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A network is defined as being a finite, directed, loopless graph in
which each arc has an associated measure. The measures associated to
the arcs belong to a certain algebraical structure. The existence of an
one-to-one map between a network and a square matrix having as ele-
ments the associated measures of the network, allows the transposition
of an important class of problems from graph theory language in an
algebrical language. The number of problems belonging to this class is
large when the algebraical structure is very general.

The first matricial representation of a graph had a boolean charac-
ter. The elements a;; of the matrix 4, associated to the graph, are defined
as follows:

1 if the arc (4, ) exists

o e
0 if it does not.

The subject under discussion refers to general algebraical structuses,
defined axiomatically, which constitute measures for the arcs of the net-
work in the broadest meaning possible. The measure of a path of the
network is defined as being given by the product of the measures (in
the algebraical structure meaning) attached to the arcs which make the
respective path.

The first who defined an algebraical structure axiomatically and
who used it for the study of paths in networks was ¢R. ¢. MOISIT,
[13] in 1960. His paper is the basis of an actual waterfall’” of generali-
zations and studies and the recent articles [1], (9], [23], [27] have pro-
ved that the subject under discussion has not been dealt with exhausti-
vely.



58 VASILE PETEANU 2
. Gr..C. Moisil -defined an. algebraical structure, called a sem lati-
cially ordeved semigroup as being a set S with the following
properties :

In S it is defined an internal composition law ,,0”" with the neutral
element ¢. so that for any a, &, ¢ of S hold:

aob=2">oa,
@ao(boc)=(aobd)oc,
aoe=¢0a=a.

In S it is defined a partial order relation so that each pair of ele-
ments belonging to S should have a lower boundary in S. It one deno-
tes  the semiserial relation and a A b the lower boundary of the ele-
ments «¢ and & then:

a(C a,
a (b and b(C a implies a = b,

a (b and b ¢ implies a C ¢,

a NbCa, a Nb(CD,

¢ a and ¢ (b implies ¢ C a A 0.

n S, the laws of distributivity and absorbtion are valid:

ao( Ne)=(aob) A\ (aoc),

a A\ (aob) = a.
Cousider on S the square matricies 4 == (ay) and the matricial pro-
Il

duct P =A X B, where py = A (an o by).
0

an # X # matrix on S having the property a; ==¢, 1 == 1, 2, ..., n, then
An=1 = A» The author shows that certain problems of transport cconomy
can bhe solved on the basis of the above results. Such problems are: the
problein of determining the transport route on which the costs are mini-
mum, the problem of determining the transport route with the greatest
transport capacity and the problem of determining the routs on which
the probability of the transport outcome is maximium.

In 1961 M. vOELI [28] defined the algebrical structure which he
called a Q —semiring A Q — semiring is a set ol elements ¢/ which
has two binary operations:? an additive operation ,, @ aad a multipli-
cative operation ,,0”" with the following properties:

[=
is proved that if A is

a ®b=0® a,
(e @) @c=a @b ®c),
o ¢

(gob)oc=a

1) Different authors use different notations for the two operations. In order to keep
the accuracy inm this paper we use ,, @ and 0" and the corresponding neutral elements
are denoted by 0 and e.
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and which contains the elements 0 and ¢ with the following properties:

aob=0o0a=0,
aoe¢=c¢0a=a,

a®e—=—c.
As it seerr, M. Yoeli does not postulate the comutativity of multi-
plicatiomn.

The author defines matrices and operations with matrices on his
algebraical structure. Tt is denoted by A the link matrix of a graph
and by 7T the transmission matrix. The author proves that A™ = T for
m = n — 1, where n is the order of the matrix 4.

