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1. Introduetion

The fundamental bilinear interpolant of Mangeron [2],

(LY M[fl(x,y) = (1 = )f(%, 0) + »f(x, 1) + (1 — x)f(0, ») +- %/(1, »)

— (1 = 2) (1 =»)f(0,0) — «(1 —»)f(L, 0) =y (1 — %)7(0, 1) — xyf(1, 1),
which interpolates to f on the boundary of
R={x9):0<2<1;0<y <1} has had wide spread influence in
the area of approximation of bivariate functions. While M [f] and its genera-
lization to include interpolation to normal derivatives serves well for a
rectangular domain, many applications require approximations which
are not inherently rectangular and counsequently there is interest in develo-
ping analogous methods for other domains. Of particular interest, due
to the application in finite element analysis and scattered data interpola-
tion, is a triangular domain. In this report, we present methods for a trian-
gular domain which are pattern=d after the following two equivalent pro-
perties that characterize M[f].

Characterization 1. M[f] is the uunique function in C** (R) which lies
in the kernel of the operator 9*/dx*dy* and interpolates to f on the boun-
dary of R.

Characterization 2, Among all functions in C??(R) which interpolate
to f on the boundary of R, M[f] uniquely minimizes the pseudonorm
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2. Linear Interpolation for Triangles.

mainl“c%r‘ I\igitflatio'nall convenience, we will use the standard triangular do-
gt 1 }'CTUCGS. (0, 0, (0, 1), and (1, 0). Any other triangular do-
By G fT; nSvchIlmf hllf}Flll‘ly th T by the use of an affine transformation
A » we mean those tions whi S8 i il
den\}at:ves A floxidvi ;< fr?l,nj'fc ;0171; ()V;lhlic‘h possess confinuons partial
mainsu ti}l}léemdt]??elopment of techniques of interpolation for triangular do-
This & Gooe. s a Itenldency towards the use of rational weight functions
of 15 Césc’ml:’i;]I;}alt: to U}Cti'ﬁct that 3/ can be viewed as the boolean sum
0 ess ally univariate operators which are based i - inter
polation along lines parallel to the sides of R. That isC o ljnear duter-

M=M,®M, =M, M, — MM,

M7 1% 2) = (1= 2)/(0, y) + xf(1, 3)
My[f1(x, y) = (1 — 9)f(2, 0) + yf(x, j1})-

The corres i i i i
C ponding linear interpolation o [ i
rational weight function. Forpexample perstors for the domain 1 have

LT 2) = 101 — % — /(L = )10, 3) + [#/(1 ~ 3)1A(1 — , 3)

;ilé}asie{}t ll}pmll linear interpolation along lines parallel to the x-—axis
oL v:iltlz flear that any scheme based upon the Boolean sum of these
i whicha\g raf_uiionz}t] wr:lghtl functions, We now proceed to develop
I void of rational weight functions.
fOIng;_cher}uug‘the first typt:-} of characterization of M [/], the general
a function k(x, ) which has the property that 8;1k/3x28y20: 0 is
(2 9) = (%) 4 83) -+ vg,(x) + xg,()

iglreca‘lcﬂ?gi-tr?‘& ;cwzic?3 C‘lliffereqtiablc fanctions g, ¢ = 1, 2, 3, 4. If we now
e Wg s o ,equ;)grioi'losrcmg k to interpolate to Jf on the boundary
S1(%) + £,(0) + %84(0) = f(x, 0)
8(0) + &:(9) + ve5(0) = £(0, »)
' 81(%) - &o(1 — 2) + (1 — x)ga(%) + xg,(1 — ) =flx, 1 — x).
Solving these equations, leads to

P, 5) = o2 22 —x-
D= Sy S 0 B0, Ao 2 g
iy

] =29 —f(1 —5,0)] + -2

2(1 —y 2(1 —
@1 )
+ xy(g(x) — g1 — )]

where

% A TRIANGLE INTERPOLANT 157

which interpolates to / on the boundary of T for arbitrary g. In order
to eliminate the rational weight functions, we choose

L7227 [ f(w, 1 — %) — f(0, 1 — %) — f(x, 0) -+ (0, 0)]

2x(1—x)

g(x) =

which leads to the interpolation formula
2.2) Bfl(x ) = (1— /(% 0) + (1—x)/(0, y) — (1 =% —)f(0,0)
+xlf(1 =) —J(1 =5 0] +2[flx 1 —2) — fO01—x]

It is interesting that this choice of g not only yields an interpolant
with linear weights, but it also leads to an approximation which has a
property analogous to the second characterization of M [f].

