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Our aim is to solve numerically the problem (1.1)—(1.3) using the
classical implicit difference scheme and prove with the aid of the numeri-
cal solution that it has a generalized solution. This is done by means of a
continuous extension of the numerical solution which we show that it
converges in L” to the exact one (Theorem 5.2).

One dimensional problems of the same type were studied in [3],
[10]. The explicit difference scheme was used in the same purpose by the
author in [11—14] but under more restrictive conditions on @, Uy, U,
namely o convex, #, of class C* and #, independent of ¢ [14, §3]. A special
attention is devoted in §3, to the problem of fulfilment of the nonhomoge-
neots boundary and initial conditions.

1. The differential problem

The problem we are concerned with can be written as :

(1.1) G_; =Ag(u) +a(x, y, 1) on Q=0 x 10, T
(1.2) w(, 5, 0) = wy(x, y) (x, 5) =0
(1.3) w(, y, )]s = wy(x, y, ?) S =00 x [0, T,

where Q = R? is a bounded, convex domain, 0 << T < 4o00. We consider
two spatial variables ouly, for the sake of simplicity.
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The functions occuring in the above problem will be subject to the
following assumption :

(1) wy = CIQ); uy = C(S); a =CQ); o, 1y, @ 20

(4)
(i7) ¢ = C*R,), o) and ¢'(u) > 0 for >0, ¢(0) =0,
Denote M = u,, #,, «.

We notice that for the examples we have in mind (such as ¢(u) = ",
m < 1), ¢’(0) = 0. However this condition is not necessary in our consi-
derations.

DPEFINTTION. A function # € L*(Q), #» = 0 (a.e.), is said to be a weak
solution of (1.1) — (1.3) it:
(i) Tt satisfies (1.2), (1.8) in a generalized sense.
(i) o(u) = L0, T ; HY()).
(iii) For any f = HY(Q) such that f[s = 0,
(1.4) S(u_aj_fﬁav(u) Q‘Mg_]dxdydt—l—Safdxdvdt%—
ox ay dy . -

ot dx
Q Q

+ S o (x, y)f(x, v, 0)dxdy.
Q

Sy=SU{x v 1T); (v 9 = QL

Condition (1) is to be interpreted in the following sense :

T'here exists a sequence v, = C” ((j) such that, v, — % in L3(Q), v,4]s — %y
in L¥(S) and v,(x, v, 0)— uy(x, ») in L*Q).

cunoreM 1.1, Under the Assumption (A), the problem (1.1) — (1.3)
has al most one weak solution.

Proof : (see [9]) Suppose that there are two solutions 2., #, and
prove that they coincide a.e. Then by (1.4),

(1.5)
(hm—wa@~jwwofm%»?—fww»—@m»gpmww:o

ot & cy v
0

The particular function

fla v, 8 = \ [ () — oluy) ld=
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has the required properties for (1.4). Replacing it in (1.5) we get:
i
d
{ s — o) = o) dwdya + § 11§ 2 (o) — olual) |
0 olle ™

x L (glm) — l)) -+ | [ lolun) — oliu) 5] (olos) — olual)pdxdy dt

The second integral can be written as:

;T 2 LT 2
Ry S 12 S [acp(,,m N 3@(“2)] i) | S [awn _ a‘cp(uz)] o | Vaxayar —
2 ) ot cx ¥ \ dy oy
¢

Q

iy 2 T <2

_ gy (e gty gy |y [ (22t St gy geay

~ZS \( ox 8A'Jdtj+(5(ay ﬁy)dt) dx dy
0

which is positive.
Hence

{ o — ) o() — o)) ddy &t =0
Q
so that u, = u, a.c. on Q.

Remark 1.1. Our interpretation of condition (z) of the Definition,
implies the following assertion: If the corresponding traces exist they
coincide with the data functions. As it was proved in {7, Ch. VII, Th. 2.1]
the traces exist provided that Q is sufficiently regular.

