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1. Introduetion. We consider the following maximization problem :
(1) max {47 Cx 4+ 2cx: Adx — a, x > 0},

where 4, C are m x » and # X # matrices respectively and «, ¢ are vec-
tors of the appropiate dimention. Matrix C is assumed to be simetric and
positive semidefinite.

In the present paper a simplex-like technique is used to establish
simple optimality criteria for the solution to the problem (1) via general
bilinear programming problem studied by the author in [5]. Then a sim-
plex-like algorithm is described to find Jocal and global maximum of the
problem (1) respectively,

The general bilinear pl'ogl'afnmirlg problem cbnsidered here is the
Tollowing :
% max{f(x, y) = 27 Cy 4 cx + dy)
P bject to the linear constraints
(3) Ax =aqa, x >
(4) By =ty >

where 4, B,C are m x %, P Xq, nx ¢ — matrices respectively and
a, b, ¢ d, x, Y are vectors of the appropiate dimension.

In what follows we shall use the following Altman’s result given in
[17.
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g ! 77 ’H’ntll SOl%thn O_f th/ bil?nﬂﬂr p’ 7
'FHEOREM: ]-- If (ﬂ.» P ) 15 an :‘Ji)t e

: 2)— en there is a basic feasible one. _
mmgT;ilbroblgﬁz‘ gc) qu(:gréﬁci;e maximization poblem (1) can be considered
he conv

ili rOgTE i m in which
as a special case of a bilinear programming proble

B:A,b:a/,d:C:

(5) max {¢7Cy + ¢(x + ¥)}
?g;Jject to v —a Ay—a 230,330

iy ‘mal solution of the bilinear pro-
THE . Let (x*, y*) be an OfJMM'Zﬂ,l s0 ‘ . o
murog'f;?{fjg{i;n}l(%) 6(6)(. T%en x* and y*¥ are optimal solutions of the
7 ,'
guadz'at-.-?(jm’. programming problem (1) and .
X" TCy* = XL Cx* = yCy*,
cx® = cy*
14 s 124 nite then x* = y*.

Idition C is positive defini ’ "
éf §Zr§an elimination in bilinear programming. Let us conside

) P

23 X _\dy_I_B
(7) Flo ) =3 ey + 2o ok 2y 4
(8) zkz‘/:,akix‘—l—ak, k=1,2 ..., m

i=1

P
9) wy = I by by, B=L2,...¢

=1

and let b, £ 0 be the pivot element in (9). Then after substituting
Yr = i (— Eb’jyj + 4, — br’

brs\ g#s
in (7) we obtain

» , , " 0¥ i —{—d;uf‘l- BI,
flo, y; u) = 2% (E ¢y + C“u’\) 1 ?;{ (614 83) %, ot 3 413

j#s
{==1 J#s
where ‘
. dgbri .
d] =5 d] — = 3 _7 # S
bys
Cibri 4 ) = "
C;jzc.ij’—"‘ir‘, ]7&8)1 1:21 ’
rs
’ Cis L 1 2 n
Cis = —, = L, 4, «.+
(10) P by
@I il _dsbr
brs
8;__0;‘3171‘ i=1,2, L
brs
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If we consider the simplex table

x y 1
2= | 4 0| a
u= |0 B| b

[
(11) ¢ 0| «
F={lo il p
0 c| o

\

tnen after a Jordan elimination step (J.e.s.) we get the table

x yl M, yn 1

2 = A 0 N
U, =
Vs = 0 B’ b
(12) o
[
c 0 «
f={ o ' 8’
0 C’ S

where C’, &', &', B', 8’ are formed by the elements given in (10) and B’
is the matrix obtained from B after a standard Jordan step.

From (10)—(12) it is seen that in bilinear programming a  Jordan

Jordan
elimination step should be carried out according to the usual rules to which
one adds

Additional rule : if the pivot element is an element of the matrix B
then

¢ =c¢ 4 3.

3 = Lanalyse numérique et Ja théorie de I'approximation — Tome 13, Nr. 2/1984.
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If we take a pivot element in the matrix A then instead of, table {11)
we consider the table

x y 1

z = 4 0
%= 0 B b
|' ¢ 0 o
F={ ° ¢ | e
c*r 0 0

\ !

after a J.e.s. with pivot element a4, # 0 we get the table

Koo oZye o Xy Yy 1
2y =
Xs = A’ 0 a’
2 =
U = 0 B b
¢ 0 o
f = 0 d g
cr 0|

Now the additional rule consists in:

== d _+_ _Y.r

(here '’ means the transformed matrix (vector) after a J.e.s.).

