\operatorname{Re} z=(\operatorname{Re} z_i)\in \mathbf{R}^n$ denotes the real part of z.

The nonempty set S in \mathbb{C}^m is a polyhedral cone if it is a finite intersection of closed half-spaces in \mathbb{C}^m , each containing 0 in its boundary, i.e. there exists a natural number q and q points u^1, \ldots, u^q in \mathbb{C}^m such that

$$S = \bigcap \{H(u^k) : k \in \{1, \ldots, q\}\},\$$

where

$$H(u^k) = \{v \in \mathbb{C}^m : \operatorname{Re} \langle v, u^k \rangle \ge 0\} \text{ for all } k \in \{1, \ldots, q\}.$$

If $S = \bigcap \{H(u^k) : k \in \{1, \ldots, q\}\}$ is a polyhedral cone in \mathbb{C}^m and $v \in S$, then S(v) is defined to be the intersection of those closed half-spaces $H(u^k)$, $k \in \{1, \ldots, q\}$ which include v in their boundaries, i.e.

$$S(v) = \bigcap \{H(u^k) : k \in E\}, \text{ where } E = \{k \in \{1, \ldots, q\} : \operatorname{Re} \langle v, u^k \rangle = 0\}.$$

The polar S^* of a nonempty set S in \mathbb{C}^m is defined by

$$S^* = \{ u \in \mathbb{C}^m : v \in S \Rightarrow \text{Re } \langle v, u \rangle \ge 0 \}.$$

We shall make use of the following [2]: If S and T are closed convex cones in \mathbb{C}^m , then $(S \times T)^* = S^* \times T^*$, $(S^*)^* = S$, $(S \cap T)^* = \operatorname{cl}(S^* + T^*)$, where cl denotes closure.

We shall also need the following results:

LEMMA 1 [10]. Let S be a polyhedral cone in \mathbb{C}^m and let $v \in S$. Then $u \in (S(v))^*$ iff $[u \in S^*$ and $\text{Re } \langle u, v \rangle = 0$].

LEMMA 2 [2]. Let $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$ and $S \subseteq \mathbb{C}^m$ be a polyhedral cone. Then the following are equivalent:

(i) Az = b, $z \in S$ is consistent

(ii) $A^H u \in S^* \Rightarrow \text{Re } \langle u, b \rangle \ge 0$. (Farkas'lemma)

Let M be an open set in \mathbb{C}^m and let $z^0 \in M$. A function $f: M \to \mathbb{C}$ is said to be differentiable at z^0 if there exist 2n complex numbers $A_1(z^0), \ldots, A_n(z^0), B_1(z^0), \ldots, B_n(z^0)$ and a function $h(\cdot; z^0): M \to \mathbb{C}$ continuous at z^0 and vanishing at this point

$$\lim_{z \to 0} h(z; z^0) = h(z^0; z^0) = 0$$

such that

$$f(z) - f(z^0) = \sum_{j=1}^n A_j(z^0)(z_j - z_j^0) + \sum_{j=1}^n B_j(z^0)(\bar{z}_j - \bar{z}_j^0) +$$

 $+ ||z - z^0|| h(z; z^0) \text{ for all } z \in M.$

If for $z = x + iy \in M$ $(x, y \in \mathbf{R}^n)$ we have f(z) = u(x, y) + iv(x, y), then the function f is differentiable at $z^0 = x^0 + iy^0 \in M$ if and only if the functions u and v are differentiable at $(x^0, y^0) \in \mathbf{R}^{2n}$. If we consider the

formal differential operators

3

2

$$\frac{\partial}{\partial z_{j}} = \frac{1}{2} \left[\frac{\partial}{\partial x_{j}} - i \frac{\partial}{\partial y_{j}} \right] \text{ and } \frac{\partial}{\partial \bar{z}_{j}} = \frac{1}{2} \left[\frac{\partial}{\partial x_{j}} + i \frac{\partial}{\partial y_{j}} \right]$$

for all $j \in \{1, ..., n\}$, we obtain that

$$A_j(z^0) = \frac{\partial f}{\partial z_j}(z^0), \ B_j(z^0) = \frac{\partial f}{\partial \bar{z}_j}(z^0) \ \text{for all } j \in \{1, \ldots, n\}.$$

