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1. Introduetion

May [5] and Rathore [6] have described the following linear com-
bination of a sequence, {K,}, of positive linear operators:

k

(1.1) L(f(), kb, x) = 20(73 RYKq u(f(E), %),
=
where dy, dy, ..., dy are & 4 1 arbitrary, fixed and distinct positive inte-
gers and
k
(1.2) c(j, k) =T1-%—, k+£0, and ¢(0,0) = 1.
4::(_) dy; — d; :
1] -

Recently Sinha [7] proved both direct and inverse results for approxi-
mation in the space, L,(I) (p = 1), of p-th power Lebesgue integrable
functions on the interval I = [0, 1] by meaus of the linear combination
(1.1) of the wellknown Bernstein-Kantorovitch polynomials.

Durrmeyer [2] introduced the following integral version of the Bernstein
polynomials :

(13) M,(f8), ) 1) 3 #uls) Sm feya.

where p,,(x) =

n)x"(l — a7 for 0 < x <1 and 0 <v < n Derri-
v
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ennic {l] obtained interesting results concerning both uniform and
L ,-approximation by (1.3).
) The purpose of this paper is to determine degree of approximation
in L,(I) by the linear combination (1.1) of operators (1.3). Therefore, for
JeL,I), 1 < p <o, our approximation method has the form:
k

(1.4) L(J(0), by %) = 20 olj, B)Mau(f(2), %),

S j=0

where we write

M(f0), ) =\ Hox, 4 £0) d,

(1.5) Hyx, 1) = (n 1 1) S‘ Po(x) Ponll).

We derive a global estimate in terms of the higher order integral modu-
Tus of smoothmess of the function being approximated.

2. Degree of Approximation

- Let || : ||, denote the p-norm in I below. We denote by wara(f, £,°).
k= 0, 1,2 ..., 1 <p<oo, the 2k -+ 2 order p-modulus ol smoothness
of fon I [8 p. 103].

rasoreM 2.1 If fe L,(I), 1 <p <o, then for all sufficiently large n,
(2.1) L, (/. &, ) —lp < Cop (=D fll + 0urralf, p, n 17

where the constant Cy )y, depends on k. and p but is independent of f and n.
The method of proof is to first approximate in a smooth subspace
?f Lyl) (LLemma 2.5 below) and then use Peetre’s K-functional to obtain
the ‘(.iegree‘ of approximation in L,(I). This approach is similar to that
of blnh:a in [7]. In particular, the proof of I,emma 2.5 below follows
closely ideas developed in [7]. We require the following lemmas.
MM 2.2 (1] For x,tel, 1 <p <o, j=1, 2
=1, 2, ..., we have ,

and n =

3 ey

(2.2) | H(x, 1) dt = SH(x f)dx =1,

0 0

(2.3) MW < 11711y
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and
(2.4) M, (t — %)%, x) < Cn,

where the constant C, depends on § but is independent of x and n.
LA 2.3, For every v > 0 and x € 1,

(2.5) M(|t — 27, x) < Cyn='P,
where the constant C, depends on v but is independent of x and n.

Proof. Choose a positive integer j such that 2j > 7. Using Hélder’s
inequality, (2.2) and (2.4) we have

1

1 1 1124
(1t — xfr Hy(x, t)di < (S (t — x)% H,(x, t)dt) (S

1

0

1—r{24
H,(x, L‘)dt) <Con—r2
0 0

s 2.4 For v=1, 2, ..., 2k } 2,

(2.6) sup | L,((t — x)7, &, x)] = O(n=F+0), n—»c0,
zel

and

(2.7) L1, k, x) =1, for x €1 and n=1,2, ...,

Proof. Tt follows from [1] that, for each ¥ € I and each v = 1,2, ...,
M,((t — x)*, x) can be expressed as a rational function.in ». The degree
of the numerator is less than the degree of the denominator and degree
of both numerator and demominator depends on v. The denominator is
independent of x and has distinct integer roots. The coefficients of the
polvnomial in # in the numerator are polynomials in x of degree at
mmost v. Using partial fractions and (1.4) we obtain polynomials a(x)
of degree at most » and distinct integers oy s =1, ..., g(v), such that
for x = I, v=1 2, ...,2k + 2, and all = sufficiently large,

k 4(v)
Lyf(t — 2" by #) = D ol, B 2y - 0 =
i=0 s=1 de, — o
8{v) o0 , k
=Y ax) 2, = Yoe(j, k) di Y
s=1 y=o0 n't ;=0

