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The paper deals with some aspects of the divergence of Lagrange
«nterpolation processes. A series of studies on this problem are quite old,
most of the results are classical by now. In the last years, several new
results and theorems have been obtained. They have been fayorised by the
theorem descovered by P. Erdés [2]. A new proof of this theorem was
recently published in [3]. Among the most important works on this sub-
ject, the results obtained by 8. S. Pilipéuk [4], [5], [6], [7], A. A. Pri-
valov [9], [10], L. P. Povéun [8] must be mentioned. A result on the
same topic was obtained by I. Muntean and S. Cobzag [1], using a prin-
ciple of a double condensation of singularities.

In this paper, a result related to the theorem of S, S. Pilipéuk from
[4] is essentially pointed out. In the first part of the paper, some proper-
ties on which the proof of the fundamental theorem is based are presented.

I. Let Cle, B] denote the set of all real continuous functions on the
interval [, B], whete o, B R, o < B, and let f: [, B]—R.

We define R, ={x<= [a, B]:f(x) =0}. Let a <= [, B]. Denote by
G(a, @, B) the set of all functions J: [e, 1 — R which have the following
properties :

(i) = Cla, Bl
(i) R, = {a}.
(iii) There exists § > 0 so that /[ is strictly monotonic on the intervals

[e =3, a]N [a 8] and [a, a+ 8N [« B.

Remark. If f<= G(a, «, B), then |f| = G(a, «, B).
The following lemma is valid :
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1

LEMMA. If B GO, 0, 1), then lim h3(f) S (h(w))* dz = 0.

1—0
1

Proof. Since R, = {0} and % is continuous, we have either A(x) > 0,
or h(x) <0, Vx & ]O 1]. Consider the first situation. From the hypothesis
of Lemma, it follows that there is a point § = 10, 1] so that % is a strictly
increasing function on [0, 8]. There exists two points § < ]t [ and n =

1

-

<15, 1[ (for 8§ < 1) so that o<h2(z)g(h(m 1 g = () S )1ds -

¢

-

1

; —dm =) [0 (5 — ) _
+kmgww)c%—ww[m)w 9+ (1 mﬂ)lfhw[s L+

R (n)]'
Letting ¢ —0, the conclusion follows.

Remark 1. The condition (iii) from the definition of (0, 0, 1) is essen-

tial for the conclusion of Lemma.

Consider g:]0, 1] — R, g(i) =, ¥Yn e N, g( (i +
n |

1 R

2 \n n — 1) &

Yee N, » >2 and g linear on the intervals [i, l{-l- + 4 )] arnd

#n 2\n n— 1/

[% (l 4 ;1) _’_1] Ve N # > 2. The function 4 : [0, 1] =R, A(0) =
n n— " —

=0, h(x) = (g(x)) " x < 10, 1], has the following properties: (1°)K, =
{0} 2°) he C[0O, 17; ( °) h is not monotonic on any interval [0, &],

0<3 <1; (4% lim &) - S(k('b))—l ds # 0.

Indeed, (1°) is obvious. In order to prove (2°), it suffices to show
that % is continuous in x, = 0 (since g is continuous). Let (x,) be a sequence
of numbers such that x, —0 and x, > 0. There exists 2, €N, £, > 2 so

that x, = i We have 2! 4 . hence 0 < A(x,) <
TS k % glk 1!

ku 1.

< k(k 1) = W ! g Since x, — 0, we have %k, — oo and thus A(x,) — 0.
‘ To prove (3°), suppose (3°) is false. Then there exists some 3, € 10, 17,
such that su® is monotonic on [0, §,]. Since 4(0) ==0 and %(8,)>0, it follows
that % this increasing on [0, 8,]). Let 1, N so that (n, — 1)7" < 8.

From l<l(i+ ! )<_ < 8, we have h(no"<l(2(n +~—))

My N ng — 1 1

no-—

1 1 C 4 ]
or — < —, which is a contradiction.
Mo o
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1
Finally, let’s show that lm A%(f) S tdw # 0.

1—0

1
It is enough to exist a sequence (¥,), x, = J0, 1] so that x, — 0 and

lim #%(x,) )( (h(=))'ds # O.