2. The ditference problem

Consider the rectangular mesh R, with step %2> 0 in the Ox, Oy
directions and ~ >_O in the Of direction, such that 0 € R,. Denote £, =
=R N 0 =0QNR, and %, =1h, ¥ — jh, tp = kv Uy(k) = Ulx,
Vi tk) == U(k)

Put

Uk — Uk — 1)
U; (k) = v
and similarly U, U; for the backward differences in the space variables.
The forward differences will be denoted by U,, U, U,
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As usual

AU(E) = U (k) + U(R).

yy

To the differential problem (1.1) — (1.3) we associate the following
difference scheme :

(2.1) U:(k) = A(U(R)) + a{k) on (),

(2.2) U(0) = o

(2.3) Ulp, = wy(x, 9, k%) h=1,2 ... K= ‘i]
Here

Uon — 7/¢o|§,l

and I, is the set of points (¥, ;) € R, such that at least one of the four
neighbours : (%41, %), (%1, %), (%, ¥i41), (%iv—1) les outside Q- Q, =
= Q, r,

Q= {(x, v, 1) (% y) €Q,, t=1, Ll ..., Lt
The functions u, and ug, are defined as follows:
wy(, vy, 1) = us(x*, y*, 1)

where (1%, y*¥) e dQ is the nearest point to (x, v) (or one of them but
the same on all levels).

raroryM 2.1, If assumption (A) holds and U is a solution of the diffe-
rence problem (2.1) — (2.8), then

0=U= M,
wheve M, = (1 + 1T)M.

Proof : We show that U(k) £ (1 + kv)M for k=1, 2, ..., K. Assume
the contrary. Then there exists a triplet of indices (m, n, k), & > 1 so that
Uk > (1 4 kv)M and Uzl — 1) £ (1 4 (k — 1)7)M for all (1, 7) ; Unu(k)
being maximum on Q,, By the definition of M,

(xm: Vs Tk) = Q/. and A/,Uum = 0.
But
L‘rnm(k) = Umuf(k - 1) + TAA(‘P(UW‘]Z‘(/}’)) -+ (l(k)
and
Upnl) = (1 + kr)M,

which leads to a contradiction.
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Now consider the following linear homogeneous algebraic system :
Vi =18(oVy) (%0 35) =4,
(2.4) Vijlf'n =0 oy 2 0.
s 2.1, For any given oy, the system (2.4) admils only the trivial
soluiton.
Proof : If, on the contrary, for an (%,, ya) € £,, e.g. Vo < 0, this

couple can be chosen so that A (0 Vin) = 0, but this contradicts (2.4).
A similar argument applies when V,,, > 0.

Consider now, the linear system :
Wiik) = Zy(k) 4 =8, (o (k) Wy(R)) + 7ay(k) (%, py) = L
(2.5) Wik) = Zy(k) on T,
wy 20, 7:0,— R

COROLLARY 2.1. For a given Z and k=1,2, ..., K fixed, (2.5)
has a wunique solution.
This is an immediate consequence of Lemma 2.1.
Another consequence ol the same Lemma refers to the system:
Wilk) = Wylk — 1) 4+ =0, (ag{R)Wy(k)) + way(k) on Q,
(2.6) Wylk) = uy(2, vy, L) (%, ) €0, k=12, ..., K.
W50) = wy(x,, v;)  on Q.

Here V:0,— R, 720, ¢(0) =0, ¢ € CH{R,),
o(Vis(k))
2Tl oy £ 0
ay(k) =1 Vil o)
| ©'(0) Vy(k) = 0.

ety 2.2, Suppose condition (A) holds and V:Q,— R ds given such
¥ ) .

that V. =z 0 and Vi = u, Then (2. has a unique solution -

W.0,— R
such that W = 0,
Proof: It is readily seen from Corollary 2.1 that there is a unique

solution for the system. If W takes negative values, there exists o couple
(m, n) such that

I"V,,,,L(k) <Z 0, A,.(O(mn I/an(k)) Z 0

and W,,(k — 1) = 0, but this is impossible according to the equation. Ti:
lemma is proved.
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For a fixed £ = {1, 2, ..., K}, (2.6) defines on operator :

GR): Ry =R, V(k)— W(k),
s = card Q,.
1uMMA 2.3, Under the assumption (A) the operator G(R) has a unique
Jixed point for amy k — 1 2, ..., K.
Proof : Since W =

[|W(R)|] ~h22|Wﬂ R = h? }jW”(k

h

= 123 (Wik — 1) + o, (o (R)Wy(R)) + ag(k).

a,
Hence, it we put A = 1/h?

W (R)]I, = 32 20 Wil — 1) + 2022 >J<PWv K)o+ < 7 “sth),
(Zh

becatise W =V on I,.

