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In this paper an one — parameter family of sixth — order methods
for the iterative solution of nonlinear operator equations of the form:
(1) P(x) =0

where P maps the Banach space X into a Banach space Y, is described.
For non—zero values of the parameter, each application of each family
member requires no explicit evaluations of derivatives. The convergence
of these methods is proved under several assumptions, and a numerical
example is given.

1. An one — parameter family of sixth-order iterative methods

In order to obtain solutions of (1), we consider a family of iterative
methods defined by the formula: L
(2) Xn+1 = Yug1 — [P(_)’,,,H, Zn+1)]—‘1 P(yrH—l)
where :

zu+1 =yn+1 - [SI - Pw;(P(xn: J’»+1) + P(yn+1; vn))]Fu P(yu+1);
Vu+1 = Xp — PnP(xn) ;o = [P(xn' vn)]_l;
v, = %, — cP(x,);

P(x, y) — first divided difference of P(x) [l], ¢ — real parameter,
I — unit operator.
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Conditions of the convergence of processes (2) are given by the' fole
lowing.

THEOREM. Let us assume that the following conditions arve fulfilled :

1) Equation (1) possesses a solution x* which belongs to sphere :

So=Ax:1l*¥ — || < d}, d>0;

2) NP 27) 17 < B; IIP( LAt s
IIP(% x", %'")1H <M P, 2T, 2T, < M
[P, 27, ) — P, &7, ')y || < Ly 1" — 2" || + Ly &' — «/| |

17 rre rees

Jor every x', x”, x', « of sphere S = {x: |[|lx — x,|] < (1 + a)d},
where :
o = max {1 + [¢|N, BM(L + |c|N)d, KBM(1 + |c|N)d% ;

P(x, v, 2)y, P(x, y, 2); — second-order divided differences of P(x) [1];

3) md < 1, where:

m = 3/ BMPK(1 + | c¢|N)2;
K = B*M®N(2B + |¢|) (1 4+ BN + |c|N) 4 B:M?(1 + |c|N) 4
+ BN(B + |c|) (L,BN + Ly(1 + BN)).
Then the equation (1) has a unique solution x* in S, the sequenoe

{2} defined by (2) comverges to x* and the vate of comvergence is given by
the following inequality :

(3) |2 — 2% || < = (md)®"

m

Proof. The theorem is proved by mathematical induction. It is
easy to see that [[xy — x*|| < d, 2, € S and we observe that the, ine-
quality (3) holds for # = 0. We new obtain by induction that

[ % = 2% ] < — (md) and || % — x,|] < (1+ mde)d.

In fact, if these are true up to some » > 1, then using the Newton
mterpolatmg formula [1], the conditions of theorem and (2) we get:

Fut1— % = [P(Yur1y Zug1) T1P(Yns1, Zugr, %) (201 — % ) Vuaa —x*);
Znar — & = {TWP(%n, Yns1, U)o P (%, 2*) (2, — 2¥)T, [P(xn, v,) — E
= P(Yur1, %) 1+ Do P(Yusr, Uny %), 05 [P(%0, v) — P2, %)] (%, — 2*) +
+ Tu[P(Yus1, Ony 2%)1— P(%, O, Yusa)) (Do — el ] P(%, 2%) (5, — 2%) +
+ TuP(%,, v, V1)1 [T — cl 1P (%, x*)(xn_x*)ru [P, V) — y7'+1' ]}
(Ynt1 — %) ; _

Ynt1 — 2% = Ty P(%, s, 2%);[1 — cP(x,, %) ](x, — 2%)(x, — &%)

3 . A FAMILY OF ITERATIVE METHODS 191

from which it follows that : .
(4) Hxapr — 2| < BMPK(L + [c|N)?*||x, — x* | |5 = m®] [%, — «%[[°
and '
Hnr — %ol < [#ugpr — 2% 4 [|2* — %] < (1 + mPdo)d.
Thus the scquence {x,} defined by (2) remains in S, and lim x, = «*

From (4) we obtain (3).

Finally, we prove that the equation (1) has a unique solution x* in
So. Suppose that x** is a solution of equation (1) in S, and x** # x*.
The same proof shows that lim x, = x**. By the uniqueness of the limit

12—>»00

point of convergent sequence {x,}, it follows that x* = x** and hence the
uniqueness of x* in S, could have been concluded from that fact.

Thus the theorem is completely proved.

REMARK 1. One special case of (2) is that for ¢ = 0. We have:

(5) Xn+1 = Youg1 — [P(wal, zn-;-l)]——lp(yn-l»l)
where :
Zpnt+1 = yn-l—l . [31 . Fn(P(xn; yn+1) + ])(yn—H; %))]R»P(yn+1);
Vnt1 = Xy — PnP(xn); ' Pn - [P’(x”)]—l

REMARK 2. The iterative process proves useful for finding solutions
of f(x) = 0, where f is a real-valued function of one variable. In this case,
we obtain, from (2) and (5), the following methods:

Z

a1 Yo f(y )
e —— g 141

(6] Xpt1l = Ypyp1 —
( ) ' ok f(‘gu»l—]) _j(ynv—}—l)

where :
Flxn) floy) = f(Un),/(y”,J:]) + f(xn)f(y,,.J,_l)

o e ' f(Yni1) s
+1 7 Va1 J @) [f (%) — flog)] S (Vns1)

i v — x ¥ 3 - f
wbl = Xy — — e ) O =2 —8 Xn)y € F# Oa
Yut1 = : Ty 720 () K f( )i e #

and
i1 Vg
(7) " X1 = Yng1 — sl o L, FAGZREY
. fz ,,;1) fj(yn»l»l)
where :
. (1 + fyn+1 )f(ynll)
Al T +17 7
T T TFo ) PG
yn+1 == Xp _If-xﬂ :
J(x0)
7 — L’analyse numérique et la théorie de 1'approximation — Tome 13, Nr. 2/1984.
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It is of interest to note that (6) is a very economical family of sixth-
order methods, each requiring only four function evaluations per iteration,
and that (7) requires no more than three function and one derivative eva-
luations per iteration.

2. Numerieal illustration.

We now give a numerical example, using the formula (6), which not
only illustrates the method practically but also serves to check the vali-
dity of the theoretical results we have derived.

Let us find the solution of the equation:

flx) =2 —2x —5=0

by the Newton—Raphson method and the method (6) with ¢ = 0.1,
using the starting value x, = 2. The root correct to 13 decimal places
is [2]:

x* = 2.0945514815423.

The successive approximations are set down in table 1.

Table 1

The Newton—Raphson method The method (6) with ¢ = 0.1

2.1 %, = 2.0945514
2.0945681
2.0945514

X
X
X3

REFERENCES

[1] UL’ M., S. Generalized divided differences I, IL. Eesti NSV Tead. Akad. Toimetised
Fiilis — Mat.,, 16, 1, 13—26, (1967); 16, 2, 146—136, (1967).
[2] Ostrowski A. Solution of equations and systems of equations, Academic Press, New
York, 1960.
Received 3.1.1983 A

Department of mathemaiics and physics
Polytechnic institute
Hanoi — R. S. Vietnam. § %



