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1. Introduction

Consider the pair of dual problems:
Primal problem

Re f(z) - min
{(P) zeM

gls) =5,
and

Dual problem
Re [f(z) — <g(2), )] — max -
(z, ) &€ M x S*
V.f(2) + V;f(z) — Vag(z)u — V(2)% = O,

where M is an open nonempty set in €, S is a closed convex cone in

€" and f: M —C and g: M — C" are differentiable functions on M.
In this paper some converse duality theorems are given.

(D)

2. Notation and Preliminaries

Let C*(R") denote the n-dimensional complex (real) vector space with
Hermitian (Fuclidean) norm ||-||, R*={x e R":x = (x,), % 20, j =
=1, ..., n} the nonnegative orthant of R", and C”** the set of m X »
complex matrices. If A is a matrix or a vector, the 4, A7, A” denote



16 DOREL I. DUCA 2

its complex conjugate, transpose and conjugate transpose respectively.
For z = (z), w = (w) = C': ¢z w) = w¥z denotes the inner product of
7 and w and Re z = (Re z) = R" denotes the real part of z.

The nonempty set S in €” is a polyhedral cone if it is a finite inter-
section of closed half-spaces in C", each containing 0 in its boundary, i.e.
there exists a matural number ¢ and ¢ points #?, ..., #" in C" such that

S=N{Hw):k<{,....q}
where
H(w) = {v e C": Re (v, u*) z 0} for all ke{l,..., 9}
I S=N{H@) :k={l,.. . q}isa polyhedral cone in €* and v < Sy
then S(v) is defined to be the intersection of those closed half-spaces
H@b), B = {1, ..., ¢} which include v in their boundaries, i.e.

S() = N {H(#*): k € E}, where E={e{l, ..., q:Rey, u®y = 0}.
The polar S* of a nonempty set S in C" is defined by
St ={uesC:0eS=Relv,w = 0}.

We shall make use of the following [2]: If S and T are closed convex
cones in C", then (S x T)% = S* x T*, (S¥)* =5, (SN IT)* = el (S* +
+ T%), where el denotes closure.

We shall also need the following results:

1rvma 1 [101. Let S be a polyhedral cone in C" and let v & S. Then
uw e (S@)* iff [u = S* and Re (u, vy = 0].

vEMMA 2 [2]. Let A € Cnxn b = G° and S < C* be a polyhedral cone.
Then the following are equivalent : :

(1) Az=10b, z € S is consistent

(11) AHy = S* = Re {u, by 2 0. (Farkas'lemma) ‘

Let M be an open set in C* and let 2 = M. A function f: M — G
is said to be differentiable at 2° if there exist 2n complex numbers
A2, .., A2, B2, .. B,(z°) and a function A(-; 2% : M — G con-
tinuous at z0 and vanishing at this point

lim h(z; 2%) = h(z°; 2°) =0

z—rs?

such that

3 "

Fl) — f(20) = 2 A0 (5 — #) + 2 B (& — 7) +

7=1 =1
+ ||z — 29| h(z; 2°) for all z & M.
1t for 2 = x + 1y « M (v, v = R") we have f(z) = u(x, y) + dv(x, y), then

the function f is differentiable at 20 = x° + iy® = M if and ouly if the
functions # and v are differentiable at (x°,y°) < R, If we consider the

(4 1

S TTZ=Hu
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formal differential operators
210 e L[t 2]
81; 2 8;»', 3y, 32’/ 2 f}',l’; ay, .
for all § = {1, ..., n}, we obtain that
A0 = L (29, B0 = L (20) for all j = {1, ..., n}.
E)z, 3:1

If f: M — C is differentiable at 2z € M then

V. f(2%) = (?i @), ..., L (zO))'e e,

3!1 atu
vife) = (L, . Z o) <

I'he function g = (g,) : M — C* is said to be differentiable at z° = M
if for any k € {1, ..., m} the function g, is differentiable at 2% It ¢ =
= (g): M —C" is differentiable at z° € M, then

V.g(2%) = (Viga(2%) - - - Vign(2%) € €,
Vig(z?) = (Va2 ... Vign (20) = L.
The function g = (g,): M — C* is said to be differentiable on M if it is

differentiable at any z € M. If g: M —C" is a differentiable function at
20 M, then

M V) = V@ and V() = V@),

Iet M be an open nonempty set in ¢ let 20 € M, let S be a closed
convex cone in C", and let f: M — C" be a differentiable function at 2%
The function f is said to be:

a) convex with respect to S at 20 if for any z € M,
Fl2) — (2% — [Vof (291" (2 — 2°) — V()17 (2 = 2%) = 55
b) psendoconvex with respect to S at 20 if
zeM
VAT 2 — 29) + (VAT (2 — 29 eS} =/l — /) = 5
¢) quasiconvex with respect to S at 20 if
ze M

fl2%) —flz) =5

- d) concave (pseudoconcave, quasiconcave) with respect o S at 2 if —g
is convex (pseudoconvex, quasiconvex respectively) with respect to S at z%;

