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1. Introduction

In this paper some special classes of mathematical programming pro-
blem¢ as Chebyshev problems, linear plus indefinite (or fractional) pro-
gramming problems are considered. For such problems the distribution
function of the optimal value is determined and the minimum risk approach
to them is presented. Firstly, a general model of nonlinear minimum risk
problem will be discussed, followed by the treatment of the stated problems.

2. General formulation of nonlinear minimum risk problem

The general problem described here can be mathematically expressed
as:

Problem P:

(2.1) Minimize f(a(t), %) subject to x < S,
where the set S < R", the real vector valued function a: A — B, the real
valued function f: B X S — R, the sets A < R and B < R" are assumed
to be deterministic and known (in particular B may be the whole space
R", ie. B=R").

We shall make the following assumption concerning this problem.
(A.1) There exists a function g: S X C —-C, C < Rsuch that forallxe S
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and forallt e A
flat), ¥) S w <t <glx, w)

where w is an arbitrary real number in C.

In fact, the above condition assures the separation of ¢ from inequality
fla(t), x) < w.

Now, we consider that #(w) is a random variable on a given probability
space (Q, K, P) with a continuous and strictly increasing distribution
function 7'(2).

Throughout this paper we consider stochastic programs with simple
randomization (see [1], [2]) that is programs, the random coefficients of
which are affine functions of a simple random variable. _

The minimum risk approach to the problem (P) is to find the solution

of the following programming problem :
Problem PRM:

(2.2) max P {o[f(alt(e)), %) < w}.

Then, as in STANCU—MINASIAN [6], we can establish a relationship
between the minimum risk problem associated with the Problem P
corresponding to the level w (Problem PRM) and a deterministic problem
which does not depend on distribution function of the random variable
Hw).

“From our assumption (A.) it follows that

P{w|f(a(t(w)), x) < ©w} = P{oft{w) < g(x, w)} = T(g(x, w)).
Further, according to the fact I is an increasing function, we have:

L Plo/f(at(w), %) < w}=max T(g(x, w)) = T(max g(x, w)).

We have the following theorem.

THREOREM 1. If the distribution function T(z) of t(w) is continuous
strictly increasing then the minimum risk solution covesponding to the level
w of the Problem PRM, does not depend on T(2) and can be determined by
solving the deterministic problem :

Problem PA
(2.3) max g(x, )

xes

The subsequent sections of this paper will illustrate this technique
for some special classes of problems of mathematical programming as Che-
byshev problems, linear plus indefinite (or fractional) programming pro-
blems. The distribution function of the optimal value i.e. of the random
variable

£(w) = min f(a(K(v)),
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is also presented. So, it is necessary to find out characteristic values (A)
and characteristic solutions (x') of the parametric program, when in Pro-
blem P, #(w) is replaced by the parameter A.

3. Stochastic linear-plus-fractional programming problem

Consider the following problem :

(3.1) max (c’x + g)
subject to
(3.2) ye S ={x/Ax =15, x > 0},

where 4 is an (m X #) matrix (m < n) of rank m, ¢, d, ¢, x, are (n X 1)
vectors, b is (m X 1) vector and prime (') denotes transposition. It arises
when the remuneration fund and the profitableness of an economic entre-
prise should be optimized.

Under the assumptions ¢'x > 0 and ¢x > 0 for all x = S, a simplex
type algorithm has been proposed by TETEREV [9].

Let

c(w) = c1 )+ t{w)e,
d(w) =d;, 4 H{w)d,
e(w) = e, - t(w)e,
where ¢, d,, (i = 1, 2) are constant (# X 1) vectors and t(w) is a random
variable. )
For the stochastic linear-plus-fractional programming problem we
make the following assumptions : _
(A3) The set of feasible solutions S is regular i.e. nonvoid and bounded.
(B3) The denominator of the objective function preserves the same sign
(let us assume it to be positive) on S, ie.
P{of(e; + tw)ey)'x > 0} = 1.
Also, we assume that
i Plof(e + Ho)e)'x > 0} = 1.

(C3) Every basic feasible solution is non-degenerate. _ _
We shall consider the following types of stochastical problems associa-
ted to the problem (3.1)—(3.2) :

i), One of the vectors ¢, d or e is random.
#) The vectors ¢ and d or ¢ and e or d and e are random.

i, 1) The vectors ¢, 4 and e are random.
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Because 7) is a special case of 7z) we shall study the last one.
Case 11). The vectors ¢ and d are random.

