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1. Introduetion

In this work we consider a parametrical procedure for solving a
fractional discrete max-min problem. We shall apply this procedure to
a fractional max-min problem on graphs.

2. Discrete fractional max-min problem

Iet X and Y be two finite and nonvoid sets, and let f and g be
two real functions defined on X X Y. We suppose that g(x, y) # 0, for
every (#, y) € X XY.

The fractional discrete max-min problem under consideration is:-

FD. Find

v = max minZ®2).
xeX ysY g(%9)

Iet #: X X Y—R be the objective function of the FD problem,
that is:

(2.1) W, y) =218 y(x, y) € X X Y.
glx )

Following the papers (2] or [10], we consider:
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DEFINITION 2.1. A pair (x', v') € X X X 1is an optimal solution for
the FD problem if the following conditions :

(1) v=h(%', »') = min A(x, y), V¥ € X;
yeY
(#1) A(x', ') = min A(x’, y),
yey

are satisfied.
On the FD problem we make the following hypothesis:

(H1) glx, ) >0, V(x, y) & X xXY.
3. Preliminary results

For every ¢/ € R, we consider the following max-min nonfractional
problem :

PA(#). Find
(3.1 F(t) = mea;: mix; (f(x, ¥) — ¢t glx, ¥)).

 The parametrical methods which will be presented in the next sec-
tions involve the solving of the PA(#) problem, for a finite sequence of
values of the parameter f. Next, we will give some useful properties of
the optimal value function F.

ramma 3.1, ([12]) If the hypothesis H1 holds, then the function F 18
decreasing. ; :

THEOREM 3.1. Let us suppose that the hypothesis H1 is satisfied. Then
(', ') € X XY is an optimal solution for the FD problem if and only
if (2, y') is an optimal solution for the PA(L') problem with t' = hix', v').

Proof. Sufficiency : Suppose that (x’, y’) is an optimal solution for
the PA(') problem, where ¢ = k(x’, y’). This means that:

B2) S, y) — 1l ) = 1;1511; (flz', y) — e(x', »),

(33)  f(x',v) —tg(x',y) = min (f(x, y) — t'g(x, ¥)), Vx € X.

yeY
Since
I, ) — Fale, y') = (', y') = D520 g, ) =0

_ , g+ ¥)
from (3.2) and (3.3), it results:
(3.4 min (f(x', ) — ¢ - g(+', y)) =0,

ye

(3.5) min (f(x, y) —¢ - g(x, ») <0, Vx = X,

yeY
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But (3.4) is equivalent to:

3.6) fl, y) — ¢ - gx', y) 20, ¥y €Y,
and (3.5) is equivalent to the fact that for every x < X, there exists
y, €Y, such that:

(37) f(x,' yx) — - g(x" y::) < 0.
By H1, from (3.6) and (3.7), it follows:

(38) fx, 9 > - f(x,y) , Vy = Y,
g, ¥ g, y)
(3.9) Sy <y oyx e X,
£(x, ¥a)

Therefore, from (3.8) and (3.9), we obtain:
h(x’, y') = min k(x’, ),
yey
and

W', y') = k(% y,) = min A(x, y), Vx = X,

yeY

what means, by Definition 2.1, that (x’, ») is an optimal solution for
the FD problem.
‘T'he necessity part of this theorem can be proved in a similar manner.
FHEOREM 3.2. If the assumption H1 holds, then:

(i) F(t) =0 if and only if v =1,
(id) F(t) >0 if andlonly of v>1;
 {gi) F() <0 of and only if v <<t

Proof. The statement (§) results by Theorem 1, [12]. We prove now
the statement (i1). Thus, by (3.1), the inequality I () > 0 is equivalent
to the existence of an clement x’ = X, such that:

min (f(x', ¥) — &(x", ¥)) > 0,

yeY
which, in its turn, is equivalent to:
(3.10) fla, y) —t-glx', ¥) >0, Vy €Y.
But by H1, the inequality (3.10) is equivalent to:

oD 4, vy e,
g, w)
or
yevy (¥, ¥)
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From Definition 2.1 and (3.11), holds:
(3.12) fv > min (x, y) = &

yey
Since, by part (i), v =1¢ is equivalent to F(f) = 0, it results, from
(3.12) that F(¢) > 0 if and only if v > ¢

_ The part (117) of the theorem is an obvious consequence of the parts
(¢) and (7).

4. Parametrieal procedure

The algorithm below is similar to that used in the case of the usual

nonlinear fractional programming [3], [7], [8] or of nonlinear piecewise
fractional programming [9].