(13)

s+ 5IMPLEX-LIKE TECHNIQUE

Now if we consider the simplex table
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A 0 a

0 A a
R
0 . | .

0 c | o

corresponding to the quadratique programming
we get the table

(1), then after a J.e.s.

x Uy Xy, 1
A 0 a
0 A’ a’
¢+ 3 0 «
0 c’ o'
0 C’ 0
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ing the same pivot element 4, in the first ma- we carry out a J.e.s. and we obtain the table
trix f}qftz;g ?ﬁ:’ cj()fr.zgpgar'l]fllitrllgg matrix CI')T, then (14) will be transformed Y J
into the table X oveZpoin Xy 1
Byoonty oo g By oi o Bpoee B 1 2 =
Z]_ = j\.fs i A, a’
P (17)
;'Ks - AI 0 a’ Zm . —
. 7 ¢’ o
Zm = = ’ !
2, = C 3
4 A’ a,'
(15) = 9 : . . .
! In view of the additional rule another J.e.s. with the same pivot ele-
: ment q,; will be carried out starting from the table
B =
e+ 37 0 3 1
f= 0 ¢+ o z = A ‘ a
c'T 0 Y’ 1 (18) _ ¢+ S’ o
]| ¢t 0
hereC"" = (C')’. A

? ) the t .5, by which the lable (13) 1is ' . '
tmns?ﬁ%ﬁ%?pg) 1('15)1‘};{;052;;7 (01{1) ;il;ﬂ obefcalled z double Jordan elimina- After a J.e.s. with pivot element 4, we obtain the table
tion step (d.].e.s.) of the quadratique programming problem (1).

rEMARE 1. A d.J.es. with the pivor element a,, can be carried out By venly o Xy 1
as follows: starting from the table el )
x 1 ;cs a e »
2= | A |a (19) :
Zy=
(C + 8’)[ BI
(16 ¢ o —
(16) N s o ;
f= Y
C 0 .
Therefore, after a d.J.e.s. with pivot element a,, table (16) is trans-
(that must be read: z = Ax + a, f(¥) = 47Cx + 2cx + 2« formed onto the table
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Xy o Wzp WO, 1
=
;:cs: A’ a
(20) me =

THEOREM 3. If CT = C and C is positive semidefinite, then

(@) (c+38) =+
(11’) CIIT = CII'
Proof. According to the relations (10) we have
’ Cis@r CisQyf . . Ci
8= —L2, ci=cy——"-, j#S ci=",
ar Qrs g
!
’ Csr § r__ Csjary ( CSSarj)
¢;=¢; — 214 = — = (¢, — 2 a,la,..
7 ¢l ars ) Y] ars s @rs r/ rs
Therefore

’
o AYAR N ’ (Gs + Bs)drj 1 osa,j stay
of = o+ 8) = ot 8 — CE M ne
S rs Qrg

(21)
+ ﬂssﬂ;arj = ¢ — (st — M) Wt = ¢ +¥j, J#S,

@y Ars

since ¢;; = ¢;.

(22) A R A e

Ars Qrs ars

ie, (i) holds.
If we denote: B = C’T, then from (10) it follows that

'
bisttr; . Csi@yj
= hl = isdrj __ Csidyj
Cij—bij—bij—_—‘cji =
ars ars
Cig@rj Css@ri | rf
. _ Lystri . . ussth 2
= ¢y L= (cﬁ ———J i
Ars QArs 1 Qrs
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hence
"o Cjs Qr; Csi Qry Css Ari Qyj ;o
(23) Cy == Cj; — - —— + ) P ) # 8.
ars ﬂrs 7S
Similarly we obtain
v Cig Arj Csj Qpi Cos Grj Ay v %
Cij:‘cij— wHry _ Ysg l_'_ ss.J ‘,z,];és.
Gys Ays @ys
Since ¢; = ¢;; it follows that cjj = cji.
If j = s then we have
. , b; Csi [
(24) = by, =i Y (csi s _M) [,
Grs Ays Fys
respectively
*»
bss @ Css Gri
7 ’ re ’ s Grie
Csi == bsi —= bsi — = Cis — =
Ays Ay
¢ G a Css @
_ Gis G, O (Cis s A7 )/am
Qys Qys Gy Qys

hence ¢ = cii.

