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L. Let us consider the general geometric programming problem
(PG) nf {po(x) i pe(x) <1, k=1, ...,7: x> 0},

where p, (¢ =0, 1,...,7), are posynomials, i.e. for all » — (... ) >0
we have

P,;(ﬁ\f) — 2 ui(x) — Z Cixlall x;’fz . xZiu’

wEIk terl,

with the coefficients ¢, >0 (1 I, k — 0,1,...,7) and the exponents
a;eR (j=1,...,n; 1 e L, k=0,1, coent)e Here L, (=0, 1, ...,7)
is the sct of the indices ¢ corresponding to the terms of the posynomial
Pw hence I, VI, =G if h # s and | {I,:k=0,1,...,7} =11, ..., m},
m being the number of all terms of the posynomials p,, k=01, ..., 7
Denote as usually:

Iy, =1{1,2, ..., m)},
I ={my + 1, my +2, ..., My},
Ir — {7nr—1 + 1: my—1 + 2! cae, My = I’Pn}'
The dual of the standard geometric programming problem (PG)
([8], [4]) is the problem

(PGDY)  sup ioy(9) 19205 Do ayy, =0, 5 =1,...,n; 2%:1],
i=1

isl, H
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where
= ﬁ ‘i il Aly)
n(y) = IT{5 ) IT ouio)™,
7\»(3’) a iEZI Y k= 1: » ¥

for all v = (yy, ..., ,) = 0. The restrictions of the dual problem (PGD1)
are lincar and the objective function of the problem (PGD1) is logarith-
mic-concave.

In this paper we will associate to a problem (PG) an other dual
problem in which the objective function is concave and the restrictions
are linear.

We recall (see [1]) that two optimization problems

(P) min {f(x) : x € S}
and
() max {f*(3) 1y = 5%

are said to be dual, if, under certain conditions that will be specified,
the following properties are satisfied:

[. For all ¥ & S and y € §* we have f(x) > f*(y).

11. If the problem (P) has an optimal solution x° then the problem
(D) has an optimal solution y? and f(x9 = f*(y9).

I11. If the problem (D) has an optimal solution y°, then the problem
(£) has an optimal solution x° and f%(y°) = f(x°).

The results in this paper are directly or indirectly based on the follo-
wing lemma.

LEMMA 1. Let m be a natuval number, uy, ..., u, a system of real posi-

frve mumbers, vy, ..., ¥, a system of real nownegative numbers. Then the
inequality

mn m e1t4 ¥y
(1) You =t I1(%

i=1 i=1 \ Vi

holds. In (1) equality holds if and only if w, = vy, for all < =1, ..., m.
The proof is given in [2].
For what follows we define (1/y)! = 1 if y = 0.

"

TLety, >0,...,9, =0 and A(y) = Y y;. Then the following lemma
i=1

s true.
1EMMA 2. Let wy >0, ..., 4,>0, v, 20, ...,y, =20. Then

3"‘
" L Eui) A3

2%, > ln | A(w) H(

i=1 ' Yi

—
DO
=

1l
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the equality bewng valid if and only if u, = (y)|A(y) for all i =1, ..., m.
Proof. Apply Lemma 1 to the systems of real numbers Upy ooy B
and (y1)/My), ., (3 M)
2. Let us consider the general problem of geometric programming
(PG). As dual, we associate the problem :

m

(PGD?2) sup [v(y):y >0; Eaijy,-zo,j:l,...,n},
=1

where
"o fec)s ’
o) =1 | 1T (2] TTouon ] - i),
t=1 ¢ k=1 k=1
with
ANy) = _E%‘, k=1, v

1EI‘:

LEMMA 3. The dual function
B 2,9 :
Z)(y) = In H y_ (M(y)) ¥ B E )\k(y):
=1 i k=1 k=1
Jor all y = (v, ..., %,) =0, is concave.
Proof. The dual function v can be written as follows:

7y

(y) =2 3 In yi + 20400,
=1 ] k=1

where
Hlk ’”I& ”‘k 1",;
flyy= 33 ylnc— 3 yilny+{ 5 yflnf T g,
i=m,_ +1 f=m,_ +1 i=m,_ +1 i=m,_ +1 P

for all y = (yq, ..., v,) =20, k=1, ..., 7
The function

m
4 cc

Eyz In y‘i, for all Vi ov s Vg = 0
=1

is concave, since it is a sum of m, concave functions.
We investigate the comncavity of the functions Jobk=1 ...,7