=+

=

. 1
Taking x, = —, we have
n

)
S tdy — Z; i g g(w)do + S g(s) do |.
K ¥ 33 )

Since g(t) = 2n2 (0 — 12 (n -} 1)t — 2n(n — 1)* (n - 1) + n, for t<=
eld, 2 ( +-—)' and g(t) = — 2nt(n— 1)2(n-—2)i + 2m2(n— )(n —2) +

L 2 n—1
4 n — 1, fortE[—{l+ 1 ), ;—1—-1",n > 2, we obtain :
2 \n n—1 n— 1
1
f —1 e — h Bl e l(l L
) do = Zak,wv ere a, = - 4+2 Pl
Then,
- 1
. 20 -1 = _1 Zut1 il 0.
i ) § () do i 3 = i = 2

x
a

Remark 2. The condition (iii) from the definition of G(0, 0, 1) is not
necessary for the conclusion of Lemma.
1

1
Indeed, the function %: [0, 1] —R, A(0) =0, h(—-) =—, neN,.

n n

h(i(l’_}_ 1 )) = i, ne N, n > 2 and h linear elsewhere, has the pro-
AR n— 1 2n
perties :

(1°) R, = {0};
29 ke C [0, 1];
(3°) h is not monotonic on any interval [0, 8], where 3§ < 10, 11;

1

(4°) lim h’~’(t)S (h(w)) 1 do = 0.
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It is clear that (1°) holds. To prove (2°) it is enough to show that 4
is continuous in ¥ = 0. Let %, —+0, x, > 0. There exists £, =N, %, > 2

such that «, 1 R ! . We have 0 < A(x,) < k( 1 ) =
k ku'—'l -ku— 1 kn_'l

x, — 0, it follows that %, — o0 and thus %(x,) =0, as # — o0 which shows
that % is continuous in x = 0.

In order to prove (3°), let’s suppose that there exists §, < 0, 1] so
that % is monotenic on [0, §,]. Since A(8,) > 0, it follows that % is increa-

. Since

sing on [0, §,]. Choose #, € N so that (z, — 1)~ < §,. Since 1.1 (l +
Mg 2 \n,
+ —) < ——= < %, we have k(l)<k(i(i+ L )) or L = 1
7y — 1 ng — 1 %y 2 \n, ng — 1 ny 2n,

a contradiction,
To prove (4°), let x, —0, %, > 0. There exists £, =N, &, > 2 such

that x, = [}—, 1 J We have
by ky—1
1
1 1 B -1
hz(xn)g (h(z)) "t do < B(x,) { (4(2)) do= F(x,) S (h()) 2 d.
v =2
» ki" }
: 1 11
Since A(t) > =, Wt = [— 5 —-—] , we obtain
/4 7o 7=1
: i 1 1 g
0 < 7#(x) - § (o)) de < () 35 2( 25 — 1) < T ot <
; =2 "\j—-1 j by — W j=2j—1
i 2k, —1) 2

<

o — 17 Fi— 1

Letting # — o, (4°) follows, since &, — co.

Remark 3. The condition (ii) may be replaced by the condition!
(ii") The set R, is not empty and contains a finite number of elements,
then formulatmg for each a € R, one condition of the type (iii).

Remark 4. If the hypothesm of Lemma holds, it can be proved that

1

l‘ino1 he(t) - S(h(%))‘ld'b =0, Ya>1; for « =1, the statement is false.
12
COROLLARY 1. If g = G(x,, —1, 1), then:

lim g%(x) - 5 lglt)| L dt = 0, for x # —1 and

5,
2<%,

1
lim g2(x) - S|g‘(t)|—1 it =0, for x, # L.
:>x: *
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Proof. In the first case, we define s: [0, 17— [—1, %], s{/) = (—1 —
— %)t + %, The function / == |g| o s satisfies the hypothesls of Lemma and

thus
1
lim %2(2) S (h(z)) L ds = 0,
1= i
The change of variables on the integral defined by % = s~*(u), implies
the first equality, where x = s(#).
In the second case, we define s: [0, 1] — [%,, 1], s(t) = (1 — xo)t +
+ x, and b = |g| o s.
COROLLARY 2. If g« G(x,, —1, 1) and x4, # 41, then

Zg—E 1
lim g%, — <) S lg®)~tdt =0, lim gz, + o) S g1 dt =0
e=0,e>0 e—0,e>0
-1 %ot+E
and
Zote
lim S lg(t)|dt =
e—0, e>0

Proof. The first two equalities follow from Corollary 1, putting x, —
— x =g, respectively x — x, = ¢, and the last one from the relation :

¥ote
0 < S lg(t)ldt < 26 - max {|g(x)|: x € [—1, 1]}.

zg—€

IL Tet st be a triangular infinite matrix of nodes in the interval

[—1, 1], =1l <al<d<il< ... <an<l,n=1238 .... Let f:
[—1, 1] —R. We put o,(x) = L] (x — #4), Bm; 2) = o,(x) [} () (+ —
k=1 -
— )T
Lu(a] Ef(x ) an’ x)’

2 [en; x)|, d,= min {Jai*' — x| 1 <k <n— 1}

Since E Iew; %) =1, ¥yne N, Vx < [—1, 1], we have:
k=1

(1) Lw: x) > 1, ve=1,23 ..., Va<s [-] 1].
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In [4], S. S. Pilipluk shows that thereisaset E = E(sn), E  [—1,1],

m(E) = 2, so that for every point x, & E, there exists a function f<
= C[—1, 1] which has the properties:

(2) flxy) =0,

(3) [ e — w1l dx <oo,
and o

(4) lim sup [L,(s%; f; %)] = 0.