} o [V (20— 2) - V)] @ — ) =S;

9 — L'analysc numérique et la théoric de l'approximation — Tome 13, No. L. 19684,
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e) convex (comcave, pseudoconvex, psendoconcave, quUASICONVEX, qUASI-
concave) with vespect to S om M if g is differentiable on M, M is convex
and g is convex (concave, pseudoconvex, pseudoconcave, quasiconvex,
quasiconcave respectively) with respect to S at any 20 € M.

When reffering to the objective functionofa programming problem
-in complex space, convexity of real part is of interest. Let M} be an open
nonempty set in €', let 7 be a closed convex cone in R", and let f: M —
— €” be a differentiable function at 20 € M. The function f is said to be:

a) with comvex (concave, pseudoconvex, pseudoconcave, guasiconvex,
quasiconcave) rveal part with respect to T at z° if f is convex (concave,
pseudoconvex, pseudoconcave, quasiconvex, quasiconcave rtespectively)
with respect to CT == {v = €": Rev & T} at 2°;

b) with convex (comcave, pseudoconvex, j)seudoconcave quasiconvex,
quasiconcave) real part with respect to T om M if fis convex (concave,
pseudoconvex, pseudoconcave, quasiconvex, quasiconcave respectively)
with respect to CT = {v = ¢": Rev = T} on M.

From Theorem 4 and Corollary 2 of [5] it follows

THRORLM 1. Let M be a nomempty open set in €', let 2° € M, let S
be a polyhedral cone in C" and let f: M — C be a differentiable function at
20 Let A, B & G Jet b & € and let g €'~ O defined by the formula
g(z) = Az - Bz ++ b for all z € (". If 2° 1s a local solution of the problem

Re f(z) — min
z'e M
g( ) *91
thew there cxisis v € S* such that
V) + Vof(e8) — Voglelo — Vag(e%) B = 0
Re {g(z%), v3 = 0.

J. BResults

THEORIAL 2. Lel M be a nonemply oj)m sl an C', lel S be a poly-
hedral cone in C", and lel [ M — C and g: M — C" be d?f_/(?(ﬁfm(//f Jumc-
tions on M. Let (2% wY) be a solution of Dual problem (D). Assume that f
has pscudoconvex: real part with respect to R, at 2° and g 1s quasiconcave
with respect lo S(g(29) at 2. If there exists an open set U = C" containing
u® and a function ;. U—s M differentiable on U such that

(2) (u® = 2°
(3) V.S () + Vo f(h(u)) — Vag(h(w))u — Vg(h(u)) & = 0

Jor all w & U, then z° is a solution of Primal problem (P) and Re f(2°) =
= Re F(z¢ 2'0) where F(z, u) = f(2) — {g(2), uy for all (2, u) = M > "
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Proof. We define the function ¢: U — € by formula

o(n) — <g(h(u)), uy — f(h(w)), for all & = U.

From (3) it follows that, for each # < (U S*), the point (M{u), u)
= M X S* is a feasible solution of Dual problem (D). Since (2%, u°)
= (h(u®), u°) 1s a solution of Dual problem (D) we have that «? is
solution of the problem
Minimize Re ¢(«) subject to uw = U, (u) = S*,
where ¢ : C" — €" is defined by {(u) = u for all % e € Then by Theorem
1, it follows ‘that there exists a point v € (S*)* such that

==

a

(4) V() + Veo(u®) — V() — Vb(u®) 9 = 0,
(3) Re {b(u?), vy = 0.
Since

Veal(u) = [V ()] Vig(h(u)) @ -+ [Veh(u) 1V£(h(u) & —
— [Veh(u)] Vof(h(w)) — [Vuh(u)] V- f(h(u)),
Vooln) = (Vi) 19.g(h) & 4 [V R()] Vig(h(u) @ —
V) WL F () — [Vih()] V2 f(h() 4 g((u)),
V() = I, V-4(u) = 0 for all w = U,

from (2) we have

Vus(0) = [V.h(u0)1V.gz) 10 -+ [V.h{n0)]V,g(:0) 70 —

— (VB {u)] V() — f\mn(u) V5 /(29),
6) . Vin(nt) = [Vih(u)] Vag(e®) @0 4 [V h(u0)]V;g(z0)70 —
— [V {u0)] Vof(20) w(u) _F(29) + g(z9),

a

Voo(ud) = I, V-(u®) =0, where I is the identity map.