THEOREM 2.1. Among all functions in C**T) which interpolatc {o
f on the boundary of T', B[[] uniquely minimizes < -, -> where

<h g> = '\( Ny (S, £) 8oy (S, 2) ds dL.
T
Proof : First let & be any function in C2? (T) which is zero on the
boundary of T ; then by using integration by parts we have

1—¢

| sy (5, ) P (5, st
0

<h, B[f]l> = FyeS

S ey

1
: g (1 —t, ) Z2UL (1 ¢ gt

J dsot
(2.3)
1
2B f]
e f t
\ iy (0, 1) <20, e
[}
— gg hy (s, §) 25UV (s 4y dsdt
B o2t
T
where
(2.4) PBUY (5 1y = f(s, 1 — 5) — fyls, 1 —s) — fuls, 0) -+

asot
F A0 T —8) (0 — 6 8) — full — 4,0) — £{0, 1) + full = £,0).
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Since 4(0,%) = 0 we have that 7,(0,%) =0 and from (2.4), we can see
that % (1 —%,¢ =0 and so the first two terms of the right side
N S

of (2.3) vanish. Using integration by parts again, we have

l1—s

By (s, 1) ZEUI

st

<h B[f]> = — (s, t)deds

[
O ey |

! SN o B _
LS gk(s,l $) S (5 1= s)ds

—

FB(f]
r ] ,O § ™ 3
- Si(s ) o (s, 0)ds
0

B

hs, t 3 :

+{§ 265, 9 22 5, asas
)

The first two terms are zero because /s — 0 on the boundary of 7. The
last term is zero because 9*B [f1/0s%0¢2 is zero on T,
Let ¢ = C2%(T) have the property that it interpolates to f on the
boundary of 7. Then,
<& 8> — <B[f], B[f]> = <g — B[f], ¢ — B[f]>
+ 2<¢ — B[f], B[/]>
= <g — B[f], ¢ = B[f]> > v

and so we have established the minimum property of B[f]. In order to
show uniqueness, we assume the existence of another minimizing interpo-
lant, say g, and consider the error ¢ — g — B[f]. Since both minimize
the pseudonorm, we have that

\

<e, e> = <g — B[f], § — B[f]> =0,

which implies that e,, = 0 on 7. This, along with the fact that ¢ = 0
on the boundary of 7, implies that ¢ == 0 on T which concludes the ar-
gument,

COROLLARY 2.2. The operator B is exact for any function of the form

8% ) = (%) + &) + xea(y) + yea(l — %)
for arbitrary functions g t=1,2 3.

»
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Proof : *Applying B directly and using
g%, 0) = g1(x) + £,(0) + 2g5(0)
800, ) = £(¥) + £(0) + ygs(1)
g(0, 0) = g,(0) + £,(0)
gl =y, ) — g1 =, 0) = gy(») + &(¥) — £:(0) — (1 — ¥)g5(0)
gz, 1—x) —g(0, 1 — %) = g,(x) + g5(1 — %) — £4(0) — (1 — x)g,(1)

will yield this result.

In order to analyze the error and rate of convergence of this appro-
ximation ,we introduce the triangular domain 7, with vertices (0, 0),
(0, ) and (#, 0) and the corresponding operator

Bilf)(x,9) = B/ (xh, y0)1( % 7]

L1h— /(5 0) + (b — 20, 9) — (b — 5 — )0, 0) + 1177

+ x[f(h =y, 9) =flh =2, 0]+ y[f(x, h — 2) — f(0, b — %) ].
THEOREM 2.3. For f € CVW{(T})

| BilA1% 3) — S5 )| < 1Sl 1 (5 9) = T

where the norm is the uwiform on T,

Proof: Since it is true in general for f = CUI(T,) that

f® 3) = fl5, 0) = £0, ) + 70, 0) = { /s, )asat,

0

it follows that

h—z

Bilfl(x ) =2\ { fals 0ds &,

=y ¥

+,;i } Sf,,y(s, tyds dt
0

0

Sy (s, t)ds dt.

x
S
0

CL,‘\e\
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Therefore
h— x| -
BuL£1% 5) = fw 9)| < ZEZIAT7 1, 202 p, ),
fand N a_»
+ 2y fow [ la
Bh — x — )i
= BEZEZIN 1

This bound is maximized for (%, y) € T) when x = .:g to yield the

desired result.
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Fig. 1. These are examples of surface interpolants‘ﬁtsed upon a Triangular
version of the Mangeron Interpolant.

Fig. 2. These are examples of surface interpolants based upon a Triangular
version of the Mangeron Interpolant,

' A TRIANGLE INTERPOLANT 161

RETFTERENCES

[1] Coons, 8. A., ,Surfaces for Computer— Aided Design of Space Forms,” Project MAC
report MAC—TR—41, June 1967.
[2] Mangeron, D. ,Sopra un problema al contormo per un'equatione differenziale alle

devivate parziali di quart’ovdine con le cavatteristice veali doppie,” Rend. Accad.
Sci. Fis, Mat. Napoli, 2, 28—40 (1932).

Received 12.1.1982.

Departament of Mathematics
Avizona, State Universily Tempe,
Arizona 85281