Denote
o(k) = h? ZWU (b — 1) - 2% 2om(0Q) + = Mmn(Q)
and
So (k) ={x eR; x2 0, {|x]], £ p(k)}.
Thus
G(k): R — S, (k)

and Brower’s theorem is applicable. The uniquness follows from Iemma 2.2.
Remark 2.1. The fixed points U(k), £ =1, 2, ..., I, satisfy:

(2.7) Uplk) = Ap(U(R)) + ak)  on @,
(2.8) U(0) = uon
(2.9) Ulr, = .

3. Mesh-functions

To begin with, we recall the formula of partial summation.
Suppose U, V are vectors with components

Uy Vi, pse=g bogEZ p<yq
q

(V) P == — N E Vk((J;;)h 4 (]’IV’] I U-pV-ﬁ.

k=p-t1

=
1

(3.1)

D’
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In order to define extensions of mesh-function, we introduce the “'cells” ;
oy ={(x, y) e R ih < x < (s + DI, jh <y < (j+ )i}
gii(R) = wiy X 1k, (B 4 )x].

Denote

Q= Uwy 0= Uy
mijcg ‘].‘jCQ
We observe that Q, is the rectangular domain generated by the mesh-points

also denoted by Q,. This is the greatest such domain contained in Q. (),
has a similar property. In the same way the smallest rectangular domain

containing Q respectively Q are:

G= U oy 0. = U gy

(-J[jﬂ!')#() q“.n(?¢0

In the sequel we shall use three types of finite-clement interpolants of
mesh-functions.

a) (0)-interpolation : Given V, : Q, — R. Its (0)-interpolate I7,A 1s defincd
in the rectangular domain (), as follows:

Vil = Vilk)

for any gu(k) C Q..

b) (1)-interpolation : ‘I'his assigns to V, a continuous function Vj defi-
ned on (J,, such that on each cell ¢;(k) it is the Lagrange interpolate of
degree one in each variable, of the values of I/ on the vertices. Clearly,
V, has integrable first order generalized derivatives.

¢) Mixed interpolation: Vyy is defined on the rectangular domain
(), in the following manner: On each ¢;(k) it is linear in y and ¢ and cons-
tant in x. V(l)()m y, t) is an interpolation polinomial on the face y; =
<y =y, b S¢S Ly Analogously one defines Vg for constant .
Clearly, all the above extensions can be adapted when @, is changed-
into 0, or Q,. In what follows extensions defined on Q, or @, will automa-
tically be prolonged for ¢ & [Kx, 1] by

VL = V() = V(K t e [Kr, T).
Thus the qualities of V' and ¥ will remain unchanged.
It is easily seen that:
av’
— = (V.o on any g4(k)

ox

(3.2)

and analogously for y.
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Because we are mainly concerned with the situation when %, v— 0
we shall deal with (generalized) sequences of mesh functions. Neverteless,
we shall speak of a function V (or V,) defined on R,.

Next, we recall an important theorem due to Ladyzhenskaia [5].

THEOREM 3.1. Swuppose that: ol
(i) There is a constant C independent of h and < such that for V:Q,—

(3.3) )V C,

On

(i) V is defined on the mesh-points outside Q, so that (3.3) holds on the
whole R,.
~ Then, if one of the sequence {V}, {V'}, {V}, {Via} is weakly convergent
in LXQ) when b, ©— 0, the same 1s true for the other three sequences of exten-
stons.

‘The properties we are formulating below will play an important role
in the following sections.
(P): The couple (Q, #,) is said to have the property (P) if there exists a
function f: Q—+R such that:

() fls=wu, S=0Qx[0, T]

(i7) f & C(Q) with bounded derivatives up to the second order in x, y
and first order in &

(P,) : The couple (Q, u,) is said to have the property (P,) if there exists

a mesh-function f,:Q,— R such that

(1) Jfo(R)Ilr, = u, Ri=loe 2y, 2310 K
(13) f7(R), filk), fo(R), [ 5 (R), (k) are bounded on ?2,,,'/@ = 2 5., K.

The differences are taken on points of the mesh @, on which they make
sense. #, was defined for condition (2.3).