The result (2.6) now follows from the above, (1.2) and [5, p. 1228]. We
obtain (2.7) from (1.4), (2.2), (1.2) and [5, p. 1228].
For 1 < p <o let LEM (1) denote the space of all functions f <
e L,(I) such that the first 2k +- 1 derivatives of f are absolutely con-
tinuous and f@¥+2 < L,(I). Our final lemma concerns approximation in
(2k-1-2)
the space Lj (1). __
LrMMa 2.5, If p>1 and [ = LE¥2(T) then for all n sufficiently large.

(2.8) HLL(f R ) — Sl < CR®T AL 201, + 11fllp),
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where Cy is a comstant which depends on k and p bul 1s independent of

[ and. n.
If f s Ly(l), f has 2k + 1 derivatives on I with f@8 absolutely con-

tinwons on I and @) of bounded variation on I then

(2.9) WLlf, &, ) — flls < Co ®FD (1D s oy + IS0+ 1L,

where CS is a constant which depends on k but is independent of [ and n.
Proof. Assume p > 1. For x € I and ¢ = I, with the gwen assumpti-
ons on f, we can write

2k 41 :
f(l) . Z (t — x)f“( 5 2k+1 f(21c+z) (w) dw._
i=0 2k - 1 | pd
We have, using (2.7),
: 2h-+1 ;
Lf &k, %) — E  Sc(7, RYMa . ((t — x), %) +
=1 ¢! ;7 /

k ! ¢
é/c 1! EC \ dy "(x t) S (i i, w)Zk-lAlf(Zk 172)(10) dw df — 21 - Z‘Z! say.
- — !
0

&

1t follows from (2.6) and [3, p. 5] that

(2.10) 1241l < (comstant) =Wt - (JfER+D[], 4= [If]1).

In order to estimate X, we first estimate

{ l n
| 7 (
||

et &, denote the Hardy-Littlewood majorant [9, p. 2447 of fer+?, Using
Hoélder’s inequality and (2.4) we have

= ], say. :

d \
\ [t — w|2"’*‘1!'j(2’”'“)(w) |dw|, x\)
X

n

\ H.(x, 1)

kt

gu w|M 1 | ferED) ()] duw

x

1 g /1 \Up
< (S (t — x)@et0e [, (x, 1) dt) <S 1, (6)” Hy(, 1) dt\ <
0

0 i

1
dt < \ H,(x, )t — x)22h,(1) dt <

0

1 1p
< (constant) n— *+D (S |2, (8)]" Ha(x, ) dE (M\/
0

O L™
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1t follows from Fubini’s theorem, (2.2), and [9, p. 2447 that

1 1p
] < (constant) "”)(S ()] Haulx, ) dt dx) =
0

S~

(2.11)
1 1/p
< (COllStL—lnt) g k1) S |7, 1 dt> < (constant) g kD H]"(21€+2)||p_
0
Using (1.2), (1.4) and (2.11),
(2.12) [|3,l], < (constant) n=(+1 V|| SR

Combining (2.10), (2.12) and using [3 p. 5], we obtain (2.8). Note that
the constants on the right hand side of estimates (2.10) and (2.12) depend
on k and .

Now assume p =1 and ¥ is the characteristic function of /. With
the given assumptions on [ we can write, for almost all x = [ and all

z‘CI,

zk, L ] 4 | .
7ty = ,(_/ j“( x) + - S (£ — w)2Th df 2D (@),
T (28 = 1) !