If $f: M \to \mathbb{C}$ is differentiable at $z^0 \in M$ then

$$abla_{ar{x}}f(z^0) = \left(rac{\partial f}{\partial z_1}\left(z^0
ight), \; \ldots, \; rac{\partial f}{\partial z_n}\left(z^0
ight)
ight)^{m{r}} \in \mathbb{C}^n,$$

$$abla_{ar{x}}f(z^0) = \left(rac{\partial f}{\partial ar{x}_1}\left(z^0
ight), \; \ldots, \; rac{\partial f}{\partial ar{x}_n}\left(z^0
ight)
ight)^{m{r}} \in \mathbb{C}^n.$$

The function $g = (g_k): M \to \mathbb{C}^m$ is said to be differentiable at $z^0 \in M$ if for any $h \in \{1, \ldots, m\}$ the function g_k is differentiable at z^0 . If $g = (g_k): M \to \mathbb{C}^m$ is differentiable at $z^0 \in M$, then

$$\nabla_{z}g(z^{0}) = (\nabla_{z}g_{1}(z^{0}) \dots \nabla_{z}g_{m}(z^{0})) \in \mathbb{C}^{n \times m},$$

$$\nabla_{z}g(z^{0}) = (\nabla_{z}g_{1}(z^{0}) \dots \nabla_{z}g_{m}(z^{0})) \in \mathbb{C}^{n \times m}.$$

The function $g = (g_k): M \to \mathbb{C}^m$ is said to be differentiable on M if it is differentiable at any $z \in M$. If $g: M \to \mathbb{C}^m$ is a differentiable function at $z^0 \in M$, then

$$\nabla_z \bar{g}(z^0) = \overline{\nabla_{\bar{z}} g(z^0)} \quad \text{and} \quad \nabla_{\bar{z}} \bar{g}(z^0) = \overline{\nabla_z g(z^0)}.$$

Let M be an open nonempty set in \mathbb{C}^n , let $z^0 \in M$, let S be a closed convex cone in \mathbb{C}^m , and let $f: M \to \mathbb{C}^m$ be a differentiable function at z^0 . The function f is said to be:

a) convex with respect to S at z^0 if for any $z \in M$,

$$f(z) - f(z^{0}) - [\nabla_{z} f(z^{0})]^{T} (z - z^{0}) - [\nabla_{\bar{z}} f(z^{0})]^{T} (\bar{z} - \bar{z}^{0}) \in S;$$

b) pseudoconvex with respect to S at z⁰ if

$$z \in M [\nabla_z f(z^0)]^T (z - z^0) + [\nabla_{\tilde{x}} f(z^0)]^T (\tilde{z} - \tilde{z}^0) \in S \} \Rightarrow f(z) - f(z^0) \in S;$$

c) quasiconvex with respect to S at zo if

d) concave (pseudoconcave, quasiconcave) with respect to S at z^0 if -g is convex (pseudoconvex, quasiconvex respectively) with respect to S at z^0 ;

^{2 —} L'analyse numérique et la théorie de l'approximation — Tome 13, No. 1. 1984,

e) convex (concave, pseudoconvex, pseudoconcave, quasiconvex, quasiconcave) with respect to S on M if g is differentiable on M, M is convex and g is convex (concave, pseudoconvex, pseudoconcave, quasiconvex, quasiconcave respectively) with respect to S at any $z^0 \in M$.

When reffering to the objective function of a programming problem in complex space, convexity of real part is of interest. Let M, be an open nonempty set in \mathbb{C}^n , let T be a closed convex cone in \mathbb{R}^m , and let $f: M \to \mathbb{R}^m$ \rightarrow C'' be a differentiable function at $z^0 \in M$. The function f is said to be:

a) with convex (concave, pseudoconvex, pseudoconcave, quasiconvex, quasiconcave) real part with respect to T at zo if f is convex (concave, pseudoconvex, pseudoconcave, quasiconvex, quasiconcave respectively) with respect to $CT = \{v \in \mathbb{C}^m : \text{Re } v \in T\}$ at z^0 ;

b) with convex (concave, pseudoconvex, pseudoconcave, quasiconvex, quasiconcave) real part with respect to T on M if f is convex (concave, pseudoconvex, pseudoconcave, quasiconvex, quasiconcave respectively) with respect to $CT = \{v \in \mathbb{C}^m : \operatorname{Re} v \in T\}$ on M.

