MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 13, Nº 2, 1984, pp. 167 — 173

ON SOME DISCRETE FRACTIONAL MAX-MIN PROBLEMS. APPLICATION TO MAX-MIN PROBLEMS IN GRAPHS

Ъy

V. PETEANU and Ş. ȚIGAN (Cluj-Napoca)

to manufact the first many of the story of t

In this work we consider a parametrical procedure for solving a fractional discrete max-min problem. We shall apply this procedure to a fractional max-min problem on graphs.

2. Discrete fractional max-min problem

Let X and Y be two finite and nonvoid sets, and let f and g be two real functions defined on $X \times Y$. We suppose that $g(x, y) \neq 0$, for every $(x, y) \in X \times Y$.

The fractional discrete max-min problem under consideration is: FD. Find

$$v = \max_{x \in X} \min_{y \in Y} \frac{f(x, y)}{g(x, y)}.$$

Let $h: X \times Y \to \mathbb{R}$ be the objective function of the FD problem, that is:

(2.1)
$$h(x, y) = \frac{f(x, y)}{g(x, y)}, \ \forall (x, y) \in X \times Y.$$

Following the papers [2] or [10], we consider:

DEFINITION 2.1. A pair $(x', y') \in X \times X$ is an optimal solution for the FD problem if the following conditions:

(i)
$$v = h(x', y') \ge \min_{y \in Y} h(x, y), \forall x \in X;$$

(ii)
$$h(x', y') = \min_{y \in Y} h(x', y),$$

are satisfied.

On the FD problem we make the following hypothesis:

$$(H1) g(x, y) > 0, \ \forall (x, y) \in X \times Y.$$

3. Preliminary results

For every $t \in \mathbf{R}$, we consider the following max-min nonfractional problem:

$$PA(t)$$
. Find

(3.1)
$$F(t) = \max_{x \in X} \min_{y \in Y} (f(x, y) - t g(x, y)).$$

The parametrical methods which will be presented in the next sections involve the solving of the PA(t) problem, for a finite sequence of values of the parameter t. Next, we will give some useful properties of the optimal value function F.

LEMMA 3.1. ([12]) If the hypothesis H1 holds, then the function F is

decreasing.

THEOREM 3.1. Let us suppose that the hypothesis H1 is satisfied. Then $(x', y') \in X \times Y$ is an optimal solution for the FD problem if and only if (x', y') is an optimal solution for the PA(t') problem with t' = h(x', y'). *Proof.* Sufficiency: Suppose that (x', y') is an optimal solution for

the PA(t') problem, where t' = h(x', y'). This means that:

$$(3.2) f(x', y') - t'g(x', y') = \min_{y \in Y} (f(x', y) - t'g(x', y)),$$

$$(3.3) f(x', y') - t'g(x', y') \ge \min_{y \in Y} (f(x, y) - t'g(x, y)), \ \forall x \in X.$$

Since

$$f(x', y') - t'g(x', y') = f(x', y') - \frac{f(x', y')}{g(x', y')} \cdot g(x', y') = 0$$

from (3.2) and (3.3), it results:

(3.4)
$$\min_{y \in Y} (f(x', y) - t' \cdot g(x', y)) = 0,$$

$$\min_{y \in Y} (f(x, y) - t' \cdot g(x, y)) \le 0, \ \forall x \in X.$$

But (3.4) is equivalent to:

(3.6)
$$f(x', y) - t' \cdot g(x', y) \ge 0, \ \forall y \in Y,$$

and (3.5) is equivalent to the fact that for every $x \in X$, there exists $y_x \in Y$, such that:

(3.7)
$$f(x', y_x) - t' \cdot g(x', y_x) \leq 0.$$

By H1, from (3.6) and (3.7), it follows:

$$\frac{f(x', y)}{g(x', y)} \ge t' = \frac{f(x', y')}{g(x', y')}, \quad \forall y \in Y,$$

$$\frac{f(x, y_x)}{g(x, y_x)} \le t', \quad \forall x \in X.$$

Therefore, from (3.8) and (3.9), we obtain:

$$h(x', y') = \min_{\mathbf{y} \in \mathbf{Y}} h(x', y),$$

and

:3

 $\bar{\mathbf{2}}$

$$h(x', y') \ge h(x, y_x) \ge \min_{y \in Y} h(x, y), \ \forall x \in X,$$

what means, by Definition 2.1, that (x', y') is an optimal solution for the FD problem.

The necessity part of this theorem can be proved in a similar manner. THEOREM 3.2. If the assumption H1 holds, then:

(i)
$$F(t) = 0$$
 if and only if $v = t$;

(ii)
$$F(t) > 0$$
 if and only if $v > t$;

(iii)
$$F(t) < 0$$
 if and only if $v < t$.