First, let us determine the distribution function of the optimal value
ie. of the random variable

133) I E(m) = max [(Cl —I—- t((,o) ) x -+ ! M]
x=S e'x
We assume f(w) = A is a parameter varying within an interval [3,,8,].

Tt is well known that for parametric linear-plus-fractional problem of
the from (3.3) the interval [3,, §,] may be divided into a finite number
of so-called critical regions charactenzed by the various combinations of
variables forming optimal bases (see [3], [4]). Let M(1 <j <p — 1)
be the characteristic values

8, € Wi Ny < A< Ry € By

and #' (1 <j < p) the characteristic solutions. We denote 8, = }, and
3, = %,. Moreover, due to assumption that the random vallable t{w) has
a continuous distribution function, the intersection of two such critical
regions has zero probability.

We have the following theorem :
THEOREM 2. Let F(2) ge the distribution function of E(w) and let

2’ 2) — dy 3 — (e #)(e" &%)

pll= @ + (] 2 (e’ )
Then
#
=2 H®)
7=1
wheve
( (&3 + () (e'a”) > 0 and u(z) > A
. dy? + (cax’)(e'x’) < 0 and wy(z) < Xy
T( ) - T(Aj l) 1/f' déx’ + (C;x’)(ﬂ’x’) =0 (l%d
Al 4 (') (e'x?) < z(e'¥)
H,(z) = ﬁ dyx’ + (c3x)(e'%') > 0 and u,(z) < X
I\ = . |
(1< j< ) 0 if d, 2% 4+ (c’zx’)(e, x’) <0 and ulz) 2 N
dyx’ + (csx’)(€'x’) = 0 and
B+ (Ga)(ew) > 2e'n)
T (wy(2)) — T (%-1) dyx’ + (coa’)(e'x’) > O
2oy 2y |7 5= < om G L e <o
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Proof. Consider the events A = {w/f(w) <z} and B, = {0/} <
< t{w) < A;}. Because UB =Q and P(B,)>0 (1 <7 <9p) (B, B, #

< 0, 1 # j) one can u)c the formula of total probability :

P(4) = Z P(A|B) P(B,)

that is
p ?
F(z) = P(A) :,-221 PAN B) = j;l-H;(Z)

where

H() =P {‘D/[‘D!(cl + Ho)e) w4 Lt AR AN 2 AN

m [(1)|7\jy1 < t(w)< 7\;]}

a) If dyx’ + (cza’)(e’x’) > O then

(dy + wie) d:}’ﬁ

e xl

(e1 + Ho) c3)" ¥'+ <z

z(e’ x1) — dj %7 — (] ) (e” &)
dy % + (63 %) (¢ &)
H,(2) =0 if ufz) < 3
Hy(z) = T(3) — T(3-1) if uz) > X

so that

when #(w) <

and o
Hy(z) = T(u,(2)) — T(h=y) if noy < uyfz) < A0
D) If dix’ + (c32’)(¢'x”) << O then a1

ot dy s,

(c1 + #(e) cg)" 7+
& !
when t((\)) - Cz(e’ #) — dy ! — (¢ #Y) (e’ &) co that
dy 2 4 (o #%)(e" &)
H(z) = 0 if u(z) <
Hy(z) = T(x) — T(X-1) if ”;(Z) A
and

Hfe)m= TO) — T () 3 Ny 2] o hgporens o
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c) U dya? + (c3x’)(e'x’) = O then
H,(z) = 0 if dix’ + (c1x’)(e'x") = z(e’x’)
and
H,(z) = T()\) — T(N_1) if dix! + (c;2')(e'x') < z(e'%').

Summarizing, we get the theorem.

In the remainder of the paragraph we shall consider the minimum
risk approach to the problem (3.1) — (8.2) wich consists in finding the
optimal solution of the following programming problem :

(3.4) v(w) = max P{m/(cl—l— Ho)e,) x + @M_x > w}
r<=S e x
We shall make a further assumption
(D.3) h{x) = (c3x)(e'x) + dsx # 0 for all x = §.
Tt
g (% @) = (we — dy)’ ¥ — (o1 #)(e' %) |

(ez #)(e" %) + dg &

Obviously it is true that

Flx, ) = P{m/(cl T te) ) A B R e B w} -
e x
[ Ploft{w) < g(x, w)} if A(x) <O _{ T(g(x, w)) if h(x) <O
Ploft(w) = g(x, w)} if A{x) > 0 1 — T(g(x, w) 1if A(x) >0
and therefore, using the assumption that 7'(z) is strictly increasing:
T (max g(x, w)) if A{x) <O
Flx, ) =1, "
Ta s 1 — T( min g(x, w)) if A(x) <O.