From Theorem 4 and Corollary 2 of [5] it follows

THEOREM 1. Let M be a nonempty open set in \mathbb{C}^n , let $z^0 \in M$, let S be a polyhedral cone in \mathbb{C}^m and let $f: M \to \mathbb{C}$ be a differentiable function at z^0 . Let $A, B \in \mathbb{C}^{m \times n}$ let $b \in \mathbb{C}^m$ and let $g : \mathbb{C}^n \to \mathbb{C}^m$ defined by the formula $g(z) = Az + B\bar{z} + b$ for all $z \in \mathbb{C}^n$. If z^0 is a local solution of the problem

$$\begin{cases} \operatorname{Re} f(z) \to \min \\ z \in Mz \end{cases} = 1 \text{ doisont of } f$$

then there exists $v \in S^*$ such that

18

then there exists
$$v \in S^*$$
 such that
$$\overline{\nabla_z f(z^0)} + \nabla_{\overline{z}} f(z^0) - \overline{\nabla_z g(z^0)} v - \nabla_{\overline{z}} g(z^0) \overline{v} = 0$$

$$\operatorname{Re} \langle g(z^0), v \rangle = 0.$$
3. Results

THEOREM 2. Let M be a nonempty open set in \mathbb{C}^n , let S be a polyhedral cone in \mathbb{C}^m , and let $f: M \to \mathbb{C}$ and $g: M \to \mathbb{C}^m$ be differentiable functions on M. Let (z^0, v^0) be a solution of Dual problem (D). Assume that f has pseudoconvex; real part with respect to \mathbf{R}_+ at z^0 and g is quasiconcave with respect to $S(g(z^0))$ at z^0 . If there exists an open set $U \subseteq \mathbb{C}^m$ containing u^0 and a function $h: U \rightarrow M$ differentiable on U such that

$$h(u^0) = z^0$$

(3)
$$\overline{\nabla_z f(h(u))} + \nabla_{\overline{z}} f(h(u)) - \overline{\nabla_z g(h(u))} u - \nabla_{\overline{z}} g(h(u)) \overline{u} = 0$$

for all $u \in U$, then z^0 is a solution of Primal problem (P) and $\operatorname{Re} f(z^0) =$ $= \operatorname{Re} F(z^0, u^0), \text{ where } F(z, u) = f(z) - \langle g(z), u \rangle \text{ for all } (z, u) \in M \times \mathbb{C}^n.$ *Proof.* We define the function $\varphi: U \to \mathbb{C}$ by formula

$$\varphi(u) = \langle g(h(u)), u \rangle - f(h(u)), \text{ for all } u \in U.$$

DUALITY IN MATHEMATICAL PROGRAMMING

From (3) it follows that, for each $u \in (U \cap S^*)$, the point $(h(u), u) \in$ $\in M \times S^*$ is a feasible solution of Dual problem (D). Since $(z^0, u^0) =$ $=(h(u^0), u^0)$ is a solution of Dual problem (D) we have that u^0 is a solution of the problem

Minimize Re $\varphi(u)$ subject to $u \in U$, $\psi(u) \in S^*$, where $\psi: \mathbb{C}^m \to \mathbb{C}^m$ is defined by $\psi(u) = u$ for all $u \in \mathbb{C}^m$. Then by Theorem 1, it follows that there exists a point $v \in (S^*)^*$ such that

(4)
$$\overline{\nabla_{u}\varphi(u^{0})} + \nabla_{\overline{u}}\varphi(u^{0}) - \overline{\nabla_{u}\psi(u^{0})}v - \nabla_{\overline{u}}\psi(u^{0}) \overline{v} = 0,$$

$$\operatorname{Re}\langle\psi(u^0),v\rangle=0.$$

Since

$$\nabla_{u}\varphi(u) = \left[\nabla_{u}h(u)\right]\nabla_{z}g(h(u))\tilde{u} + \left[\nabla_{u}\tilde{h}(u)\right]\nabla_{z}g(h(u))\tilde{u} - \left[\nabla_{u}h(u)\right]\nabla_{z}f(h(u)) - \left[\nabla_{u}\tilde{h}(u)\right]\nabla_{z}f(h(u)),$$