In the same paper, the following remark has been made : for matricies
o which have the property that for infinite sequences (»;) and for every

s € lO —l the following inequality holds:

max{]l,l(ém x)[ —1l4+e<x<<l—¢e} <C 1 gk<gsn,i1=1,238,...,
there exists a set £ = E(@m), £ [—1, 1], m(E) > 2 — 3¢ so that for
every point %, € E there is a nonunegative function f< C[—1, 1], which
satisfies (2), (3), (4).

In connection with these statements, we will prove the following
theorem :

THREOREM If 9t is a triangular infimte matrix of nodes in the inlcrval
[—1, 1], then theve exists a set E C |—1, 1[ with m(E) =2, so that for
every xy € E and for every function g € G(x,, —1, 1), there cxists a function
Fi =1 17— R which satisfies the following properties :

(1°) f(xg) = O

(2°) f(x) > 0, Vx e [—1, 1], x # x,,
(30) fe C[—I, 1]’

(4°) Sf(x) g(2)| " dr< oo,

(5°) lim sup |L,(3%; f; x4)] = F00.

Proof. We shall divide the proof into five steps.
(I1.1) There exists a set £ (C ]—1, 1{ with m(E) = 2 so that [or every
¥ € E we have lim sup L,(9%; x) = 400 (see [2] and [3]).

Let x, = E. It is easily seen that there is a subsequence (L, (s7; x,))
of (L,(om; x,)) so that:

(Ld) Ly, (00 o) < Ly, (905 %), Viy < s,
(L4d) L, (00; %) > (4i + 1)2, Vi e N,
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1
0 -

(Laid) ¥ [Lafon s x0)] * <1

i=1
1

(Liv) L, (005 %) 2o [Lu(o0; x)] <1, VieN.

k=141

(11.2) Let n, be given. Since %, # xﬁ‘, vk ="{1, ..., n} (otherwise (1.i7)
will be false), there exists p; € N such that xi“ < %y < XZ:H (we put ng =
= —1, if x,l, —1, and x”‘+1 =1, if xn‘ < 1).

Iet g< G(x, —1, 1) and B = m1n{|g(x,,) 1 <k € nl.

By the contulmty of g, there is a 8; > 0, so that Vx & [x,, Y
x4 811, 1 <k <m, we have |g(x)] > 27" B

" Put 5, — 21 min (A, %o — 20 %0 i 2, B (2m) 71 B

”i "

Then we have:
@1) & Vre [#h — 8, ah F 8 1<k <mlga)l™ < 260
2.2) dng 3,87 < 1

By Corollary 2 (of I), by the continuity of g at x, and by the fact
that g(x,) = 0, there exists g, = R so that :

b, by
!'St ~ 0, 2g— & = x"; 43, %o+ 5 < x”‘ 3,

g2, — &) < [Ly (00 20)T7Y g3(xot &) < [Ln (005 %) 17

(2.3) ﬁgZ(xo—s» | lera <372

x°+e‘

1
lro+ =) { lgid <3727 { lg@lds 3727
i

Tet
Ay = {oh [l (o0 %) <0, 1 <k < pi for po > 1
A, = {xi‘,‘/l’;‘(sm; %) <0, py+ 1 <k < m}, for py < 1y — 1
Ay = {(3h [l (05 2g) > 0, 1<k < pif, for py =1
A, = {x”‘/l,i(sn; xg) > 0, py + 1 <k <y, for py <1y — 1.
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(IL.3) Next, we define the functions o [—1, 11 —R,
@ie: [—1, 1] =R, ¢;: [—1, 1] —R,

&%y — ), for x & [—1, Xy — gf

@i (%)= { &%),

&%y + ¢), for x = (%o + &, 1.1

Gp,i(?&) i { 1
[L"‘(M; %) ] Zia &(xy — &), for x € A,
1
[L,,‘(em ;%) P — g¥xy + g), for x < A,
\linear, for the rest
P%) = @u(#) + (%), Vxe [-1, 1]
We have:
(3.1) Pe(%o) = 0,
(3.2) e = C[—1, 11
(3.3) e(%) > 0, Vx = [—1, 1], x # %,
(3.4) max {g,(x): x € [—1, 1]} = [L, (su; x,)] °,
! el
(3.5) | o) - le()Idx < 27 [ (o 50)] 7

1

It is clear that (3.1) and (3.2) hold. Next, (3.3) and (3.4) follow from

(1), (2.3) and the definition of ¢,.