There are two kinds of matrices associated to a network. They are
different only because in omne case a;=-¢, 1 =1, 2, ..., n, like with
Moisil and in the second case a; =0, ¢=1, 2, ..., 7. In both cases
if the arc (4, j) does mnot exist in the network, then ay = 0.

he calculation of the powers of the matrix 4 associated to a net-
work is very important because the elements of the matrix A* provide
informations refering to the measures of certain paths formed of a) at
most /% arcs if the matricial representation was made with a; = ¢ or
b) exactly k arcs if the matricial representation was made with a; = 0.
The ecase & = n -— 1 is also interesting.

Tn 1985 r, ¢, cruoN and p. uprvi (4] defined a particular
algebraical structure referring to the longest path in a network which
cannot be included in the previous structures as it does not satisly the
absorbtion property. Tn [15], v. pprwaxu  defined in 1967 an alge-
braical structure which includes all the path problems studied by Moisil,
Voeli, Cruon and Hervé without being more general than the semilaticially
ordercd semigroup or than the ( — semiring because the author presu-
med that the algebraical structure is a totally ordered set. The study
of certain algorithims for the calculation of the powers ol matrix A with
4y = ¢, within an algebraical structure cquivalent to that of Moisil, was
made by 1, voMmscy in 1966 [25] and in 1968 [261. As far as the
Q — semiring is concerned, e, porsrrT and 1. TERLAND in 1968 [20]
ellaborated calculation methods for A* rting froin a inatrix for which
;; == {.

Tn 1969 in [16] wv. permawy defined a more general algebraical
structure called € —semigroup or routing semigroup. This
is a ) — semiring in which the condition @ @ e == ¢ was replaced by
a @ a = a.

‘Thie property of idempotence for addition is weaker than absorbtion

"because a @ ¢ = ¢ implies a @ a = a but not viceversa. (Stch an alge-

braical structure was also called by M. 1., DUBRBIL-JACOTIN, T,. LISIEUR
and w. cromsor [5] ,gerbier’ without having any connection with
the study of paths in networks).
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The C — semigroup is more general than the semilaticially ordered
semigroup and then the () — semiring, containing also the algebraical
structure proposed by R. Cruon and P. Hervé,

In the same paper [16] the author studied a series of properties of
the elements of a € — semigroup in detail. It was also defined the notion
of p—stability as being a generalization of idempotence. An ele-
ment a belonging to the C — semigroup is called p —stable il a" =
= aftl. It is caled weak p — stable if:

a@DaEd ... =a@ac® ... Hatth,

In the paper [17] the author defined matricies, the matricial opera-
tions, systems of equations, linear combinations etc ... on a C — semi-
group. It was proved that the set of matricies of order » on a € — semi-
group constitutes in its turn a C — semigroup. There were also studied
conditions for the compatibility of systems of equations and also algo-
rithmas for their solving in the case when the matrix associated to the
network is of the type a; = e¢. The stabilizalion operalors
are delined and their propertics are studied.

In 1971 w. A carwrp [3] redescovered the ¢ — semigroup for the
particular case in which the multiplication ,,0” is commutative and he
called this structure se¢m ¢ r4#n g, The optimal path problem in networks
is presented in terms of linear algebra. ‘I'he matrix assoclated to the
network is of the type a; — 0. Carré is the first whoe solves problems
of path in network adapting to the semiring the Jacobi and Gauss-Seidel
methods, the Gauss and Jordan elimination methods and an escalator
method.

In 1975 w. connrax [7], [8] generalized the ¢ — semigroup giving
up additive idempotency. Later in [9] he called this algebraical struic-
ture a dioid (according to J RUNTZMANN [10]). Obviously, the
range of matricially approached problems is widerred thus including path
counting problems, shortest & path problems, ¢ — optimal path problems,
Markov chains problems.

In [8] Gondran defined the p — regwular element which is very
much alike with the weak p — stable element given in [16]. Gondran
used the associated matrix of the type a; = 0. In order to calculate
the powers of this matrix he generalized the algorithms given by Carré
[31.