=S

We then have:

THEORBM 3. If the assumptions (A3)—(D3) are true and the distri-
bution function T(z) of Hw) is continuous strictly increasing, then the mini-
mum risk solution of problem (3.4) corvesponding to the level w does not depend
on T(z) and can be determined by solving the deterministic problem

(3.5) max g(x, w) i Nh(x) <O
- xES
(3.6) - min g, w) 1f J(x) > 0.

Thus the minimum risk approach to linear-plus-fractional programming
leads to a nonlinear fractional programming problem.
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Remarks : a) Taking d, = 0 or ¢, = 0 we obtain the case 7).
b) If the vectors d and ¢ are random, the minimum risk preblem corres-
pouding to the problem (3.1)—(3.2) has the form

’ (dy + (o) do)’ #
3.7 P 2 L L Ty .
8.7) ees {w/ et (e + 7(w) €)% w}
Let
g(x, w) = ooy — )’ 2 — A& o001 ye S.

(dy — wey)” % + (¢ x)(e] %)
If the assumptions (A3)—(C3) and
(E3) hy(x) = (dy — wey)'x + (¢'x)(e5x) # 0 for all x € S,

are truc, the problem (3.7) is equivalent to

(3.8 max ¢(x, w) if Jy(x) <O
€S

or

(3.9) min ¢(x, w) if  7y(x) > 0.
x=S

For ¢ = 0 we obtain the minimum risk problem corresponding to linear
fractional programming problem. In [6], [7] is studied the problem of
the distribution function of the random variable

sy [ldy + Ho) d))' ¥
= ma in .
Ho) = mae i) [ )
Case 141). The minimum risk approach to the problem (3.1), (3.2) is
the following problem

(3.10)  v(w) = max P{@/(c1 1 Hw) ¢p) % 4 S F ALY w}
¥E€S (er + tw) &) x

In this case it can not be found a deterministic problem independent
of the distribution function of the random variable #(w) whose solution
could be a solution of the minimum risk problem (3.10). Therefore, we shall
find the distribution function of the optimal valuei.e. of the random varia-
ble ’

£(w) = max [ (c1 + o) c) x + M] .
€S (ey + ) )" %

As in the case 74) we assume #(o) = i and It A, (1 <j < p) and
(1 < § < p) be the characteristic values and solutions respeetively of
the parametric program.

From

: , (d, + Ady) &
- 7\ xj 1 2. —
((’1 + C2) + (61 + )\ca), o
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and (B3) it results

N+ v, (2) A + wy(2) =0,

u, = (c3 %) (e5 %)
Y(z) = (e #){er &) + (e #)(ea &) — dy &' — z(er &)
w{) = (o #)(e %) — 7 - (e} #') — df 4",
Let A(2), Aj(z) be the roots of this equation. We assume, wnen these
roots are real, that

N(3) < A(2).
We have the following theorem:
THEOREM 4. Let F(z) be the disivibution function of E(w) and wj'(z) =
R
— 0 Then F(z) ZEH,(Z), where we have
vy(2) i=t

£ = min (A, N(z), ¥} = max (A1, M), (1 <7 <p), ¢=12

and - 4 Five
'rT(tj) — T() when w! >0 and 12< £
T(n)— T+ Te)— T T(N-1) when w0, VA< X, X<
| rmin e ,m)—T(w} : {V,(z)> 0, 21 < ()
[ when ;= 3
Ty~ T{max (u'(2), 2-1)) T ) <0, w(s) < A
.T(tfl) T(Aj—r) when u,<< 0 and i} < A
_ ! M(z) are complex or equal and w,< 0
H,(2) =4 1:()\’)- [,()\]7]) e {u,: 0, v,(z) = 0 and w,(z) <O
(I< 7_§ ?) M) (1= 1, 2) are complex or equal

“, > 0 cmd{ i

2
vzl

0 when {u,<< 0 and A, < 7, < A

: [ ,(2) > 0 and Ny > ()
— 0 and v,(2) <O and u (z) = )
e {FPRN 19,(2) =0 and w,(z) = 0.

