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1. In [2] the author presented an algorithm for solving the following
time-criterion assignement problem 1TCAP: let E,, E, ..., E, be n
sending centers, each of them having one unit from a product and let
D,, Dy, ..., D, be n receiving centers, each asking one unit from the same
product (the product unit being indivisible).

Tet T he the square matrix

(1) T = (ty)ii=Tn Ly 2 0

where f; represents the necessary time for shipping of the product unit
from E; to D;. Find the matrix
(2) X =" (%ij)ej=1m where

1 if it is a transportation between F; and D

Lij = ;
e 0 contrarily

so that the total time allocated to the whole program be minimum.
Same as in the price-criterion assignement problem, each admissible

solution of TCAP is a Boolean matrix with exactly » free elements cqual

to 1 (that means each element belong to different rows and colummns).
The problem is to find that admissible solution X of a TCAP for

which

(3) tx = min {max (t;,, loj,, -+ ., buj,)}
Xe%
where (7;, 74, ..., Ju) is & permutation of {1, 2, ..., #}, ; being the cor-

responding times of those components of the solution X which are equal
to 1.
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In the present note, the author gives a new algorithm for solving
TCAP using the graph theory.

2. Let be the TCAP problem. We can attach to this problem the
graph (GA) by using the general means of the associated graph to a trans-
portation problem [1]. Then:

PROPOSITION 1. The sum of the kernels of a graph associated to a
transportation problem, for two valuations X and Y, X and Y being two
different simple solutions of the transportation problem, is a graph which
contains at least a circle.

PROPOSITION 2. The mecessary and sufficient condition for a graph
to be cven, is thatl its sct of verlexes could be grouped in two clases, so that
every cdge of the graph links vertexes from different classes.

The definitions and theorems from [1] are true in the assignement
problem, too. But from the characteristics of the problem, onc can prove
other properties, as follows:

1EMMa L. All admassible solution of assignement problem are simple
if the graph (GA) has 2n verlexes, the admissible soluttons number is n!

LEMMA 2. The sum of the kernels of the graph (GA) for the valuations
X and Y, where X and Y are two different solutions of the assignement
problems, is a graph which contains at least one even circle.

IEMMA 3. Let X be an admissible solution of an assignement problem
and N(X) the hkernel of the graph (GA) corvesponding to the solution X.
If at N(X) one attaches an even circle, so that cvery edge of the circle links
an E with a D verlex, wn each wverlex of the circle ome meets exactly two
edges, then by vemove of the edges of N(X), tmplicated in the respective
circle, one oblains the kernel of a new admissible solution Y associated with X.

Using these results one can prove:

THEOREM 1. Starting at an admissible solution X of the assignation
problem, one cam arrive (using the procedure described in the Lemma 3)
to any other admissible solution Y of the comsiderated problem.

Proof. From the Lemma 2, if X and Y are two different admissible
solutions of the assignement problem, N(X) -+ N(Y) contains at least
one even circle.

If it contains exactly one, by the procedure, which was presented in
the Lemma 3, wejfcan arrive at Y from X in a single step.

If it contains % circles, with the sam2 procedure we can build up a
string of admissible solutions of TCAP, X, X,, ..., X341, where

X, =X, Xpp=Y
and N(X,) + N(X,,,) contains exactly one even circle.

3. Now we can give an algorithm for solving of TCAP. We shall
work with the time matrix (1) of the considerated problem, the direct
treatment on the graph being more difficult.
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Let X be an admissible solution of T7CAP. We superpose the matrix
X over the matrix T, enclosing the elements #; corresponding to x; = 1,
and ' let unenclosed the other elements, £;. Thus for each admissible
solution, on each row and column, it will exist exactly one enclosed ele-
ment £ corresponding to the edge (£, D;), from the kernel of the solu-
tion X. These ¢; lies on different rows and columns, and so they are free.
We shall note this matrix by T,.

Starting from the matrix Ty, in a circle built as in the Lemma 3
and replacing the unenclosed vertexes, one obtains a new matrix Y, with
7 free enclosed elements, corresponding to a new admissible solution Y.

Using this procedure we can pass from an admissible solution to ano-
ther, and the maximum times

(4) ty = max by
(5§) = {i.4) %45 =1}

should be decreased and in this way alter a finite number of steps we
arrive to the solution having minimum £, which is optimum solution of
TCAP.

