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1. Introduction

Szész [10] has shown that for a finite function f(¢) defined on [0, )
and having a suitable rate of growth as £ — oo, the operators

(1) Suf, %) :e-"@f(ﬁ) o 4>0,220
k=0 u

k!

converge, as #—»00, to f(x) at each point ¢/ = ¥ = 0 where f() is conz
tintious. Jakimovski and Ieviatan [5] extended the Szdsz operator (1)
to a class of operators J,(f, %) (see below), generated by the Appel poly-
nomials, and established their convergence as #%—» 00 to real and analytic
functions f.

'he purpose of this note is to introduce a broad family of operators
Pf, x; A, G), which includes the operators Ju(f, x) of [5], establish
their convergence properties and obtain estimates on the rate of conver-
gence. In addition, we provide an application of the new class of operators
to the problem of signal recomstruction from quantized noisy data (Masry
and Cambanis [8]). The convergence properties of the new class are stated
in Section 2, the application is considered in Section 3, and the proofs
are collected in Section 4.
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2. The Operators P,(f, x3 A, G) and Their Convergence Properties

_Let

(2) Az) = Z@ a2, G(z) = 2 Yn?"

be two analytic functions in the disk |z| < R, R > 1, and suppose 4 (1) # 0,
G(1) # 0. Define the polynomials p,(x) = p,.(x; 4, G) by

0.

I\

(3a) A e =3 pu0e,  x

These polynomials are called, variously, sets'of " A-type zero” (Sheffer {9]),
’generalized Appel polynomials” (Erdélyi [4, Vol 3: Chap. 19] and
’Sheffer type” (Boas and Buck [1, Section 101). To ecach function f(¢)
oun [0, co) associate the operators

PJf, x)= P.(f, x; 4, G)

(3b) _ e i (f(kjw) p(ux),  u>0, x = 0.

A1)

k=0

The family of operators P,(f, x; 4, G) is therefore geuel.'ated by the two
functions A (z) and G(z) of (2). In the special case wherf} G(z) = Z, Pu(f; %)
reduces to the operator J.(f, x) studied by Jakimovski and Leviatan (5].
The Szdsz operator Su(f, ¥) corresponds to A(7) =1, G(z) = .

It is seen from (3a) and (3b) that if f(f) has an exponential growth,
[f(5)] < M exp (ut) on [0, o) for some constants M >0, p = 0, then
P,(f, x) exists for x > 0 and » > p/ln R. _ _

A sufficient condition for the operators P,(f, x) to be pU_Si’[l\-’(":‘ in
[0, ) is that the coefficients {a,} and {y,} in (2) are nonnegative. This
can be seen from (2) and (3a) from which we obtain the following explicit
expression for the Sheffer polynomials p,(x):

(4) Pa(¥) = 20 (S, Yo, - -Ys,] ; x20,72=01, ...
7= ’ ¢

where the inner sum extends over all sets of integers {kj}ftzo satisfying
kg 20, R =1, 1 =1, ...; 7 such that >, k; = n. Henceforth we shall
assume that the sequences {@,}, {y,} are nonnegative so that P,(f, x)isa
linear positive operator of the interpolation type. _

Our first objective is to find appropriate conditions on the analytic
functions A(z) and G(z) of (2) which assure the point-wise convergence of
P,(f, %) to f(x), as u—o00, at points of continuity of f. For functions f
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which are bounded on [0, o) such convergence is assured by Korovkin’s
theorem [7, p. 6] provided P,(e;, x)— e;(x), as u— o0, for ¢;(x) = «,
7=0,1, 2. We have .

)PROPOSITION. P lej, x)—ej(x), =0, 1, 2, as u— 00, if and only if
G'(1) = 1.

Note that since G'(1) < oo by (2), the condition G'(1) = 1 is merely
a normalization for G(z). The convergence of P,(f, x) to f(x) is given in

THEOREM 1. Let G'(1) = 1 and suppose that |f(t)] < M exp (ut) on
[0, 0o) for some constants M > O and p. > 0. If f(¢) is continuous al t = x,,
then as u— oo, P,(f, x) converges uniformly at x = x, lo f(x,).