Proof. The statement (i) results by Theorem 1, [12]. We prove now the statement (ii). Thus, by (3.1), the inequality F(t) > 0 is equivalent to the existence of an element $x' \in X$, such that:

$$\min_{y \in Y} (f(x', y) - tg(x', y)) > 0,$$

which, in its turn, is equivalent to:

(3.10)
$$f(x', y) - t \cdot g(x', y) > 0, \forall y \in Y.$$

But by H1, the inequality (3.10) is equivalent to:

$$\frac{f(x',y)}{g(x',y)} > t, \ \forall y \in Y,$$
 or

$$\min_{\mathbf{y} \in Y} \frac{f(\mathbf{x}', \mathbf{y})}{g(\mathbf{x}', \mathbf{y})} \ge t.$$

From Definition 2.1 and (3.11), holds:

$$(3.12) v \ge \min_{y \in Y} h(x', y) \ge t.$$

Since, by part (i), v = t is equivalent to F(t) = 0, it results, from (3.12) that F(t) > 0 if and only if v > t.

The part (iii) of the theorem is an obvious consequence of the parts (i) and (ii).

4. Parametrical procedure

The algorithm below is similar to that used in the case of the usual nonlinear fractional programming [3], [7], [8] or of nonlinear piecewise fractional programming [9].

Algorithm 1

Initial phase:

Step 1. Choose $x_0 \in X$ and take k := 0.

Step 2. Find $t_0 \in \mathbf{R}$ and $y_0 \in Y$ such that:

(4.1)
$$t_0 = h(x_0, y_0) = \min_{y \in Y} h(x_0, y).$$

Step 3. Find the optimal solution (x'_{k+1}, y'_{k+1}) of the following max-min problem:

(4.2)
$$F(t_k) = \max_{x \in X} \min_{y \in Y} (f(x, y) - t_k g(x, y)).$$

Step 4. i) If $F(t_k) = 0$, then stop. By Theorem 3.2, (x_k, y_k) is an opti-

mal solution for the FD problem. ii) If $F(t_k) > 0$, then take $x_{k+1} = x'_{k+1}$ and go to Step 5. Step 5. Find $t_{k+1} \in \mathbf{R}$ and $y_{k+1} \in Y$, such that:

$$(4.3) t_{k+1} = h(x_{k+1}, y_{k+1}) = \min_{y \in Y} h(x_{k+1}, y).$$

Step 6. Take k := k + 1 and go to Step 3.

5. Convergence of the algorithm 1

In this section some sufficient conditions for the convergence of the parametrical procedure presented in the preceding section are derived. THEOREM 5.1. ([12]) If the assumption H1 holds, then:

(5.1)
$$t_{k+1} - t_k \ge \frac{F(t_k)}{g(x_{k+1}, y_{k+1})}.$$

THEOREM 5.2. If the assumption H1 holds then the algorithm 1 ends after a finite number of iterations.

Proof. By Theorem 5.1, for every natural k, such that $F(t_k) > 0$,

we have, from (5.1), the inequality: $t_{k+1} > t_k$.

Then from (4.1) and (4.3), it follows that the algorithm 1 generates a sequence of points:

$$(5.2) (x_0, y_0), (x_1, y_1), \ldots, (x_k, y_k), \ldots$$

having the property:

$$(5.3) h(x_0, y_0) < h(x_1, y_1) < \ldots < h(x_k, y_k) < \ldots$$

Since the set $X \times Y$ is a finite set, then by the inequalities (5.3) it results that the sequence (5.2) is finite. Therefore the algorithm 1 ends after a finite number of iterations.

6. Fractional max-min problems in graphs

Let G = (X, W) be a finite graph, where X denotes the vertices set and W the arcs set. Let D and be two nonvoid sets containing some subgraphs of the graph G. For instance, D and & can be the sets of all the paths between the vertices p, $q(p \in X)$, $q \in X$ and p'_1 , $q'_1(p'_1 \in X)$ $\in X$, $q_1' \in X$) respectively.

On the set W there are given the functions $p': W \to \mathbb{R}$, $p'': W \to \mathbb{R}^+$, $q': W \to \mathbb{R}$, $q'': W \to \mathbb{R}^+$, i.e. each arc of the graph G is weighted

with four real weights.

In the following to simplify the notation, if w is an arc of a subgraph H of G, we will write $w \in H$.