From (1), (2), (6) and (4) we deduce v = g(z%). Since S is a polybedral
cone we have (S#)* =S, and hence g(z°) = v = S. Therefore z° is a feasible
solution of Primal ploblem (P). Since y(x%) = u9 and v = g(2°), from (5)
we deduce
(7) Re (u? g(z% > = 0.
By Lemma 1, #° e (S(g(z%)*, because #° = S* and Re (uf g(z°)) == 0.

Tet now z be a [casible solution of Primal problem (P); then
(8) glz) = S = S(glx?).
Obviously
(9) —g(z9) © S(g(=)).
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Since S(g(z9) is a polyhedral cone, from (8) and (9) we obtain

glz) — g(z%) = S(g(2")).
By the quasiconcavity of g with respect to S(g(z%) at 2°
glz) — g(z%) = S(g(#") implies
[Veg(20) 1" (z — 2%) + [V&(z°) " (2 — 2% = S(¢(2).
Since # = (S(g(29)))* we have
Re {[V.g(z9) ] (z — 2°) + [V;8(z9)]" (2 — 2°), »°> 2 O,

or, equivalently

(10) Re (V.g(z%u® + V-g(z%)7°, 2 — 2% 2 0.

Now
Re (V, (z_") + V-f(z%, z — 2° = (by (2) and (3))

= Re (V,g(2°% u® + V-g(z°)a°, z — 2% z (by (10))
O’

«which by pseudoconvexity of real part of f with respect to R, at 2° gives
Re f(z) = Re f(2°). Thus z° is a solution of Primal problem (P). Now, it
follows easily that Re F(z° #?%) = Re [f(2%) — <g(z°), #°>] = Re f(2°), be-
cause (7) holds. This completes the proof.

THEOREM 3. Let M be an open nonempty set im C", let S be a poly-
hedral cone in C" and let f: M —C and g: M — C" be differentiable func-
tons on M. Let 2° € M be a feasible solulion of Primal problem (P), let
f be with quasiconcave real part with respect to R, at 2° and let g be pseu-
doconvex with respect to S at 2. If Dual problem (D) has no feasible solution,
then 2% cannot be a local solution of Primal problem (P) (hence, not a solu-
tion of Primal problem (P)).

Proof. Because Dual problem (D) has no feasible solution, we have
that the system

[\

(11) {Vzé’(zo)% + V(%)% = V. f(z°) + V;f(z")

u e S*,

has no solution #  C". System (11) can be written as
Vele?) Vi)l | = Vel + vife)

4] == xSHne,
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where Q = { f“] e (2 p = ﬁ} Then, by Farkas'lemma (Temma 2), the
v
system ‘

[Ra]e < 10 0

Re (V.f(2% + V. f(z%, w) < 0,
has a solution w = w® = €. Since ((S*xS*) M Q)* = SXS 4 Q* = SX S+

+ {(t, p) = C: p = —1I}, it follows that there exists (w?, s°, 70, #) = €%
X S x S x €* such that

(12) [V:g(z0) " @0 = 50 + 19

(13) [V:glen) Pwe — 70— 0

(14) Re (TF(0) + Vaf(20), 0? < 0.

Conjugating (13) and adding to (12), gives

(15) (V:g(20) " w0° + [V;g(2%) " @° = s° + 70 = 5,

because 59, #° € S and S is polyhedral comne.

Assume that 2° is a local solution of Primal problem (P).
Since M is open, z° € M, and 2° is a local solution of Primalproblem
(P), it follows that there exists », € R, 7, > 0 such that

Bz r) ={z e C:|lz — 2 <7} s M
and

(16) Re f(z%) = Re f(z) for all z € X (N B(z°;7,),

where X = {z € M :g(z) € S}. Let », = min {ry, 7,/||w°|{|} and » be a real
number in ]0,7[. Then

(17) 20 +rw® e B(z%;7,) € M.

From (14) we have

Re (V,f(z%) + V-f(z9), r0®y < 0. -

Since S is cone, from (15} it follows that

2@ I* (rwt) + [V-g(z)]* (709 < S.
By the quasiconcavity of real part of f with respect to R, at z°

Re (V,f(2% - V-f(z%), r0®) <O

implies

(18) Re f(20 -+ rw?) < Re f(2°),
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and by the pscudoconvexity of g with respect to S at z°

[V:g(29) 1" (r0®) + [V;£(20)]" (rw®) = 5

implies

(19)

g0 + ro%) — g(z9) < S.

Since S is polyhedral cone, and g(z%) = S, from (19) we have

(20)

(2 + rw’) = S.

From (17), (18) and (20) it follows that 2° 4 7w® = X () B(2°; 7,) and
Re f(z° + rw°) < Ref(z°), which contradicts (16). Hence 2° cannot be a
local solution of Primal problem (P) (hence, not a solution of Primal pro-
blem (P)).

=1
(p)
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