The notion or uniform convergence at a point x, is due to Szdsz [10]
(given e > 0 there exists a § = §(c) and %, = #,(c) such that [Pulf, x) —
—f(%)| < e for |x — x5| << 8 and u > u,). As uniform convergence at
each point of a ~ampact set D implies uniform convergence over the set D,
we have

COROLLARY If, in addition, f(I) is continuwous on the fimite interval
[a, 0], 0 < a <b <o, then, as u— 0, P,f, x) converges to f(x) unifor-
mily over [a, b].

When G(z) = z, Theorem 1 was proved in [5].

Under stronger conditions on f we obtain the uniform convergence of
P.(f, x) to f(x) on [0, o0).

THEOREM 2. Let G'(1) = 1 and suppose that f(t) is continuous on [0, )
and lLim f(¢) exists. Then P,(f, x) converges to f(x), uniformly on [0, o),

=00
as U — co, !

When G(z) = z, Theorem 2 was proved in [5].

Next we obtain explicit bounds on the degree of approximation of f,
on the compact interval [0, 4], by the family of operators P,(f, ; 4, )
of (3) with the aim of exhibiting the dependence of these bounds on the
functions 4, G generating the family. In doing so we shall utilize the gene-
ral theory on the degree of approximation of continnous functions by a
sequence of linear positive operators (see, for example, Devore [2, pp.
28—29] for functions defined on compact intervals and Ditzian [3] for
functions defined on [0, o0) or (—oo, 00)). 5

THEOREM 3. Let G'(1) = 1.

(a) Suppose f(t) is uniformly continuous on [0, 00). Then

(5) IPulf, %) — f(#)] < 20(f, o,(0)

uniformly in x over [0, b], 0 < b < o, where w(f, 8) is the modulus of con-
tinuity of f on [0, o) and

(6) ocf‘(b) - b1 4+ G(1)] + A(1) + A1)
" A(Lyu?

() Suppose |f(t)] < M exp (ut) on [0, ) for some constants M > 0,
w20 Let I'=1[00], 0<b<oo, and I, = 1[0, b —n] for some
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0 << g < b. If ft) is continuous on I, then
) P/, %) = F0] < 2oilf, eald)) + Kyo () + 01

uniformly in x over 1,, where wi(f, 3) is the modulus of continuity of f on I,
a2(b) as in (6), the constant Kigis given by

(®) Ko = i [Mewt - max | £ 111 + 6"(1)]

and O(1/u?) is uniform in x over I,.

Note that Part (a) of Theorem 3 imposes a severe restriction on the
growth of f at infinity, but provides a simple bound in terms of the modulus
of continuity of f on [0, o). On the other hand, the more complex bound
in Part (b) given in terms of the modulus of continuity of f over [0, &]
plus “'correction’’ terms, is derived under weak assumptions on the growth
of / at infinity., We also remark that in obtaining the bound (7) of Part
(b), we sought to determine the dependence of the first two significant
terms of the bound on the function f and on the family of operators
Pf, x; 4, G); hence our explicit determination of the constant Kyg.
Of course, asymptotically as « — o0, the first term 2w,(f, «,(b)) is domi-
nant.

We finally remark that among the family of operators P,(f, x;4, G)
undre consideration, the Szdsz operator S,(f, %), corresponding to A(z) = 1,
G(z) = 2, gives the smallest values of «?(b) and K¢ (cf. (6), (8)) and there-
fore the smallest bound of the form (5), (7). For the Szdsz operator
Su(f, %) bounds of the form (5), (7) were first given by Ditzian [3].

3. An Applieation

It is well-known that a continuous function f({) on (—c0, c0) cannot
be reconstructed from its sign, sgn[f(£)], —o0 < ¢ << o ; this is due to the
fact that a signum operation retains only the zero crossings information
about f(#) and the latter does not determine f(¢) even when f(¢) is analytic
(see, for example, Titchmarsh [117). The addition of ’contamination”
to f(¢) prior to the signum operation improves the situation as shown by
Masry and Cambanis [8]. Here we employ the class ol operators P,(f, x;
A, G) considered in Section 2 for the reconstruction scheme as follows.