Using this remark, we cnunciate the following algorithm for optimi-
zing TCAP:

1. One determines an admussible solution X of the problem (for example
by Hungarian method) ;

2. One computes ty which correspond to X, by (4);

3. One rewrites the matrix [T, enclosing each elements t;, corresponding
to x5 =1, from X, and letting empties (we mark with a dot) any other
positions (1, 7), where tij = ly, so i is obtained the matrizx T .

4. It is marked (by an asterisk) the enclosed elements ity for which
thh - tX-

If there cxist more than one element of this kind ty, we mark only onc
of them. If, starting from the marked ty, we can build up a civcle (CX),
so than mome from its vertex coincides with an empty position from Ty,
than enclosing the unenclosed vertexes of the civcle and viceversa, the mattix
X has the elements x; = 1, corvesponding to the enclosed elements t; and
the other elements equal with zero, which is a new admissible solution of
TCAP. The algorithm vestarts after this at the step 2. If we can’t build
up Lhis circle, the solution is optvmum and the algorithm ends.

TFor this algorithm we can prove the following theorem:

Theorem 2. The above described algorithm 1is finite and the oblained
solulion 1s optimum.

Proof. There are a finite number of admissible solutions of TCAP
(from the Lemma 1, n!). So, from the 4-th step of the algorithm, there
cxists a finite number of possibilities to build a new admissible solution
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of TCAP associated with the starting solution Also, because for each
pair of succesive solutions X, and X, we have

(5) tx, > Ix,

(if £y, = tx., at each iterationis eliminated a vertex (p, ¢) for which /4, = Ix,,
there is in a finite number of steps one arrive at (5)), in this algorithm
none of solution can’t repeat and after a finite number of steps we arrive
at the situation that the algorithm can’t returned, thus the algorithm is
finite.

We assume now that the obtained solution isn’t optimum. Result
that there exist a solutionY,so that #, <fy and Y is different by X at
least two components different at C.

1f we asume that Y is different by X by only ome, result that if
i, is the row index of these components %;;, and Y, then X has at
the column &, a component different by zero X, where 1, # 7, (which
result from the TCAP admissible solutions structure). This is a component
of Y too, because X and Y are different by only one element of this
kind. From this Y has on the column %, two clements different by zero,
which contradicts its admissibility. g

There result that YV is different by X, with # components differents
by zero, where 7 > 1.

Building the circle which links tese 7 vertexes of X with the » com-
ponents of Y, so that each edge links an occupated vertex from X with
one from Y, we obtaine an even circle. By fy <ly result that X isn’t
optimum.

4. For exemplification of the algorithm we recall an example from
[2], which is the TCAP, defined by the time matrix:

I R LU A (I

13 9 6l 4 8
L= b 175 40l 83
@ 11 7 4 5

=i ByronlnOy Wil

i.7 l,_| ¥ /

1. By Hungarian method we obtain

O 01203 0
00100
X —=11i0a1,0. 04+ O]
10000
01000

and ¢, = max {2, 6, 3, 2, 2} = 6.
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3. One build
f 5 ‘ @ \
uf L4
Ty —| 1 |5 4] - 3]
12| 4 5
v l_’ —3 y s/

' 4', One marks in 7Ty, the element /,; = 6. Starting from this we
build (CX,), on T,. Enclosing the unenclosed vertexes of the circle and
with the reverse we obtain

O 120 0 O
o o o0 1 O
X,=10 0 0 0 1
1 ¢ 0 0 0
0O o 1 0 0O

and the algorithm is restarted at the step 2.
2. tx,=ma%x {5, 4,83, 2, 2} =5
3.

5. o2 )
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One mark in 7, the element 4, = 5.

4. One remark that we can’t build up another circle, corresponding
to t,,, X, which is an optimum solution of the problem, where 7y, =5
is the minimum time in which we can perform the whole transportation
using this solution.
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Remark. Building the circle (CX,) on I'y,, we can obtain a new optimum
solution :

o 1 0 0 0
0O 0 0 1 0
Xs =l 1y O w0+ W0 o] O
o 0 0 0 1
0 0 1 0 0
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