In the same year g, rov [23] defined the paths algebra.
This is an algebraical structure consisting of a set L and two operations
& and E called concatentation and exlraction respectively.
Concatenation is associative and has a unit element ¢ and extraction is
associative, commutative and has a zero element which is absorbant for

A. The elements of L are muliisels (bagor tas) and the operations

are defined in a proper way. Concatenation presents a certain kind of
distributivity relating to extraction. There is a certain equivalence bet-
ween Roy's structure and Gondran’s dioid. The specific language used
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by Roy in his paths algebra aims to making easier the formulation of
some problems as the shortest & path problems, the determining of effi-
cient path problem, the enumeration of paths with a certain property
P problems etc ....

In the paper [1] .from 1975 =r. ¢ BackHoUSE and B, A, CARE
noticing the relationship between the semiring and the regular expression
algebra (see A. saromMaA [24] and A. ciNsBURG [6]) defined the
vregulary algebra as being a C — semigroup in which a closure
operator ,#’ is also defined having the following properties:

a* =¢ @ aoa¥,

a* = (¢ ® a)*.

The results obtained by Carré [3] are extended to the regular algebra,
special attention being given to calculation methods. It is shown that
if ¢ ® a = e, then a* = ¢. Consequently, the closure operator is trivial
and can be eliminated. The resulting algebra is Yoeli's Q — semiring.
An interesting application of the regular algebra 1is given by A.
MARTELLI [11] who determined the minimal sections between any
two nodes of a network.

In 1976 u. muinoux [12] sought a more general algebraical struc-
ture than the dioid so that it could also comprise the shortest path with
time constrait problems. Thus he considered a set S endowed with an
operation @ which is associative, commutative and has a neutral clement
0. He denoted with H the set of all endomorfisms of S relating to @.
The operation @ induces on H an operation, also denoted by @ and de-
fined as follows:

(h @ g)a) = hla) @ gla), h, g =H, asS.

A second operation denoted ® is considered in H which is defined
by ' ® g = go h where ,,0" is the composition of applications operation.
The ® operation is associative, distributive relating to @ and has an unit
element. The structure (S, H, @, ®) is called by the author a gewn c¢-
ralized routing algebratcal structure The arcs of a
network are measured with elements of H and a generalized matrix associa-
ted to a network is defined.-A series of properties and results obtained
for dioids is extended to the above mentioned structure. Some of the
new problems which can be solved in generalized routing algcbraical
structure are:the ghortest path with time depending lengths of arcs,
the shortest & paths with time depending lengths of arcs, maximal pro-
bability paths with probabilities depending on time, etc ....

In 1979 woncesEgrasHory  [27] introduced the concept of
path-spaces using multisets as B. Roy [23]. The author denoted by

Ng the set of multisets with elements from a given monoid (X, o). In

N he defined two operations @ and o called multisum and multiproduct
respectively, both having neutral elements and which verify the properties
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of Carré’s semiring. A set V is called ajhereditary semirin g of

o if V is its semiring having the following properties :

{#} = V for any x € X,
A eV and B < A implies B = V.

Apath—space is an ordered quadruple (X, o, V, ») where (X,
o) is a monoid and 7 is a self—map of V satislying:

(D) = O,
7(A & B) = r(»(4) & B),
7(A o B) = r(r(A) o B) = »(4 o 7(B)).

It is shown that each semiring generates at least a path-space. It
is also shown how to obtain a semiring from a path-space.

The author’s reason for using multisets and path-spaces was to be
able to include all the problems of paths in network in an unified theory.

REFERENCIES

[f) Backhousc, R. C, Carré B, A, Regular algebra applicd to path-finding problems,
J. Inmst. Maths. Applics., 15, 161—186 (1975).

[2] Benzaken, C, Structure algébriques des cheminements : pseudotreillis, gerbier de carré
nul, Network and Switching Theory, pp 40—57, Td. G. Biorci, Academic Press,
1968.