Remark 3.1. If (P) holds, the restriction of f to the mesh (), satisfies
condition (¢) of (P,) and

fEB)e, =uy + 7, k=12 ..., K, |r| <Ch,

C independent of 4, «.
Thus (£,) is “'nearly” satislied.

Remark 3.2. If %, is independent of x, y, then #, = u; and both
(P) and (P,) hold.

This is a situation very often occuring in practice. Many authors have
studied the problem of the conditions under which (P) holds. In connection
with parabolic problems condition (P) appears in Friedman [4, Ch. III,
§ 4] (Class Ca4,) and Ladyzhenskaia [6] (Class O%1).
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4. First-order differences

In this section we are concerned with first order differences of the
discrete solution U and their boundedness.
First here is some notation:

QF = {(x:, 3;) = Qs (Girn, 35) and (%, yi) = O}

O = {(x, vj, ) € Ry (%, ) = QL k=1,2 ..., K}

T =1{(x ) € Qs (won, y) € D)5 T ={(x, 35) € Ty (w0, 95) = R
+T', and ~I', have similar meanings regarding y.
In the sequel we shall always consider the solution U of (2.1) — (2.3)
extended over the mesh-points of (;, in the following way :

Ul v, ) = U, v% ), (% 35) = GG,

where (x*, y*) € 0Q is the nearest point to (x; y;).

raroreM 4.1, Suppose that

(i) U is the solution of (2.1) — (2.3)
(vi) (Q, u,) has the property (P,)

(231) Condition (A4) holds

(1v) wuy 15 Lipschitz continuous.

Then there exists a constant C independent of h, © such that

Y (9.(U) + o, (U)Y) <C

ot
Qn

Proof : Condition (#7) ensures the existence of a function .V': 0,—R
such that V|p, = u, with bounded differences up to the second order in

x, y and first order in ¢. We take V = U outside 0,. Put W =U — 1}
Multiplying both sides of (2.1) by «#*W (k) and summing up, we get

(4.1) f.hz; W(k)U; (k) = h? S Wk [AQUE) +alk)] k=12 ... K.
The left-hand side can be transformed using the identity:

ala — b) = % la* — b2 + (a — 0)*]
into

4.2) LY (UrE) — Uk — 1) + R UIR)) — <ty V(R U, (k — 1).

2 Q
B

6 — Lanaivse numérique et la théorie de I'approximation — Tome 13, No. 1. 1984,
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Since W = 0 on @;\Qh and W, =0on Ty ; W, =0 on I,
(4.3) /2 ; W(k)A, o(U(k)) = 'rhzz Wi(k)A, o(U(R) =
h Qp
= —leZZ) (Wa(®) 9.(U(R) + W, (k) o,(U(E))].
Qy
Further we have
TRV V) = BEV LU) + 1T Vig(U) — b S V.g(D).

n O Ty 'y

A similar identity is valid for
e ]7’22 Vv CPV(U)
oF

Replacing (4.2), (4.3), (4.4) in (4.1) and summing up for k=1, 2, ... K
we get after applying once more (3.1): o

W 2 (U. 9U) + U, 9,(U)) = Y |A,Ule(U) -+ rh}f 2> Vio(U) +
On L ‘

o =ty
2 VielU) = Vig(U)=E V() + hY (Wia +
I I'y Iy On
-+ mz; WVilU + 2 35 (U(K)V(K) — V(0)U(0)).
A Qn

Taking into account (P,) and Theorem 2.1 it follows that there exists a
constant C independent of the mesh sizes such that

33 (U 0.(U) + U, 9,(U)) £ C.
On
Finally we notice that 9. (U)* = o' (M U)U, and that U)l i
on @i\ Qf, so our estimate is true(z].) e eal]] ds bounged

Remark 4.1. 1t is‘re_adﬂy seen from the proof of the above theorem
tl?at in Property (P,) it is enough to suppose instead of the boundedness
of the second order differences, that of A, in the L! discrete norm.

Rgnark 4.2. Theorem 4.1 holds when (1) is replaced by
(12') (Q, u,) has the property (P).
Z-[ndecd, let’s take in this case V= flo,. Then the right hand side of (4.3)
1s to be replaced by :
=20 WL (09U (k) + W, (R)g,(U(R) ] — W3S W(k)e.(U(R)) —
Iy

Qn

= L W) @ UGR) + b 2 W () 9, (U(R) +- b 5 W (R) 9(U ).