A, I. MITREA

for x € [x, — &, %, + &1

Let us establish (3.5). We have:

1 1

S 9ulx) lg(x) | dx = { u(x) lg(x)| " da +

—1 —1

1

Xo—E

0. tor wern 10\ st - o, 2400
k=1
[13;,'(@“; X — ¥z, — &), for x = A,

L, (o %, 17t — g%y + ), for x € 4,
(Lo %0)]

+ { pulx) g2 dx = g &2y — &) lg(x)]* dx +

—1

-1
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o+ g 1
+ | le)ldx + { eleo+ o) et da
Fo—E, 2o+ €
xﬁ + Si Xo— €
+5 § eeliv =g — o) | et
I 115 5, Zi
Zo-| e 1
+ | e dr + gxo 4 2) { Jeln)|dx
Fo— g, x.,-'k €,
x:‘z + 9
+2 | ee g
. xb — 8.

By (2.1), (2.2), (2.3), (3.4) and Piz(%) < @ (%), Vxe [—]1, 11, we
have :

1

S Pul2)|g(x)[ T dx <371 .27 4 3.2~ 4 319~

-1

1 ",

4 [Lafow; x)] 2302 570 . 25, =

k=1
1

=27 (Lo x)] T B, BT <200 (L, (s )]

1

(II.4) Next, we will construct, similarly as in [4], the function S Tet us

consider the sequence (). We put #;, = n, and we suppose that the num-
bers n;,, n;,, ..., m; __ are determinated.
We define :

e ] E.‘T.’ 3

m—1
(41)  Fuoi:[—1, 11 =R, F,_,(x) =29 (%), Vxe [—1, 11,
7=1

m—1
n—+o

and Theorem is proved.
Suppose that we have:

If lim sup |L,(en; F,,_;: %)l = + oo, then we put n =0, f=T

(4.2) m eup L (9% ; F,, : ay) = C, << oo,

H— 0
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Then,

(4.3) L, (5 @i %) = ?_;1 %(Wﬁ,)l:‘ni(g"ﬁ} %) =

= X ‘Pi(xﬁ,)lﬁi(mi %o) + E_ (Pi(xﬁi)lﬁ‘(m; %)

Vi e N, where X, refers to the terms of sum for which lf,‘(JrL; x9) > 0
and = refers to the terms of sum for which % (31 ; x,) < 0. It is easily
seen that both sums contain effectively the terms.

Now, we put

Si= > 7 lf,i(é)rl; %o).
k=1, 1" (o m) <0

Since

Si 4+ S =305 (sm; x0) =1

=1 '
and
Si— St = );E%i Ilﬁ,(m; %o)| = Ln‘(“‘mi ENE

we have

Si = 2_1[1 + L,,“(%; xO)El: Sf—-: 2_1[1 T L,,‘.(S)T(r; xo) ]

By (4.3), We obtain, using (1.%):
1 1
Lo (s @i %)=272[(Ly (0 %)) *+ (Lo, (305 %)) (Lo A-(0 5 ) 2 —1]>
1

> 272[(L, (0 ; x,))° — 1] > 2i.

~ There exists a number ¢ € N, which we shall denote by 1, such that
12 C, and 7> 1,4
So, we have choosen #;, and we have:
m

(4.4) L, (o0 @i 5 %) > %,+ C.

Y
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Next, suppose that for all the numbers m we have (4.2). Then, we
define :

07

(4.5) Fil=1 11—R, f(2) =Y e (%), Vx= [—1, 1].

J=

By (3.4) and (1.4741), it follows that this definition is correct.
(I1.5) Finally, let us show that this function f has the desired properties
(19)—=(5°).
The properties (1°) and (2°) follow from the definition of f, (3.1) and
(
(

'3)"I‘he achievement of (3°) is proved similarly to that in [4], using (1.444),
4) and (3.2).
Refering to (4°), using the respective arguments from [4] and the
relations (3.5) and (l.777) we obtain
1
{F03) - lgtadx < 2 < oo
21
The property (5°) follows from the linearity of L, and the relations
(4.4), (4.5), (42), (l.iv), (3.4). More precisely, it is shown as in (4] tha

|Ln, (575 f5 %) > i, — 1. Now, letting m — o, we obtain lim sup L,|(

W+ 0

f; x,)| = +oo, which completes the proof.

Remark. A similar argument, but simpler, shows that under the hypo-
thesis of Theorem, there is a set E ¢ ]—1, 1[, m(E) < 2, so that Vx,<
e E, Vg € G(xy, —1, 1) 3f = C[—1, 1], which satisfies the properties (1°),
(5°) and

1

{ 1] - lg(x) = dx < oo.

—1
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