REMARK 1. Formulae (21)—(24) can be looked as rules of a d.J.e.s.
for the quadratique programming problem. Hence a d.J.e.s. is a transfor-
mation of the table (16) onto table (29), where matrix A’ and vector &’
are obtained from A and a respectively by a usual J.e.s. and C”, ¢

1/

o’ are calculated as follows:

o Cig Arf Csj Qri Css Ori Arj
Cij = Cij — - +—
Ars Ars s
(25)
o Cis Css Ari . e
Cis = ey 2 y ¥ 7é S, Css =
[ s
o o 5O Cis T + Css Arj @r
E a2
Qys s s
'8
(26)
v Cs Css By
s 2
Arg @ys
2
Cee A
’ Cs Ay s %r
(27) 0 = o — 2L 4- g .
Ay s

, L) # S
Css
=
rs
¥ _7 # S
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REMARK 2. The rules of a d.J.e.s do not change if instead of the
simplex table (16) we start with the table

—y 1
2 = A a
. oc
3
f=i
! C 0
t

In this case we have to use the modified Jordan elimination step (i.e. the
pivot line rests unchanged but pivot column changes sign).

3. Optimality eriteria. To obtain a basic feasible solution (b.f.s.) to
the problem (1), we shall use the d.J.e.s. described at the section 2. To
simplify the notation we assume that matrix 4 is of the full rank. Then
startind from the table

—x 1

0= A a

(28) — ¢ 0
f=

C 0

and assuming (without loss of generality) that the pivot elements were
taken from the first m column of A4, then after m d.J.e.s. we get the table

Xkl »c 0 Xy 1
D=
. B b
Ky =
(29) BT,

P P
f=

D 0

, 020
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. REMARK 3. Simplex table (29) corresponds to the followi -
nical form of the convex quadratic programﬁqing problem : " o Qno
(1) max {f(x) = XT DX — 22X + 2P}

subject to

BX <6, X >0,
where X = (%01, ..., %,)7.
Therefore, if the convex quadratique 4% i is gi
. [ ) ) que programming problem
1n canonical form (1’) then we start direclty by a simplgexptable li]lgse g(léfg)n

LEMMA L. If in (29) p > 0, then bfs, 20 — (p O "9 '
mum of the guadmm'gug programming (1), i
Proof. Form (29) it is seen that S(x°) = 2P and

f#) = ~2 Z Di%; + }i: i dyjx;%; + 2P

i=m-+1 T=m41 t=m1
Therefore

(80) f(#) — f(x°) = i % (%j ;% —Pi)Jr i %; (% é d,-jxi—jﬁj)

t=m+1 F=m+1 J=m-1 i=m-+1
Now, if p > 0 then (30) shows that
f(x) — f(») <0

for each %, > 0, ; = ici i
€ i 2 U t=m4 1, ..., n sufficiently small, ie. 0 i
maximum for f in o Y N -

Q= {x e R" : dx = q, % = 0}.

THEOREM 4. Let %° = (b, 0) be a nond t 0 4
local maximum of f on O if am)l only if RN s, Thetyealio¥s @

(7) P = 0;
(77) dy; <0, Vi e 10,
where

IO:{ieI:pi:O}, I = {m 4+ 1, m—f~2,...,n}.

Proof. (=) Let 2 be a local maximum of f on Q and consider

(31) xf_—-(b,O,...,xi...,O), %=1t>0 1]
It is easy to see form (30) thet
(32) F(#) — f(a) = {d %, Sy
(At — 2p;)¢, © & I0
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and therefore f(x) —f(x°) <0 for each x>0, 7« [, small enough,
implies (z) — (41).

P (<:)( )Asstfme that (¢) —(#7) hold. Then (32) shows that
(33) fx) — () <0, Viel,
for each ¢ > 0 small enough. Now we choose ¢ > 0 such that the convex
hull V' = conv {x%, x»+1, ..., ¢"} C Q, where %' is defined as in (31).
Any x = V has the representation

n—m

o= 080 A At L N, N 20, S = 1
=0

Consider the convex funcfion g: R — R,
g{x) = f(x) — f(x°).