We have
Oth / ",
() =1 | Sl
At / (,-z,,:;lH y) il

for all 4,7 =my o+ 1, ..., m, k=1, oLty > 0.
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Let 3= (Y1 +osYu) >0, 2= (2, ..., z,) € R" and & = {1, ..., 7}
From Cauchy-Buneakovski-Schwarz’s inequality we get

. 12 "y r i [

5 N o< ad 3
A e e E Z Yils
i=m,_ +1 i=tt,_,+1 Yi 4,'=mk_1+1

or
"y 2
, E =1 .
t=nh_,+1 - Zﬁ 2}
m“-' 1—1»,__1+1 Vi
Ve i
f=m, 41
Then
", ",
m,, ", i Z X Zify
T v ) . q & 1 3” i=m,_,+1 j=m,__1+1
ST I W e et
1'=mk71+1 j=mk_1+1 k y ¥i %‘«'
5
i Vi
s=m,_,+1 P=m_ 41 '
"y 2
DI
Moo g i L e g
_ el ) 55 (2 < o,
t':1;;;:’1+1 Yi ”:" :‘=mﬁd de1 Y
2 Vi it
1'=m~_1+1
Hence for all k={l, ..., 7}, the function f, is concave. Siuce the

dual function v is sum of concave functions, it is also concave.
We denote by '

Sxx eR": x> 0;p%) <1, h="1,..0,7}

and

h

S*={y eR":y >0, ZaijinO,j:l, AR
=1

We observe that.() e R™ is an eclement of the set S*, hence the dual
problem (PGD2) is always consistent.

We will show that the problems (PG) and (PGD2) are dual in the
above-mentioned sense.

THEOREM 1. Let x € S and y € S*. Then py(x) = here equalit
holds +f and only if : ol = Ve D
u(x), 1 1 € I,

(3) yi = o
AA()’) %i(x), 1;/ 1 < Ik; k - 1, acaas Vi

na—72T
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(&)

Proof. By Lemma 1 it follows that
' MY
(4) Po(x) = 2 u,(x) = In I (%fi(»)) ‘J
' Ve

=1, i<l
the equality being valid if and only if
u(x) =y, for all ¢ € I,

By lemma 2 it follows that

L

( () ‘ka
yi !

(5) 1= p(x) = 2o w(x) = In|n(y) L]

vi,eIL_ iE[k_
for all 2 {1, ...,7},; the equality is true if and only if

w(x) = 2 for all i eI, k=1,...,7
2 (y)

Since %, (v) = 0, from (3) we obtain
<®x@»zmmmm:xmﬂwmwzmpmmwﬂﬂfwww

fEIk 1E[k Vi

for all = {1, ..., 7}
Summing the inequalities (4) and (6) for ke {l,..., v}, we obtain

r m cui(x) }’i r

(7) Polx) + ?_31 an(y) = In ljl (—y‘-) g ()\k(y))l,,.(y)}_
or, equivalently

fom (’Ll-,»(x) v, ¥ , 7
(8) po) = n | TT O T ()] — 5 nuly)-

i=1 W)=y 1N k=1

Since u,-(x)-: Crayt At with ¢ > 0 and a; R =1 ..., m,
j =1, ..., n), ncquality (8) becomes -
LR ’é‘,la“,‘i 1‘;1@“‘}’{ r ) v

©) pof) = | [T 5] a7 AT T LM | = 0

Froni (9) it follows that po(x) = v(y). This completes the proof of the first
part of the theorem.

Now we assume that po(x) = v(y). Then inequality (4) and hence all
inequalities (6) must become equalities. By lemma 1, inequality (4) beco-
mes equality if and only if wy(x) = v for all 4 = I,. By lemma 2, the
inequalities in (6) become equalities if and only if #i(x) = (yi)/A(y) for
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all i e I,, k =1, ..., r. Hence the equality py(y) = v(y) implies the equa-
lities (3).

Now suppose that x € S and y € S* satisfy equality (3). Then by
lemma 1 it follows that (4) becomes equality. By lemma 2 each inequality
{rom the second part of relation (6) becomes equality. Since

pulx) = T u(x) =30 Y= )y

= isT, M(¥) A(y)

for all £ =1, ...,7 it follows that each of the two inequalities in (6)
becomes equality, hence po(x) = v(y). This completes the proof of the
weak duality theorem.