Let {X;} be a sequence of independent identically distributed random
vatiables with distribution F(x). Add {X,} to samples {f(k/u)} ol f(t) prior
to the signum operation to obtain the data set
(©) Zy = sgn [f(kju) + X3], k=0, L1,

where % > 0. For the sake ol simplicity of analysis we shall assume that

(see [8])

Sa{e s ey R S
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(10i) 1) f(¢) is uniformly continuous on [0, o) such that |f(¢)] < M for
all £ = 0 where M is known and finite

llOii) 7#) The distribution I*(x) of the noise” | X;} is uniform over [—M , M 1.
Given the data set {Z;}r.o, estimate f(f) on [0, o) by

(11) Fol) = MY hy(ut) Zyy £ 20, >0
k=0
where
8—xG(1)
(12) () == pde, x =0, k=0, 1, ...

is the kernel of the operator P,(f, x) considered in Section 2. We show

that as #— 00, f,(f) converges in quadratic mean aud with probability
one to f(¢). Note that no such convergence is possible in the absence of the
"noise” {X,}.

THEOREM 4. Under assumption (10) on fand {X,} and the assumption
G'(1) =1 on the gemerating function G(z) of (2) we have for cvery t = 0
and 1 >0

Elf.t) — f(O) 1 < 40¥(f - a(t) 1 M? exp (— 2uv,, 1) Ly (20n,f)
where "E” is the expectation operator, o(f, 8) is the modulus of continuity
of f on [0, ),

(13) W3(l) = [t +6"M1 A1) +47(1)
i % A1)

Iy(x) is the modified Bessel function of the first kind of order zevo and vy,
1S the first monzero cocfficient of the gemerating function G(z).

Since I,(x) = (¢°/+/2mx)(1 + O(1/x)) as x—oco, (Erdélyi [4, Vol. 2:
$. 86]), Theorem 4 implies that //‘;(t) converges to f(f) in quadratic mean -
as yu—» o0 for every £> 0. In particular, for f € Lip «, 0 <o < I, on
[0, w) we have

(14) B[ﬁ(l) — f(t) ]2 = O(u— min(x1/2)

uniformly in ¢ on compact subsets of (0, o0).
‘I'he convergence in quadratic mean of Theorem 4 can be strengthened
to probability omne convergence as in
runoruy Let f(t) be Lip «, 0 <« < 1, on [0, ) and asswne 10(i7}
and G'(1) = 1 to hold. Then for each fived ¢t = (0, o0) we have with pro-
bability onc
nofu(t) — f(H)] = 0 as n «co.

Sfor all 0 satisfying 0 < 0 < 1/2 min («, 1/2).

4 — L'analyse numérique el la thé¢orie de I'approximation — Tome 13, No. 1. 1984,



50 ELIAS MASRY 6

Theorem 5 implies the convergence of jf;(t) to f(t) corresponding to
almost every realization of the “noise” sequence {X,}.

%. Proofs.

We need the following lemmas.

irvma 1. Let the Sheffer polynomials pa(x) be given by (2), (3a). For
|2 < R, w> 0, and x = 0 we have

S = g7w6 i (k — ux)? pp(ux) 2* = w?K, (%, 2)
k=0
wheye
Ky(x, 2) = 224 (2) [1 — 2G'(2)]?
(15) + f{ZA'(Z) [2G'(2) — 11 + A(2) [G'() + 2G"(2) ]}

+ f: [24"(z) + A'(2)].
Proof. Expanding (b — »x)? in S and using (3¢) we obtain

S'=z d’ [A(z)eme ] 4 (1 — 2ux) 2 : [A(z) e¥6 ] 4 (ux)? A(z) 436

and the result follows by differentiation and collection of terms. [

LA 2. Under the assumptions of Lemma 1 and G'(1) = 1 we have
for cvery o= 0, x = 0 that

Kilx, ey = 2011 4 @r)] + 0(1jw2)

u
where the O(1u?) term is uniform in x over compact intervals.
Proof. Tet z = eM* in (15) and write
K. x, ev) = S; 4+ S, + S

for the 3 terms on the right-hand side of (15). From (2) we have for
# > pfln R that
4 (prln) — (1) [
‘1 ((’ ) 4 (1) % O(l/%) l g 0, 1, L.
GO (evle) = G (1) + O(1]u). |

Then

Sy = 2[A(1) + O(Lw[1 — G'(1) + O(1/w)
— 20(1/u?)
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since G'(1) = 1. In a similar fashion

S, = AG() = 11 4+ ADE() + 6"(1)] + 00w}

U

=S AN+ 6]+ xO(1/u?).
Finally S, = I0(1/u?) and the result follows. [ |
Proof of Proposition. It is clear from (3a) that P,(ep, %) = ¢o-
Now