Hence

"~

F@) = o) = glx) < 2ag(x®) + 3= glent) <

< max {g(x9), g(x) , ..., g(x")}.
Obviously g(x,) = 0 and (33) shows that
g(x) <0, 1= 1.
Thus f(x) — f(#°) <0, Vx €V, ie. 20 is a local maximum of Vi
o QL\.TOVV let x° = (b, 0) be a degenerate b.f.s. of (1) and let us denote :
J={<={1,2 co,my by = 0},

THEOREM 5. Degenerate b.f.s. x° = (b, 0) € Q is a local maximum of

S on Q of and only if

() p>0
(17) di; <0, Viel
where

Ip={isI° :b,<0, k= J}.

Proof. (=) Il x° = (b, 0) is a local maximum for fon Q, the f(x) —
— f(x°) < 0 in a certain neighborhood of x°. Consider d(efn}ed‘ as in
(31). As f(x') — f(x%) <0 for >0 small enough, from (32) it follows
that p, > 0, i & I°, ie. » > 0. Hence (i) holds. !

LEMMA 2. Let %y = (,0)= Q be a degenerate b.f.s. If there 1s by > 0,
k< J, then for every t > 0, x% is not feasible solution,

Proof. Consider #* defined in (31) and let by > 0, k = ],

o PP —
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Then x, = — b t < 0, for every ¢~ 0, that means ¢ ¢ Q, for every
> 0,

Now, since x' = Q it is necessary that
by <0, ke],
and from (32) it is seen that J(#%) — f(x°) < 0 implies
di; <0, Vi el
Le. (1) — (#), hold.
(<=) The proof of the sufficiency of the conditions (4) — (#1)4 is similar

to the proof of the sufficiency of conditions (f) — (4#4) on Theorem 4,
using in addition I,emma 2.

4. Global maximum. Assume that 40 — (6, 0) = Q) is a local maximum
of / on Q. Then it follows that > 0 and (i) — (i) or (4) —(1%); hold.
For #¢ defined as in (31) we have

f(.'/\ﬂ) =5 ZPixi + 2P + d{ixzy éfi (x;) - — 2?, —f— 2d“-x,-.

X

Condition (s) implies

U 0 Yier
8,7,-

Define

(34) x; = min {t > 0 f(xt) —f(x") - O}
where x; = ¢.
If there is 4 < I such that f(x') — /(%°)=0 has no positive solution,

then one takes x;, — + o0.
Consider the inequality

(35) PR

ieT 47
i

(The terms corresponding to x; = 4 o are missing in (35)).
Since function f reaches its maximum in a b.fs., it follows that

max {f(x): x = Q} = f(xv),

where

g:gmkenw22<q

iel 5.
%,

~_That is Why, in order to determine a new local maximum, we shall
find a local maximum of f on Q> Q, ie. adding to the initial constraints

Ax =a, x >0
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the constraint

: .
(36) iel A’: > L
With this new quadratique programming problem we proceed simi-
larly until the problem becomes inconsistent. Hence we have |

THEOREM 6. Let x0=(b, 0) & Q be o local maxumum of f on Q and xi»

s € 1 definzd as in (34). If

{x e Ry dx =,a, Z;—; > 1};:: i)

=] 7

them 30 is a global solution to the problem (1)1

6. Description of the algorithm. From above we conclude with the
following algorithm for the global maximum of the convex quadratique
programming problem.

Step. 1. Starting from the table (28) find a b.f.s. 2°.

Step 2. If (5)—{(#) or (i)—(i%); hold {whether x° is a nondegenerate
or it is a degenerate b.f.s.) then go to Step 5. Otherwise go to tep 3.

Step 3. Compute

dgs b2 Psby {djj % Cp;b,
7

202, b

38) D= —"'— - — = max >0

2b§s bys 78

Step 4. Do a d.J.e.s. by choosing a pivot element b, in the column
s and go to Step 2.

Step 5. Compute #] as in (34). L&

Step 6. Add the inequality (36) to the initial constraints and go to
Step 1.

The algorithm is terminated when the new quadratique programming
problem becomes inconsistent (Theorem 6).

rEMMA 3. Let 20 = (b,0) = Q be a basic feasible solution of (1) and
x' = (b', 0) an adjacent b.f.s. obtained from x° in Step 4.
Then

fl&7) > fx).