Algorithm 1

Initial phase:
Step 1. Choose %, € X and take k: = 0.
Step, 2. Find ¢, € R and y, €Y such that:
(4.1) ty = h(xy, o) = min h(x,, ).

y=Y
General phase :

Step 3. Find the optimal solution (%41, viqs) of the following max-min
problem :

(4.2) F(ty) = max min (f(x, y) — 4, g(x, v)).

yeX yeY

Step 4. 1) If F(4) = 0, then stop. By Theorem 3.2, (x, ) 1s an opti-
mal solution for the FD problem.

w) If .F(.f;,) > 0, then take x;., = x4, and go to Step 5.
Step 5. Find /4y, = R and Y41 €Y, such that:

(4.3) tht1 = M(Fry1, Yrar) = min A(xags, p).
ysY

Step 6. Take k: =% + 1 and go to Step 3.

3. Convergence of the algorithm 1

In t}.liS section some sufficient conditions for the convergence of the
parametrical procedure presented in the preceding section are derived.
THEOREM S5.1. ([12]) If the assumption H1 holds, then :

(5.1) bhp1 — 6 = LA

Z(Tkr1, Yatr)
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THEOREM 5.2. If the assumption H1 holds then the algorithm 1 ends
after a finite number of iterations.
Proof. By Theorem 5.1, for every mnatural k, such that F(f;) > O,

"we have, from (5.1), the inequality: {41 > 4.

Then from (4.1) and (4.3), it follows that the algorithm 1 generates
a sequence of points:

(5.2) (%o, Yo)» (%1, Y1)y« ooy (%as Vi), - -
having the property:
(5.3) Mo, yo) <My 1) < oov <l 3p) <.

Since the set X XY is a finite set, then by the inegualities (5.3)
it results that the sequence (5.2) is finite. Therefore the algorithm 1
ends after a finite number of iterations.

6. Fractional max-min problems in graphs

'Wlet G = (X, W) be a finite graph, where X denotes the vertices
set and W the arcs set. Let ® and & be two nonvoid sets containing
some subgraphs of the graph G. For instance, ® and & can be the sets
of all the paths between the vertices 9, g(p = X, ¢ = X) and p;, ¢;(p; €
e X, g, € X) respectively.

On the set W there are given the functions p': W—R, p": W —
—R*, ¢ :W—R, ¢": W—R"*, ie. each arc of the graph G is weighted
with four real weights.

In the following to simplify the notation, if w is an arc of a sub-
graph H of G, we will write w = H.

We consider the following fractional max-min problem on the graph G :

PG. Find

TP+ X gw
» = max min 2=2 LA
D=g E<g WEDP”(w) + ngq”(w)

For solving the PG problem a variant of the algorithm 1 will be
presented.

Algorithm 2

Initial phase:

Step 1. Choose D, € @ and take k:=0.
Step 2. Find ¢, = R, such that:

a+ X q'(w)

(6.1) = min — 2%
Eeg aj + 2 77 (w)
welk
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where :
(6.2) a.= 2, p'w), e = 2 p"w),

weDk wEDk

for every natural number Z.
Let E, be an optimal solution of the problem (6.1).
General phase:
Step 3. Find
(6.3) y=max p, (p'(w) — t - p"'(w)).
De® weD

Tet Dyyy € D be an optimal solution of the problem (6.3).
Step 4. Find

Lgy I -,
g1 + EE(I (w)
. =¥5
(6.4) tk+1 = min ”—wﬁ”_‘
Eeg i+ 2 g7 (w)
wel

where aj.;, ay,, are defined by (6.2). ] '
Step 5. 1) If #,., — ¢, = 0, then stop. The pair (D, E;) is an optimal
solution of the PG problem.

1) If #4417 — 4 > 0, then go to Step 6.
Step 6. Take k: =% + 1 and go to Step 3.

Remarks

1. The algorithin 2 has some improvement in respect to the algo-
rithm 1. Thus, at the step 3 of the algorithm 2, only a maximum sub-
graph problem (see, the problem (6.3)) must be solved, while in the algo-
rithm 1, it must be solved a max-min problem (see, the problem (4.2)).

Also, the decision steps (i.e. Step 4 in the algorithm 1 and Step
5 in the algorithm 2) are differently formulated in these algorithms, but
they are equivalent by the theorems 3.2 and 3.1.

2. The problem (6.4) (or (6.1)) at the step 4 (or the step 2) of the
algorithm 2'is a fractional minimum subgraph problem, for which, in
some particular cases, such as when & is the set of all paths between
two given vertices of a graph G without circuits (or the set of all span-
ning trees) there exists efficient algorithms (see, [11, [4], [5], [6], [11]).
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