Puley, ¥) .= ku?f(?)— :;0 kpk(rux)

and using (3a) in the manner of the proof of Lemma 1, we obtain

j P ’ A,(l) .« .
Pufey #) =G (1) x4 S0
Similary
g--uxG(l) = A1) - A(1)
- J2 palux) = L2
Pufes, ) ur A (1) );J piln ) u?A (1)

+ 2267 (A1) -+ AMG(1) 4 AMDG (1) ] 4 xz[G'(l)]‘“’.
ud (1)

Hence P,(e;, x)—¢;(x) for j =0, 1,2, as #—c0, if and only it G'(1) = 1. ]
Proof of Theorem 1. Under the assumption |f()] < M exp (pf), P,(f, x)
exists for x = 0 and # > p/In R. For any 8 >0 and x = 0
— X f : [k
S, A —fl s T+ ]llf\j; - /(9

A(l) ‘%—-x <8 \,,,A B !

Pr(ux)

(16) = 81415,

We estimate S, as follows. Let x, be a point of continuity of f. Given
e > 0 there exists a & = §(e) such that for cach ¢ satisfying |t — x| < &
we have |t — x| < |t — x| | |* — x| < 28 for all [x — x| < B and
Lf() — f(x)] = |f() — ()] + If(x) — f(xo)I<ee. Hence, uniformly in x sa-
tisfying |x — x| < 3, we have

y ©
c cfuxG(l)

(17) T -;;b,,(ux) = .

Tor estimating S, let # > p/ln R and note that for x satisfying |x — %ol <(8

(%) =] = Bifert  oret®] < MIL+ gptret ) (oui)’
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%0 that
Sp €7 [ k0] omesdth 53 (outg# py ()
I%—x EN
<M - [1 4 erleotd) ] gmusGa) » ety [© — 2] p (ux)
YT Nl Pl
M
< ‘*_[ oy gu(”-{—S}] oMe+8) [GleH) —G(1)] K (v, -8 gU-/u)
A(1) 82 ’

where the last inequality follows by Lemma 1. As exp{u(x, + 8)[G(e#*) —
G(1) 1} — exp {u(x + 3)G'(1)} as u— o0 and K,(%, + 3, c“/") < counst./u
b\ Lemma 2, we have, uniformly in x satisfying [¥ — x,| < 3, that

Sy = 0(1u) < ¢

for sulficiently large . The result now follows from (16) and (17). [
Proof of Theorem 2. Define, as in [5] the function

)"(lni 0<x =<1
lim f(2), x = 0.
L =90

D(x) is contmuous on [0, 1]. Hence, for every ¢ > 0 there cxists a polyno-
mial g,(x) =% ¢, 5 such that [O(x) — gy (x)| < e for O < x < 1. Hence

for Qu(t) = gule™") we have |f(t) — Oy(t)] < ¢ for 0 < ¢ < co. Now
UB) 1Pu(/, %) — (%) < |Pu(f, %) — Pul@Qu %) + [Pu(Qy %) — Qulx)] +
+ |Qx(x) —f(x)| < 2¢ + IPW(QN’ x) — Qu(#)]

since |P,(f, %) — Pu(Qy, %) < Pu(1, %) supsso [f(t) — Qu(t)! << =. Hence it
suffices to cons1de1 the uniform convergence of P,(Q,, x ,) to Qu(x). By
linearity of the operator P,(f, %) and (3a) we have

N

II QV; 2_/ CI

With A, = A(e~4%)]A(1) and B, = 7 [G(1) — G(e=%)] we have

e —ux[G(1)—Gle— Y]

N

19) Po(Qn, %) — Qulx) = 2 ¢ [Auaﬁa"“‘ — e ]
=0

Note that by (2), 0 <A, <land A, — 1 as w—0; also,

< Bu < Blimy, = G'(1 ) = land B,— G'(1) == 1 as u-— co.
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Hence
. R ix _ B Iy !
A, o TB i) < AL e — et (1 = A e
1
< (# . 1) 4+ (1 —A,) =0 as u— o0,

Bll

so that by (19), [Py(Qx, %) — Qu(x)|— 0 as #—oco uniformly in x over
[0, o0) and the result follows from (18).