[3] Carxé, B. A, An algebra for network routing problems, J. Inst. Maths. Applics., 7,
237—294 (1971).

[4] Cruomn, R, Hervé, P, Quelques résultats relalifs & une structure algébrique ot son
application au probléme central de I’ovdonnancement, Revué T'rangaise de R,0.,
34, 3—19 (1965).

(8] Dubreil-Jacotin, M. L. Lesieur, L., Croisot, R., Legons sur la théovie
des treillis géométriques (Cahiers Scientifiques XXT), Gauthier-Villars, 1953

[6] Ginzburg, A, Aigebraic Theory of Auiomata, Academic Press, New York, lLoundomn,
1968.

[7] Goundran, M., Algébre lindare et cheminement dans un graphe, Rev, Tr. Aut. Inf.
Rech. Opér, 9, V—1, 77—99 (1975).

[8] Goundran, M., Path algebra and algorithms, Combinatorial Programming : Methods
and Applications, pp. 137—148, FEd. B. Roy, D. Reidel, 1975.

[9] Gondran, M, Minoux, M., Graphes et algorithmes, Tiyrolles, Paris, 1979.

[10] Kuntzmann, J., Théorie de véseawx, Université de Grenoble, 1970.

[11] Martelli, A, An application of vegular algebra o the enwmervation of cul sels in a
graph, Information Processing 74, pp. 511-—515, North-Holland Pub. Co.,
Amsterdam, 1974.

[12] Minoux, M, Structures algébriques généralisées des problémes de cheminement dans les
graphes, RATRO-R.0., 10, 6, 33—62 (1976).

[183] Moisil, G, C., Asupra unor reprezentiri ale grafuvilor ce intervin in probleme de¢ econo-
mia transporturilor, Com. Acad. R. P. Roméne, 10, 647 —652 (1960).

[14] P d&un, G h., Mecanisme generative ale proceselor economice, Tditura I'ehnici, Bucuresti,
1980.

[15] Peteanu, V., An algebra of the optimal path networks, Mathematica, 9, 335— 342
(1967). j

7 ALGEBRAICAL STRUCTURES 63

[16] Peteann, V. Optimal paths in networks and genevalizations, Mathematica, 1%, 311 —
—327 (1969).

[17) Peteanu, V. Optimal paths in metworks and generalizations (II), Mathematica, 12,
159—186 (1970).

[18] Peteanu, V., Radd, I8, Structures algebrique vailtachées aux problémes d’ovdonance-
ment, Colloque sur la Théorie de I’Approximation des Fonctions, Cluj, 1967.

[19] Picard, C. F. Graphes et OQuestionnaives, Gauthier-Villars, Paris, 1972,

(20) Robert, P, Ferland, J., Géadralisation de Valgovithme de Warshall, Rev. Fraugaise
Informatique et R.O., 7, 71—85 (1968).

[21] Roy, B., Transitivité et connexité, C.R. Acad. Sci., Paris, 249, 216 (1959).

[22] Roy, B., Algébre moderne et théovie des graphes, tome 2, Dunod, Paris, 1970.

[23] Roy, B., Chemins et circuils : Enumération et optimisation, Combinatorial Program-
ming Methods and Applications, pp. 105--136, Ed. B. Roy, D. Reidel, 1973.

[24] Salomaa, A, Theory of Automata, Pergamon Press, New York, 1969.

[25]) Tomescw, I, Sur les méthodes matriciclles dans la théorvie des véseaux, C.R. Acad.
Sci. Paris, 263, 826—829 (1966).

[26] Tomescu, I., Sur Ualgorithme matvicicl de B. Roy, R.IR.O., 2, 87—91, (1968).

[27] Wongseclashote, A, Semivings and  path spaces, Discrete Mathematics, 26,
556—78 (1979).

[28] Yocli, M., A note on a generalization of Boolean wmatrix theory, Amer. Math. Monthly,
68, 552—557 (1961).