We consider the following fractional max-min problem on the graph G: PG. Find

$$v = \max_{D \in \mathfrak{D}} \min_{E \in \mathfrak{F}} \frac{\sum_{w \in D} p'(w) + \sum_{w \in E} q'(w)}{\sum_{w \in D} p''(w) + \sum_{w \in E} q''(w)}$$

For solving the PG problem a variant of the algorithm 1 will be presented. Algorithm 2 whether a supply of the supply o

Initial phase:

Step 1. Choose $D_0 \subseteq \mathfrak{D}$ and take k := 0. Step 2. Find $t_0 \in \mathbb{R}$, such that:

(6.1)
$$t^0 = \min_{E \in \mathcal{S}} \frac{a_0' + \sum_{w \in E} q'(w)}{a_0'' + \sum_{w \in E} q''(w)}$$

(6.2)
$$a'_k = \sum_{w \in D_k} p'(w), \ a''_k = \sum_{w \in D_k} p''(w),$$

for every natural number k.

Let E_0 be an optimal solution of the problem (6.1). General phase:

Step 3. Find

(6.3)
$$r = \max_{D \in \mathfrak{D}} \sum_{w \in D} (p'(w) - t_k \cdot p''(w)).$$

Let $D_{k+1} \in \mathfrak{D}$ be an optimal solution of the problem (6.3). Step 4. Find

(6.4)
$$t_{k+1} = \min_{E \in \mathcal{E}} \frac{a'_{k+1} + \sum_{w \in E} q'(w)}{a''_{k+1} + \sum_{w \in E} q''(w)},$$

where a'_{k+1} , a''_{k+1} are defined by (6.2). Step 5. i) If $t_{k+1} - t_k = 0$, then stop. The pair (D_k, E_k) is an optimal solution of the PG problem.

ii) If $t_{k+1} - t_k > 0$, then go to Step 6.

Step 6. Take k := k + 1 and go to Step 3.

Remarks

1. The algorithm 2 has some improvement in respect to the algorithm 1. Thus, at the step 3 of the algorithm 2, only a maximum subgraph problem (see, the problem (6.3)) must be solved, while in the algorithm 1, it must be solved a max-min problem (see, the problem (4.2)).

Also, the decision steps (i.e. Step 4 in the algorithm 1 and Step 5 in the algorithm 2) are differently formulated in these algorithms, but

they are equivalent by the theorems 3.2 and 5.1.

2. The problem (6.4) (or (6.1)) at the step 4 (or the step 2) of the algorithm 2 is a fractional minimum subgraph problem, for which, in some particular cases, such as when & is the set of all paths between two given vertices of a graph G without circuits (or the set of all spanning trees) there exists efficient algorithms (see, [1], [4], [5], [6], [11]).

- [1] Chandrasckaran, R., Minimal Ratio Spanning Trees, Networks 7, 335-342 (1977).
- [2] Cook, W. D., Kirby, M. J. L., Mehndiratta, S. L., A linear Fractional Maxmin Problem, Operations Res., 23, 3, 511-521 (1975).

- [3] Dinkelbach, W., On nonlinear Fractional Programming, Manag. Sci., 13, 7, 492-
- [4] Gondran, M., Minoux, M., Graphes et algorithmes, Ed. Eyrolles, Paris (1979). [5] Gondran, M., Le problèmes de ratio minimum en optimisation combinatoire, Preprint
- [6] Peteanu, V., Tigan, S., O nouă problemă de drum optim în grafe, Al II-lea Simpo-
- zion "Informatică și Conducere", 1976, Cluj-Napoca, vol. II, 169-173 (1977). [7] Schaible, S., Duality in Fractional Programming. A Unified Approach, Operations Res., 24, 3, 452-461 (1976).
- [8] Shepilov, M. I., On Methods for solving Fractional Problems of Mathematical Programming, Kibernetika, 1, 93-98 (1980).
- [9] Tigan, S., Sur une méthode pour la résolution d'un problème d'optimisation fractionnaire par segments, Mathematica-Revue d'analyse numérique et de théorie de l'approximation, 4, 1, 87-97 (1975).
- [10] Tigan, S., On the max-min nonlinear fractional problem, Mathematica Revue d'analyse numérique et de théorie de l'approximation, 9, 2, 283-288 (1980).
- [11] Tigan, S., Problema fractionară a arborelui minim, Bul. Rom. Inf., 1, 9-15 (1982). [12] Tigan, S., A parametrical method for max-min nonlinear fractional problems, Itinerant

seminar on functional equations, approximation and convexity, Cluj-Napoca, 1983, Preprint no. 2, Babes-Bolyai Univ., 175-184 (1983).

Received 17. 1X 1983.

Centrul teritorial de calcul electronic Str. Republicii 107 3 400 Cluj-Napoca