2

Proof of Theorem 3. (a) The argument here is straightforward : Since

f(t) is uniformly continuous on [0, ) we have for 0 < ¢, x < o0 and

for every & > 0

0 = /@) = [T+ ol 8)

and as in the classical argument for functions defined on a compact
interval [2] we have

PAS, %) — A <2 olf, afx)), 0 < ¥ <o
where o?(x) = P,((f -~ x)?, x). By (3b) and Lemma 1 we find

] . Ku(v, 1) x[1 4 G7(1)] S (1)
ZO O'_l X)) — —
(20) s A1) u + 1(1)1;z

since G'(1) = 1. The result now follows.
(0) As f is continuous only over I == [0, ] an argument of Ditziam
[3] shows that for x & I, (C I, ¢t € [0, ©), and § > 0

0 = 7001 < {1+ ol 8) o QAL+ M)

where ||f|| = maxye,,|f(1)]. Hence for x € I,
| Pl ) — J001 = {1+ E o (f, 8) + et + 2Py ¢ ) ).
, 1 1

(21)

Using Lemma 1 we find

A IG(eP) —G(1))
A{1)

for x = 0. Lemma 2 gives the asymptotic behavior of K,(x, e¥) as u—
—»0. We need an estimate for rate of convergence ol exp{ux[G(eH") —

—G(1) ]} to exp(py) as w—0: With A, = “[G(ev!) — G(1)] we find by
n
(2) that A, > 2., ny, = G’(1) = 1 and that

(22) P (ev(t — x)?, x) = K (%, cvlv)

0
Ay — 1 < 25 w2y, emiv = O(1u).

U n=1
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Hence
l@A"u'x — e < eA"M H’x(Au - 1) — O(l/”)

uniformly in x over compact intervals, It then follows by T.emma 2 and

(22) that

(23) Z)1¢<Q“‘t(t - x)z‘ _%) A Ll -+ G”(l)] X (».U~:v + 0(1/M‘2)

K22

where the O(1/u%) is uniform in x over compact intervals. Now by (20)
{23) and the choice 3 = «%(x) in (21) we have for x < I,

12AS, ) = 1) s20f, o) + {2 D=6+ 0(1)2)

and the result follows. [ ]
Proof of Theorem 4. We first note that the series (i1), defining the
e
estimate f,(7), converges in quadratic mean and with probability one since

the 7, ’s are independent, E[Z%] =1 and Zﬁoh?(m) << o (as shown below)
(sec, for example, Kawata [6, Theorem 12.4.21]). Now

(24) ETfult) — A = (Bias [fu(t))* + Var [£,(5)]
where Bias [fult)] = E[fa))] — /) ; Var [fll)] = E{A0) — E[f()]1% and
we oblain bounds on the bias and variance terms. Sinee
M . ,
E[Z] = 2 sgn [f(kju) + y]dy = -’{_{‘i’;“’

M
— M

we have by (17)

o
~

E[fu()] = Z;)/(/E/’”) hilut) = Pu(f, 7).
it then foliows by Theorem 3(i) that
(25) [Bias (7,611 = [P/, 1) - f0)] < 200/, wl)
where za{t) is given in (13). Next Var[Z,] = E[Z;] — (E{Z,])* =1 —
~= [f{kfu)/M? < 1 for all £ > 0. Hence by (11)
(26) Var [£i(8)] < Mzéhi(m).

and we estimate the sum in (26) as follows: By (8a) with z == ¢™ we
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have

b
?k(%x) :zi S g—’;klA(ei7\> euxG(e")\) ax
T
-

It then follows by Parseval’s theorem and (12) that

k3 .
= Lo 1AaEh e, oA
27 2(ul) = — S e~ 2R [G()~G(* N {7,
(27) D
—it
Since

Re[G(1) — G(e™)] = 27 v,[1 — cos nh] = y,(1 — cos #, 1),
=1
where v,, is the first nonzero coefficient of G(z), and |A(e?)} < A(1) w
have from (27)
> h

2ut) < (1)2n) exp (— 2oy, £) \ €XP (— 2oy, £ cos ngh) di =

(S |

k=0

v

= exp (— 2uy,, 1) 1, (2uy,, t)
and by (20)
(28) Var [£,(0)] = M2exp (— 2uya, 1) I (20, ).

The result now follows by (24), (25) and (28). [
Proof of Theorem 5. Follows in the manner of the proof of I'heore:
4.3(a) in 81
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