$$\nabla_{u}\varphi(u) = \left[\nabla_{u}h(u)\right]\nabla_{z}g(h(u))\tilde{u} + \left[\nabla_{u}\tilde{h}(u)\right]\nabla_{z}g(h(u))\tilde{u} - \left[\nabla_{u}\tilde{h}(u)\right]\nabla_{z}f(h(u)) - \left[\nabla_{u}\tilde{h}(u)\right]\nabla_{z}f(h(u)) + g(h(u)),$$

$$\nabla_{u}\psi(u) = I, \ \nabla_{u}\psi(u) = 0 \text{ for all } u \in U,$$
from (2) we have

$$\nabla_{u}\varphi(u^{0}) = \left[\nabla_{u}h(u^{0})\right]\nabla_{z}g(z^{0})\,\vec{u}^{0} + \left[\nabla_{u}\bar{h}(u^{0})\right]\nabla_{z}g(z^{0})\,\vec{u}^{0} - \\
- \left[\nabla_{u}h(u^{0})\right]\nabla_{z}f(z^{0}) - \left[\nabla_{u}\bar{h}(u^{0})\right]\nabla_{z}f(z^{0}),$$

$$(6) \qquad \nabla_{\bar{u}}\varphi(u^{0}) = \left[\nabla_{\bar{u}}h(u^{0})\right]\nabla_{z}g(z^{0})\,\vec{u}^{0} + \left[\nabla_{\bar{u}}\bar{h}(u^{0})\right]\nabla_{z}g(z^{0})\bar{u}^{0} - \\
- \left[\nabla_{\bar{u}}h(u^{0})\right]\nabla_{z}f(z^{0}) - \left[\nabla_{\bar{u}}\bar{h}(u^{0})\right]\nabla_{z}f(z^{0}) + g(z^{0}),$$

 $\nabla_u \psi(u^0) = I$, $\nabla_u \psi(u^0) = 0$, where I is the identity map. From (1), (2), (6) and (4) we deduce $v = g(z^0)$. Since S is a polyhedral cone we have $(S^*)^* = S$, and hence $g(z^0) = v \in S$. Therefore z^0 is a feasible solution of Primal problem (P). Since $\psi(u^0) = u^0$ and $v = g(z^0)$, from (5) we deduce

(7)
$$\operatorname{Re} \langle u^0, g(z^0) \rangle = 0.$$

By Lemma 1, $u^0 \in (S(g(z^0)))^*$, because $u^0 \in S^*$ and $\text{Re } \langle u^0, g(z^0) \rangle = 0$. Let now z be a feasible solution of Primal problem (P); then

(8)
$$g(z) \in S \subseteq S(g(z^0)).$$

Obviously

$$(9) -g(z^0) \in S(g(z^0)).$$

21

$$g(z) - g(z^0) \in S(g(z^0)).$$

By the quasiconcavity of g with respect to $S(g(z^0))$ at z^0

$$g(z) - g(z^0) \in S(g(z^0))$$
 implies

$$[\nabla_z g(z^0)]^T (z - z^0) + [\nabla_{\bar{z}} g(z^0)]^T (\bar{z} - \bar{z}^0) \in S(g(z^0)).$$

Since $u^0 \in (S(g(z^0)))^*$ we have

$$\text{Re } \langle [\nabla_z g(z^0)]^T (z-z^0) + [\nabla_{\bar{z}} g(z^0)]^T (\bar{z}-\bar{z}^0), u^0 \rangle \ge 0,$$

or, equivalently

(10)
$$\operatorname{Re} \left\langle \overline{\nabla_z g(z^0)} u^0 + \nabla_z g(z^0) \overline{u}^0, \ z - z^0 \right\rangle \ge 0.$$

Now

20

Re
$$\langle \overline{\nabla}_z f(z^0) + \overline{\nabla}_{\overline{z}} f(z^0), z - z^0 \rangle = \text{(by (2) and (3))}$$

$$= \text{Re } \langle \overline{\nabla}_z g(z^0) u^0 + \overline{\nabla}_{\overline{z}} g(z^0) \overline{u}^0, z - z^0 \rangle \ge \text{(by (10))}$$

$$\ge 0,$$

which by pseudoconvexity of real part of f with respect to \mathbf{R}_{+} at z^{0} gives $\operatorname{Re} f(z) \geq \operatorname{Re} f(z^0)$. Thus z^0 is a solution of Primal problem (P). Now, it follows easily that Re $F(z^0, u^0) = \text{Re}\left[f(z^0) - \langle g(z^0), u^0 \rangle\right] = \text{Re}\left[f(z^0), \text{ be-}\right]$ cause (7) holds. This completes the proof.