A

The proof of (2.9) proceeds exactly as that of (2.8), except that we
estimate

& 1 12
5= "]';’Tv,! > k) Hale D) 20) S (f — w24t dfet D (w) dt
Q v

as follows. 74
Tirst consider

| ¥
2o | {1t = wpr e, x)‘

| =
= J!, say.

i . 1
For cach # let 7 = r(n) == [n!2], so that (r -+ Dn-12 > 1. We have, since
¥ is the characteristic function of [0, 1],

| df @ ()| dt dx <

=4 (e Hulw, 0| (et — wlh

ey

» 1w+l = ) /x—lf(lf.Ll)u"ll'-"
= ? \ S X(t) H,,(;\f, i)ﬂ — x'iZ/v“H i t \

o a4t -1j2 v &

L (@) |df @ w)| ) dt+

%,
o
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r—lpy— M2
) Haw e (
(

L'——(I»*-])nal/2

X

- l+1)n‘1/2

Let Xiea () denote the characteristic function of the interval [x — cn— 12,

% dn~ 2] where ¢, d are non-negative integers. Then we have

r

]‘SE(

l x4 (4 l)u‘l/)
l=1 - |

X(Z)H“(x, t)l—4 772“ — x|2k~(75

xin U2

(1 u‘l/)
- ( Vo ) s lo) | dper o) |) a

/

+ X(l‘)H,,(,‘C} t)l$4 W‘)‘ii - xl2k+5

( %{(®) Args1,0 (W) | dfEH 1(ZW)l)dt dx
(14 1)n 12

/

Ltgn— 12
+ S S X(t)Hn(x, i) ‘ﬁ — X l‘zk,i_]
. 0 =12
wbp— 12
i ( & y{w) X_\-,1|1('Z€)) | (Zf(?k+1)(w) ‘)dﬁ i
x— u”l/l

0

; Lfvs(yn— U2
SZ_:I 3—477,2\ ( g LV H (%, 1) |1 — x |2h+5
=1 . )

x+,”71/2

0

(SXM! c(w) | ci'f’”(w):)dl

v 12

1 i
o 2O H(, 16— x5 - { s ol )ldf(z"l(W)ldf\\dr‘
x~(l+1.)u_1/2 0 /’ [
11+r171/2

0

YV H o, 8)]t — x]t (5 Y (@) | df ) 10) | )Mm
0

12

X(w) |df*E+ 0 (w)] )tﬂ}dx
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We use (2.5) and Fubini’s theorem to obtain

Lvop (@) | dfCHH0(w) | dy +

J' < (constant) s~ (k4D [E/ :

Sy
S

i

+ | { s (@) 40 )|dv)+ § 2enalw) | dreen ndx}

S —,
S,

171
= (constant) 5~ @12 El d (S (S L0,+1(%) dx) | dfeEn (w) |
0

1
+ s.(gmnow dx\)[dj 241 (1) :+S(g/r11 (w)d ) | df kD (w) Ilf
0

/

[

. 1/ w
< (constant) s+ }"z & (S ( : S ) | df @0 () |
O N U2

wrl-n"ll2

\ dx) a0 1)

ﬂfufllz

1

1” w--(4-1)n /2
+) ( S dx) g w) ) +\

0

(213) =< (COI’IStElHt) — (k1) Hf (2k+1) |BT (I)+
Using (1.2), (1.4) and (2.13) we have
(2.14) || 23]]; < (constant) s —k+D|| fERD L,

where the constant on the right hand side of ( 14) depends on k.

Combining (2.14) with the analog to (2.10) for p == 1 completes the”
proof of (2.9).

Proof of Theorem 2.7. Let 1 < p < oo, f € Ly(I) and ¢ = LD,
1t follows from (1.2), (1.4) and (2.3) that {L,} is a uniformly bouuded sequ-
ence of lincar operators on Ly(I). Let R, >0 be a uniform bound for
{L,} and apply Lemma 2.5 and [3, p. 5] to obtain

La(f. &y ) = fllp, < (14 Rowllf = gllp + Tppn=®+0 ([ +9]], -- {lgllp)

for all n sufficiently large, where 7%, is a constant independent of f, g

and n. Take the infimum over all g  LY*"?(I) and use Peetre’s K-functio-

nal [4, 4. 300] to obtain (2.1). .
The choice & = 0 in (1.4) and (2.1) yields an estimate for approxima-

tion in L,(I) by the operators (1.3) (see also [1]).
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