T
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Recalling now that according to Remark 3.1, there exists a constant C
independent of %, such that:

|W(k)| = Ch, on I, |[W_ (k)] £ C on Iy, |W, (k)| = C on I},

we have for C independent of 4,

B 22 (IWL(R)9.(V ()] + W (R)lex(UR))]) < C
b2 GV, Ee,(UGN] + W) e, (UR)]) < C.

Thus, the proof of Theorem 4.1 can proceed unchanged. Before passing
to the next theorem we introduce the following notation :

M = max {i; Jy; (%, ¥;) € Qn} ym=min {1; Jy; (%, v;) = Q,‘}

and similarly N, # for v.
For a given

n<j <N, M(j) =max {i; (x, v;) € Q}

The meaning of m(j), N(7), n(?) is clear.

THEORUM 4.2. Suppose that (A) holds and U is the solution of problem
(2.1) — (2.8). Asswme that w, is Lipschitz continuous in x, vy, t. Let con-
dition (P) or (P,) hold. Then there exits a constant C independent of h, suck:
that

<.

H=4Q)

2wl

ot "

max
[0, 1]

Proof: We have to show that

1* U'(x, v, O(x, y)dxdy | < Cllyll0,)

for any ¢ € C7(Q) and ¢ € [0, T']. Recall that U’ was extended b
O x [0, T, -
For (x, y, &) = ¢4(k)
U'(x, y, f) = L/ 3 Uy(k) Lin(x, 9, 1)
< h?

where the swm is extended over the vertices of ¢y(k) and for P« R,y
M q(k) :
1 for P = (x;, v, t3)

L (P) =
it (P) 0 for P # (x;, v; ty).

The basic functions Ly, are linear in x, y, £
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Hence on ¢u(k), k=0, 1, ..., K —1:

¢ qrrp 1
& Ulle, y, 8) = W (41— 2) (1 = N0 irn, 40 (R) 4

+ (e = 2 = ) Up)egr i (B) 4 (5 — ) (9744 — 3N Up)i511(R)
+ (6 — x)(y — y)(Us)i(k) 1.

So we have ;

& o ,
[ (Ui, 0) e, 5) d dy { o Wi, 4t s ay +

Qi
11
(4.5) + 1233 (A, o(Uy(k)) 4 ay(k)) S | dy(r, s)ar ds 5-
00
11
+lz Sgd,,rsdz ds.
00

Here for (x;, v;, ) e Q,

7
dylr, s) = (1 — »)(1 — s)db(x;, + 7k, v -+ sh) +

4= (1 — s) P(xi_y + 7A, Vi sh) A rs(xi_y 4 vk, Yi—1 + sh) 4-
+ (1 — 7)s Y(x; - 7h, Yi—1 + sh).

It (%, yj, t4) = T, some of the terms of the right-hand side are zero. Retur-

ning to (4.5) and taking into account the Lipschitz
continuit
way U was extended beyond Q,, we get : v ot andthe

{4.6) g S (Ui, 3, 4 §(x, y) dx dy| < Cyh max (4]
IoFANEo! E
11
£4.7) h )i () ]LSS(Z s)dr ds| < Ch max |{L.
00 @
Now
N--1 M
B350, (Uy(k)) dy = h Z} h (]( 0, (Uylh)) dy =
= =m{j) 41

N—-1 N(j)—-2

= —} }:h; (Uy(k)) (dy), 4- /zEcp Uarj k))du) L —

j=1 m{

— 0 (Untini(R) dngsy )
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(9]

In view of the definition of d;; and reclling that § € C7 (€2) :

|dil, {dy),] = Cy max {H,|, C g A } for any 1, j
: dx dy
and
max {|dug-1l, |dm i} < C3h max o,
45 dx
Using Theorem 4.1
,\;1 Mj)—2 Py o
@8 X 2 lelUslh)) ekl < Cymax {101, 5], | 2]}
=1 i) v ox ox

Similar counsiderations take place for
2 %: 9,5(Uy(k)) d
h

So if we take into account the continuous imbedding H3(2) C Cl(ﬁ)j
estimates (4.6) — (4.8) prove our theorem.

5. Convergence of the diserete solution

This section contains the main result of the paper formulated in Theo-
rem 5.2, We also give here some functional analytic results which we
need in our proofs.