THEOREM 3. Let M be an open nonempty set in C", let S be a polyhedral cone in \mathbb{C}^m and let $f: M \to \mathbb{C}$ and $g: M \to \mathbb{C}^m$ be differentiable functions on M. Let $z^0 \in M$ be a feasible solution of Primal problem (P), let f be with quasiconcave real part with respect to R, at zo and let g be pseudoconvex with respect to S at zo. If Dual problem (D) has no feasible solution, then zo cannot be a local solution of Primal problem (P) (hence, not a solution of Primal problem (P)).

Proof. Because Dual problem (D) has no feasible solution, we have that the system

(11)
$$\begin{cases} \overline{\nabla_z g(z^0)} u + \nabla_{\overline{z}} g(z^0) \overline{u} = \overline{\nabla_z f(z^0)} + \nabla_{\overline{z}} f(z^0) \\ u \in S^*, \end{cases}$$

has no solution $u \in \mathbb{C}^m$. System (11) can be written as

$$\begin{cases} \left[\overline{\nabla_z g(z^0)} \quad \nabla_{\overline{z}} g(z^0)\right] \quad \begin{bmatrix} u \\ v \end{bmatrix} = \overline{\nabla_z f(z^0)} + \nabla_{\overline{z}} f(z^0) \\ \left[\begin{matrix} u \\ v \end{matrix} \right] \in (S^* \times \overline{S^*}) \cap Q, \end{cases}$$

where $Q = \left\{ \begin{bmatrix} u \\ v \end{bmatrix} \in \mathbb{C}^{2m} \colon v = \overline{u} \right\}$. Then, by Farkas'lemma (Lemma 2), the system

DUALITY IN MATHEMATICAL PROGRAMMING

$$\begin{cases} \left[\left[\nabla_z g(z^0) \right]^T \right] w \in ((S^* \times \overline{S^*}) \cap Q)^* \\ \left[\left[\nabla_{\overline{z}} g(z^0) \right]^H \right] w + \nabla_{\overline{z}} f(z^0), w \rangle < 0, \end{cases}$$

has a solution $w = w^0 \in \mathbb{C}^n$. Since $((S^* \times \overline{S^*}) \cap Q)^* = S \times \overline{S} + Q^* = S \times \overline{$ $+\{(t,p)\in C^{2m}: p=-\bar{t}\}, \text{ it follows that there exists } (w^0,s^0,r^0,t^0)\in \mathbb{C}^n\times S\times S\times \mathbb{C}^m \text{ such that}$

$$[\nabla_z g(z^0)]^T w^0 = s^0 + t^0$$

(13)
$$[\nabla_{\vec{z}} g(z^0)]^H w^0 = \vec{r}^0 - \vec{t}^0$$

(14)
$$\operatorname{Re} \langle \overline{\nabla_z f(z^0)} + \nabla_{\overline{z}} f(z^0), w^0 \rangle < 0.$$

Conjugating (13) and adding to (12), gives

$$[\nabla_{s}g(z^{0})]^{T}w^{0} + [\nabla_{\tilde{z}}g(z^{0})]^{T}\tilde{w}^{0} = s^{0} + r^{0} \in S,$$

because $s^0, r^0 \in S$ and S is polyhedral cone.