COROLLARY 1. We have

inf {po(x): x = S} > sup {v(y) : vy € S*}.

Proof. Apply Theorem 1.

COROLLARY 2. If the points x° « S and y° € S* satisfy the equality
Do (x0) = v(y9), then x° is an optimal solution of the problem (PG) and y°
is an optimal solution of the problem (PGDZ).

Proof. By Corrolary 1, we have

Do(x?) = inf {po(x): x = S} > sup {v(y) 1y & S*} > v(y°).

Since pq (%) = v(y%), we obtain

Po(x°) = inf {po(x) : x = S},

o(y) = sup {o(3): y < %),
and hence x9 is an optimal solution of the problem (PG) and y° an opti-
mal solution of the problem (PGD2). _

THEOREM 2. If the problem (PG) is superconsistent (i.e., there exists

at = (a}, ..., &) > 0 such that p(x2) < 1 for all k=1, ...,7) and if x°
is an optimal solution of the problem (PG), then the problem (PGD2) has
an optimal solution y° and

Do(x°) = v(y°).
Proof. We make a change of variables in problem (PG) by letting

x,=¢4 j=1,...,n
The transformed problem (PG) is
(PG), inf {go(2) 1 gl2) <1, k=1, ..., 7},
where
gl =35 ¢d™ L, k=0,1,...,7,
isl
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with ¢, >0, a; R, 1 =1,...,m;j=1,...,n For ecach £ = {0,...,7}
the function g, is convex because it is a positive linear combination of
convex functions (exponential functions); hence the transformed program
(PG), is convex.

Let %% be an optimal solution of the problem (PG). Since the problem
(PG) is superconsistent, it follows that the transformed problem (PG), is
superconsistent, too. The transformed problem (PG), has an optimal solu-
tion 29 that satisfies the conditions

(10) 2y = In «5, =1 ...,
(11) g.(2%) <1, R=1 ..., 7

Then, by Karush-Kuhn-Tucker’s theorem, there are multipliers p,, & =
=1, ...,7 so that

1) we =0, B=1,...,7
) elgn(z®) — 1] =0, k=1, ..., 7
i) Ve () + 30wV (el — 1) = 0.

The condition 41) is equivalent with

" [ "

2 a0 r S a2

. is %3 ! ; i1 %)

j=1 " ~ =1

(12) > ciage 5w D0 cage
isf, k=1 ie[k

Noting

(13) Yis

"
%1 a, z?

wec; & siel, k=1 ...,7,
from 4) and (12) it follows that y° = (y¢, ..., 9%) € S*. From (13) we
obtain

0
a”zj

)\k‘(yo) = Ey?: }::y‘kciejz :y'kglc(zo)) k= 1: ...,7’,

tEIk sl

‘s

and from 17) we conclude that p,g(z% = p,, hence A(y% = u, for all
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k=1, ..., 7 Then the equalities (13) can be rewritten as

(14) Yir=
‘ iy .Z- a5 ‘ } .
X e S kB T Leesiiestt

After using (10) to write relation (14) in terms of z, we obtain

. wi(x%), 1+ € I

DHESS

{)\k(yo)ui(xo), iel, k=1,.,.,7
Then by Theorem 1 we have p,(x° = v(y% and hence by Corollary ‘2 it
follows that 9 is an optimal solution of the problem (PGD2).

The following theorem is a criterion for the existence of an optimal
solution of the problem (PG).

cHEorREM 3. If the problem (PGD2) has a feasible solution y* with
all components strict positive and if the problem (PG) s consistent, then the
problem (PG) has an oplimal solution x°.

The proof is analogous to the proof of Theorem 8.2 from [4] p. 119.

Next we show how one can obtain an optimal solution for the pro-
blem (PG), if an optimal solution of the problem (PGD2) is knowu.

rHEOREM 4. If the problem (PGD2) has an optimal solution y°, then
any optimal solution x° of the problem (PG) satisfies the system

(l50) 3t 4 < o

(15) wi(x%) =14 g

[ it it eI, ke{{l,...,7}: 0% > 0}
k .

Proof. Let x° be an optimal solution of the problem (PG) and ¥° an
optimal solution of the problem (PGD2). Then, by Theorem 2 we have

(16) Do(x%) = 0(y°),

but by Theorem 1, equality (16) is true iff x° and y° satisfy equations
(3). Hence the equalities (15) are true.
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