Consider three Banach spaces B,, B;, B, satislying the following
algebraic and topological inclusions:

By C B C By,

B,, B, reflexive. s
Let

W {v; ve L0, T; B,), %fe 0, T; Bl)},
J4

0 < T < -+, p, ¢ > 1. If we endow W with the norm
dv

o200 | 2

b
LY0,T;B,)

W becomes a Banach space (obviously W C L*(0, T'; B)).

LEMMA 5.1, Suppose the imbedding By, C By ts compact and that 1 <
< p, g <<o. Then W C LY0, T; B) s also compact.
For the proof see Iions [8].
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l},EMMA 5.2. Suppose § = DQ x [0, T[). Then for h, = sufficiently
sma
.1) {03, — %0) b — @O0, + @) dx dy dt o+

Q

+ 5 o (%, y) B, , 0) dx dy = 0.
Q

Here U 1s a solution of (2.1) — (2.3).

Proof : Recall that, e.g., ¢, is the (0)-extension of (§,);(#). Multiplying
each equation of (2.1) by the corresponding values of ¢ we get after summa-
tion:

k

w25 25U R) — B, o(U(R) — a(k)]4(k) = C.

k=1 Qh

Hence if © is taken so small that {(K) =0,

k—1

(62) X T3 IO Glh) = (U0 k) = (V1) bll)
— a(k) Y(k) ] -+ 12 3 uy $(0) = 0.

h

Now if 1, T are so amall that

supp ¥, supp ¢, supp ¢, C @, X [0, T,

5.2y becomes identical to (5.1).
revma 5.3, (Lions [8]) Let D be a bounded domain wn R* and u;, u =
=1"D), p>1,79=1,2, ... . Suppose that:

() lujllp, = C7=1,2, ...
wilh the constant C independent of j.

{71) Uy —e % a.e. on D.
hen

u— u weakly in L'(D).

Liama 5.4, Suppose that D C R* is a bounded domain and that the
sequence {uy C C(D), j=1, 2, ... has the following properlies.:

) max |u;| = cCy=12 ...
D
'("/'.17:) w;— u, a.c. on D.
(?.,”) There exists ¢ > 1 such that w € LYD). Then the sequence contains
a;s;di's(eggtence convergent in L*(D) for any p < [1, -teo[ and the limit u <

W
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Proof : The previous lemia ensures that w;— u weakly in L'(D).
Because of (i) there is a subsequence {u;} C {#;} such that

u, — u weakly in L*(D),
for any finite p 2 1 and # = (| L?(D). Since there exists a constant C,

=1
independent of p such that ||%]|ﬁp < C, it follows that u  L®(D).
On the othe hand, according to Egorov’s theorem there exists a small
measurables set D, C D such that #; — % uniformly on D™\ D,.
Thus for p = 1:

S|u,- — u|” dx = |, — #|” dx + S |oo, — u|” dx.
D D/ Dy D,
Since
(S s — wl” dx)‘“’ < (S s | dx)”p‘l- (5 o] dx)””
D, D, D,

the weak convergence of the sequence and the absolute continuity of the
integral implies that #, — » in L*(D). In what follows a bar over the sub-
scripts denotes a suitably chosen subsequence.
raroREM 5.1, Suppose that
(i) Condition (A) holds
(11) u, 1s Lipschitz continuous in all variables
(ti1) U is the solution of problem (2.1) — (2.3)
(1v) (u,, Q) has the property (P,) or (P).
Then there exists a subsequence {h, vy < {h, =} and a function v & L”(Q),
ai), & < L2(Q) such that :
ox oy
() (@.(Up) =0 in LYQ) for ¢ = 1, o[
g , @ , D .
(77) (@(U3)" — aij (0, (Uz)) — ;—;wwkly in L2(Q)
(777) cp(ﬁ,,)—a»v ace. and v =2 0 a.e. on Q.

Proof : Recall first that U has been defined on Q% and the extension
U’ also on [0, T]. From Theorem 4.1 and (#) we have then, that :

(5.3) wh? B (p () + ¢,(u)*) < C.
Consequently taking into account Theorem 2.1, for a coustant C; we

get:
(5.4) S (@(U))2 + (0(U))? + (,(U)?)) dx dy dt < Cy

oF
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and also

(5.5) § (@(U))? + (p(U))* + (9,(U))?)dx dy dt < Cy.

of
Here Q5 is the rectangular domain generated by the mesh-points of the
set denoted in the same way.