Assume that z^0 is a local solution of Primal problem (P). Since M is open, $z^0 \in M$, and z^0 is a local solution of Primal problem (P), it follows that there exists $r_0 \in \mathbf{R}$, $r_0 > 0$ such that

$$B(z^0; r_0) = \{z \in \mathbb{C}^n : ||z - z^0|| < r_0\} \subseteq M$$

(16)
$$\operatorname{Re} f(z^0) \leq \operatorname{Re} f(z) \text{ for all } z \in X \cap B(z^0; r_0),$$

where $X = \{z \in M : g(z) \in S\}$. Let $r_1 = \min\{r_0, r_0/||w^0||\}$ and r be a reas number in $]0,r_1[$. Then

(17)
$$z^{0} + rw^{0} \in B(z^{0}; r_{0}) \subseteq M.$$

From (14) we have

$$\operatorname{Re}\langle \overline{\nabla_z f(z^0)} + \nabla_z f(z^0), rw^0 \rangle < 0.$$

Since S is cone, from (15) it follows that

$$[\overline{\nabla_z g(z^0)}]^T (rw^0) + [\nabla_{\overline{z}} g(z^0)]^T (\overline{rw^0}) \in S.$$

By the quasiconcavity of real part of f with respect to \mathbf{R}_+ at z^0

Re
$$\langle \overline{\nabla}_z f(z^0) + \nabla_z f(z^0), rw^0 \rangle < 0$$

implies

(18)
$$\operatorname{Re} f(z^0 + rw^0) < \operatorname{Re} f(z^0),$$

and by the pseudoconvexity of g with respect to S at z^0

$$[\overline{\nabla_z g(z^0)}]^T (rw^0) + [\overline{\nabla_z g(z^0)}]^T (\overline{rw^0}) \in S$$

implies

implies
$$g(z^{0} + rw^{0}) - g(z^{0}) \in S.$$

Since S is polyhedral cone, and $g(z^0) \in S$, from (19) we have

$$(20) g(z^0 + rw^0) \in S.$$

From (17), (18) and (20) it follows that $z^0 + rw^0 \in X \cap B(z^0; r_0)$ and $\operatorname{Re} f(z^0 + rw^0) < \operatorname{Re} f(z^0)$, which contradicts (16). Hence z^0 cannot be a local solution of Primal problem (P) (hence, not a solution of Primal problem (P)).

REFERENCES

- [1] Abrams, R. A., Nonlinear Programming in Complex Space: Sufficient Conditions and Duality, J. Math. Anal. Appl., 38, 3, 619-632 (1972).
- [2] Ben Israel, A., Linear Equations and Inequalities on Finite Dimensional, Real or Complex, Vector Space: A Unified Theory, J. Math. Anal. Appl., 27, 367--389 (1969)

- [3] Craven, B. D. and Mond, B., Converse and Symmetric Duality in Complex Non-linear Programming, J. Math. Anal. Appl., 37, 617-626 (1972).
 [4] Duca, D. I., Constraint Qualifications in Nonlinear Programming in Complex Space, Studia Univ. Babes-Bolyai, Math., 23, 61-65 (1978).
 [5] Duca, D. I., Necessary Optimality Criteria in Nonlinear Programming in Complex Space with Differentiability, Mathematica-L'Analyse numérique et la théorie de l'approximation, 9, 2, 163-179 (1980).
 [6] Duca, D. L. Ou, Sufficient Optimality Conditions in Nonlinear Programming in Complex Space, Studia Univ. Babes-Bolyai, Math., 23, 61-65 (1978).
- [6] Duca, D. I., On Sufficient Optimality Conditions in Nonlinear Programming in Complex Space, Mathematica, 22(45), 2, 263-267 (1980).
- [7] Duca, D. I., Programare matematică în domeniul complex, Teză de doctorat, Universitatea din Cluj-Napoca, Cluj-Napoca, 1981.
- [8] Levinson, N., Linear Programming in Complex Space, J. Math. Anal. Appl., 14, 44 - 62 (1966).
- [9] Mahajan, D. G. and Vartak, M. N., Duality for Generalized Problems in Complex Space, Bull. Austral. Math. Soc., 17, 11-22 (1976).
- [10] Mond, B. and Craven, B. D., Sufficient Optimality Conditions for Complex Programming with Quasi-Concave Constraints, Math. Operationsforsch. Statist., Ser. Optimization, 8, 4, 445-453 (1977).
 [11] Parida, J., On Converse Duality in Complex Nonlinear Programming, Bull. Austral.
- Math. Soc., 13, 421-427 (1975).

Received 12, XII, 1983,

University of Cluj-Napoca Faculty of Mathematics R—3400, Cluj-Napoca ROMANIA