Proof. Equality (27) shows that the number D given in (38) is always
positive. Indeed, D represents the Jargest difference between the value of
the function f at an adjacent b.f.s. which can be reached from #° in one
J.e.s. and the value of f at x9: f(2°) = 2P. Therefore, if 0 is not a local
maximum b.i.s. then D > 0. But we pass Step 4 only when x° is not
a local maximum h.i.s. ‘
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Now, from (27) we have

Peby  dgs B2
+ g =2P + D =) + D.

N —2p —
fl&) Lk

Therefore
F(x') > f(x°).

. THEOREM 7. If Q # & is bounded then the proposed algorithm halts
in finitely many steps generating an optimal b.f.s. to the problem (1).
Proof. It follows immediately from the following facts:
1) By simplex method Step 1 converges in finitely many steps;
2) Lemma 3 shows that whenever we pass Step 4 the value of
the objective function f is improved by D > 0.

3) There are only finitely many b.f.s. for Q.

REMARK 4. In order to improve the cutting plane given in (36) we
can use an iterative procedure given by conno, H. [2], which generates
a cut which is generally deeper than the cut used here. But in the other
hand this procedure involves to solve n-m subsidiary linear programming
problems at¥each iterations.

7. Example. To illustrate the algorithm we solve the following exam-
ple : maximize

EX

f(#) = — 9%, — 15x, + 243 4~ 5x,%, + 543
stubject to
% 4% =2
x, +x=2 x%2075=12384
Step 1. The initial table is:

—xl _xz _x3 —'x4 1

0= | 1 0 1 0| 2
0= 0 1 0 1 2
9/2 15/2 0 0| o

1l 2 5/2 0 0| O
f={l|5/2 5 0 0| o
, 0 0 0 0 0

lh 0 0 0 0 0

\
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After a J.e.s. with marked pivot element we get the table

o w
I

oo
i

Il

0 —x, —%; —X, 1
1 0 1 0 2
0 1 0 1 2
—9/2  15/2 —9/2 0 |—9
—2 5/2 —2 0 |—4
—5/2 ) —5/2 0 |—35
0 0 0 0 0
0 0 0 0 0

After a J.e.s. we get the table

o R
[

— % —X,  —X3  —Xy 1
1 0 1 0 2

0 1 0 1 2
1/2 5/2 0 0 0
—2 —5/2 0 0 0
5/2 5 0 0 0
—2 —35/2 0 0 0
0 0 0 0 0
0 —%, —x3 —x4 1

1 0 1 0 2

0 1 0 1 2
—1/2 512 —1/2 0 |—1
2 —5/2 2 0 4
—5/2 5 —5/2 0 [-5
2 —5/2 2 0 4

0 0 0 0 0
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After eliminating the O-column and the corresponding line in (', the
new d.J.e.s. starts with the table

—X, —X3  —%, 1
Xy== 1 0 2
0 = 1 0 1 2
J 52 —12 0 |-5
f= 5 —5/2 0 0
—5/2 2 0 0
| 0 0 0 0
| After a d.J.e.s. we get
‘ — X — %, 1
|
| X, = 1 2
Xy = 1 2
| J 92 152 0
F={l 2 5/2 0
l 5/2 5 0
This table corresponds to the canonical quadratique programming
problem :
— 9%5 — 15x, + 222 4 S5x4x, 4 542 — max
subject to

X4 < 2
%, €2, %5 20, 2, 0.

Step 2. It is seen that (i) holds (9/2 > 0, 15/2/2 > 0).

_ Sinee I° = ¢, (i) is automatically satisfied. Hence 29 = (0, 0, 2, 2)
is a local maximum and f(a?) = 0.
Step 5. We have

16) — ) = = 91 + (~e o) 2, O (5=

52 5] o
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Hence %3 = 4 o0. Similarly we obtain
S — f(x°) ="— 15¢ 4 582 = 5¢(t — 3),
and so x! = 3. Therefore the inequality (36) is:
x, = 3.

Step 6. The new simplex table is the following

— X — %, 1

Xy = 0 1 2
xs = 0 —1 —'3
9/2 15/2 0

F=( 52 | 0
5/2 5 0

Step. 1. It is clear that the new problem is inconsistent, since ine-
qualities x, < 2 and %, > 3 are contradictory.

Therefore x° = (0, 0, 2, 2) is theoptimal solution to the considared
problem and f(x°) = 0.
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