From (5.5) we get for a subsequence of indeces {h, =} :
o(Up) = v, ¢(Upw— 21, 0,(U5) — s,
weakly in L%((Q). Now, according to Theorem 3.1:

(U;) — vy, 0,(U;)" — vy, weakly in L*(Q).

Pl

Ta

On the other hand,

. d9(U)’ 2o(U)’
(5.6) @Dy = =2, (U=
52 dy
which implies
gy =12 vgg=
L ox’ t oy

and also (77). This completes the proof.

Next, let us take in Lemma 5.1, p = ¢ = 2, By = HYQ), B = L'(Q),
# = 1 and finite, B, — H—3(Q). Then by Theorem 4.2 and (5.6), ¢(U;)’
is precompact in 120, T7'; L7(Q)). Then a subsequence (denoted in the
same way) ol ¢(U;)’, converges to v = L*(Q) in L*Q). This enables us to
aply Lemma 5.4 which proves (7). This entails, passing if necessary to ano-
ther subsequence, (j77). ‘The proof is completed.

Next, we introduce a new continuous extension of the discrete func-

tion U defined on the mesh points of @,. Namely

Ui = o e(Un))
This is a contintous interpolate of U over the rectangular domain Q. which
belongs to HYQ)).

THLOREM 5.2. Under the hypotheses of Theorem 5,1, theve exists a func-
Hon u = L°(Q), u =0 a.e., with

d9(U) de(U) = L2(Q)

ox oy
such that for a switable subsequence of indices {h, <} :
() (Us)" = o(u) in L7(Q) for any p = [1, o]
(1) 9.(Up) = 222, 0,(Up) — 3—‘;”;1—” weakly in IXQ)
(iii) U,

i

—u weakly in L*(Q), 1 < p <o and a.c. h, T — 0.
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%
R
=]

Moreover if there exists a constant x, = 0 such that ¢(x) = x for x =
then

(v) Uy —u in L"Q) for any 1 = p < oo,

Proof : Suppose v is the function of Theorem 5.1 and # = o '(v).
Clearly, (i), (é2) hold. Since v € L*(Q), » = L*(Q) and by Lemma 5.3
U;—‘ — u weakly in L”(Q), which proves (iit). The solution U of (2.1) — (2.3)
satisfies (5.1) for ¢ e D(Q x [0, T[) and %, = sufficiently small. Since

a(x, v, 0)— d(x, ¥, 0), uniformly in strictly interior domains, we sce
from” (5.1) if we take into account (¢), (44), that » is a solution of (1.4).
Finally if ¢(x) = x for x 2 x,, then o~!(x) = x, so that

IIA

i

o 1 (x) £ x + %, for x = 0.

This implies that

o~ o(U,)') = w in L'(Q) for any p <= [I, +ool.

¢. Initial and houndary conditions. Uniquness of aproximating sequence,

ramma 6.1, (Lions [81) If X is a Banach space and f < L0, T'; X),
dfjdt = L*(0, T; X), 1< p < 400, then [ (after eventually changing 1l
on a set of measure zero of 10, T'[) is a continuous mapping.

CONSEQUENCE 6.1. Suppose u is the solution constructed in Theorem 5.1,

Then w(0) = uly—o makes sense.

Indeed if we take in (1.4)

f(x, 9, 8) = filx, ))fo(0) -
with f, € 9Q), f, = 2(0, T) it becomes:

o)
+ (@ f2), f) = (Do), fo), fi) + (@, fo), fo)-

This implies that equation (1.1) is also fufilled in the sense of dis-
tributions. Because

s, ). 5| (2. 7). %)+

Ox ox ay

]

Sol)  dolu) _ 12
e o (@)
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we have

%7: Ap(u) + a = LX0, T; H-'Q)).

and Temma 6.1 can be applied with X = (H~(<).

The following lemma is a particular case of Theorem 2.1 from Lions
[7, Vol. II]. v

revMA 6.2. Let £ e 120, T; HYQ)) and suppose Q to be sufficiently
regular. Then the trace f|, exists and belongs to HU%(S).

Moreover the mapping: w — uls, HWO(Q)— HY2(S) is continuous.

Here

H129(S) = L2(0, T); HY(0Q)) C L*S).
rrEOREM 6.1, If Q is sufficiently regular and conditions of Theorem 5.1

hold, than u possesses a trace u|s.
Proof : Since ¢(#) € HY(Q), by Lemma 6.2.

o(u)|, = HU2(S) C L(S).

On the other hand ¢~!(x) £ % -+ %, so that u|, also exists and the trace
operator is continuous.

FHEOREM 6.2. Suppose that Q 1s sufficiently regular. Assume that u
is the solution - comstructed in Theorem 5.2 and that the conditions of this
theovem are fulfilled. Then.

Ul = u,

and Us|s— u|s, wniformly on S.
Proof : According to Theorem 5.2 there exists a sequence {U,} C

Ci{Ui}, n=1,2 ..., U, CC(Q) such that
U,—u in L?(Q), p € [1, .
At the same time there is another sequence V, = C*(Q) such that
(6.1) max|Us — Vil <L, m=1,2 ....
a n

Q
Since according to Theorem 6.1 the trace operator is continuous:

Vals = uls in LX(S)
which implies in view of (6.1):

Uyls — #|s in L3(S).
On the other hand #, being Lipschitz continuous and by the way u, was
constructed, U,|s— #|s uniformly.

PHTOREM 6.3, Assume that conditions of Theorem 5.2 are fulfilled.
Then ul|—o exists and

(1) lio = 1y % € Q
(#6) Us(x, y, 0) = uy(x, y) uniformly on Q.

o0

19
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Proof : By Consequence 6.1, #|,—o exists and belongs to L*Q). Using
the same sequence as in the proof of the previous theorem we get:

Un(x, 3, 0) = 1ty(x, ) on Q.

The proof is complete.
A better understanding of how (1.3) is fulfilled and a more precise charac-
terization of the regularity of Q is given in Theorem 6.4. But first we for-
mulate :

1A 6.3, Suppose Q@ C R2 is a bounded domain such that its Sfron-
tier can be divided in a finite number of arcs whose tangents make with either
Ox or Oy an angle greater than a positive constant.

Then for any funciion V:Qu— R and any sufficiently small v << 0,
theve exist constants A and B, tndependent of h, =, such that :

(6.2) Tt S VR £ Arakr Y (VA(R) 4 Vik)) + Brhs 25 V(k).
Sr,h Sr,h

Here
Sp—=O0i() Sn S = (M =Q;d(M, )<, S =Ty x {1, 2 ... K}

The proof is given in [2].
rHBOREM 6.4. Suppose Q satisfies conditions of Lemma 6.3. Assume

that w is the solution obtained in Theorem 6.2. Let f & C(Q) be a Lipschitz
continuous function such that:

[z 0 and fls = u,.
Then

(6.3) o) — o(f)? dxdy @t —0 as 70,

$

Proof : As in the proof of Theorem 6.2 we use the sequence Uato_y-

Recall that U, € C(Q) and U,—» u in L*Q), # < o0.
Let {/,} be the corresponding sequence of discretizations of f. .
Admit that (6.3) is not true. Then there exists a constant C > 0 such
that
1

(6.4) = (of) = o(f)2 dxdydt > C,

r

for a sequence of numbers #, converging to 0.
According to (6.2):

2 Y (e(Us) — o(fu))t S AP ei2 315 [(e(Us) — o(fu))s +

Son Sen

1 o(Us) — olfu))s| 4 Brh Y (9(Us) — o(fu))

S h
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But |1, — f,| << Lr, so that

B2 (9(U) — 9(fu)) < Dy,

r Srh

D independent or A, =, # (and #n).
Consequently for o <,

L] (U = ) drdy di 5 Ky
AN

K| having the same properties as K.
Now letting p— 0, we get
p S (p(Us) —o(fo))dxdydt < K~
) S’
Finally for 7, v— 0 (#— o),
z S (u — f)dxdydl < Kr,
’

S

which contradicts (6.3).

Remark 6.1. The existence of the function f is ensured by condition
(P). This condition can be weakened by supposing that u, is ITipschitz
continuous as it was proved in [1].

THEOREM 6.5. The whole sequence Uy tends for h, ~—=0 lo the unique
solution u, provided that conditions of Theorem 6.2 are fulfilled.

This is immediately seen from the uniqeuness of the limit of the sequen-
ce, .
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