Y

Proof. The proof is similar to that of Theorem 2. Here we: have
Hyz) = P{[o|%» + v,(z)r 4 »(:) <0]N
N [olya <r < AR <7 < 2)
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Let

Sy ={xes [3;, 3] 422+ v,(2)A 4+ w,(2) <0 and X_; < A< A}
it is easy to see that
#, > 0

8 V.o
{[7‘;‘ d ‘ if M2)(z = 1, 2) are complex or equal and {u, <0

‘[r}, 5] } g [%=0
75, AU Do #1100 {u,<0}

1 -
Sy =) i[)\j—l; mln vw,z(x K,)“ 0(z) > 0
w‘ . ‘1fu,—-0and{’ 0
Hmax( Zl, A1 )\,” v(2) <
i v;(2)

[N, Al 0> w,(2)
k{ %) 0 < w().

Taking into account these evaluations in.H,(z) the theorem results
immediately.

} if #,= v,(2) =0 and [

4. Stechastie Chebyshév problem

Given the functions
2(x) = c'x 4 o =1, 2, .5%.,07)
where ¢t =1, 2, ..., ) are constant vectors and o'z =1, 2, ..., 7)
are constants, we consider the function

z{x) = max {z,(x)}.

1€igr
By the Chebyshev problem we usually understand a problem of the
type:

(4.1) min max {z,(%)}
¥ I<isy

subject to
xe S={x/Adx =g, x = 0}.

The notations have the same meaning as in previous paragraphs.
Let us consider:

¢!(w)"= i + t) ck
o' () :a; + (o) ocI
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where ¢}, c’;(i =1, 2, ..., #) are constant vectors, o, ob =12, ..., 7)
are scalar constants and #(w) is a random variable.
We make the following assumption :

(A4 drx+ ol #0 forall xsSandieM={L2 ..., 7}.

The minimum risk approach to the Chebyshev problem (4.1), (4.2)
consists in finding the optimal solution of the following programming
problem :

(4.3) v(w) = max P{o/max [(¢(0))" ¥ + a(w)] < w}.

xS x€ M
Let zi'(x) = ¢y % + of,

i’ s
— 1 ¥ — .
&ilx, w):t-”—f‘—_—“‘, for all x = S and 1€ M.
o x +

Then we have:

F(x, ) = P{o/max (& 4 tHo)d) x + ait Ho)w] < 0} =

— Plo/(dF Heo)d) x + @ + to)ar < w, Vie M}=

[ Plofte) < glx, w), Vi My if z'(x) > 0 _
{P{m/t(m) > g(xfw), Vie M} if #'(x) <0
P{w[t(w) <'min g(x, @)} if z’(x) > 0
— LT I S | A8 i
P{oft(w) > max g(x, w)} if z'(x) <O
Iy

T(min g,(x, w)) if z'(x) > 0
ieM
1 — T(max g(x, w) if z'(x) <0.

ieM
Hence our problem will be

max T(min g(x, ) if 2/'(x) > 0
max F(x’ w) _ )rwes @ ie M

x=S 1 — min T(max g (¥, ©)) if z'(x) <0,
x€S i€M

But if the distribution function T(z) of the random variable (o) is
continuous and strictly increasing, we have:

T(max min g,(x, w), if zi'(x) > O
v(w) = max F(x, ») = S iR N
xsS 1 — T(min max g(x, ), if z'(x) < 0.

xes§ ieM

.'S.
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Thus, one gets immediately the following theorem :

THEOREM 5. If the assumption (A4) occurs and the distribulion func-
tion T(z) of t(w) is continuous strictly increasing, then the mimimum visk
solution of problem (4.3) does not depend on T(z) and can be determined by
solving the delerministic pieccwise linear fractional programming problem !

)
(4.4) max min Z—3E 7" f 2'(x) > 0
veS ieM x4 of
or
i i
(4.5) min max L= TR 4f pf(x) <O,

x5 €M cx + oy

Remarks 1) The piecewice linear fractional programming problems
(4.4) or (4.5) can be solved by a parametrical algorithin (see [10}) similar
to the Dinkelbach’s algorithm for fractional programming (see [5]).

2) In [8] STANCU — MINASIAN determines the distribution func-
tion of the optimal value for stochastic Chebyshev problem considering
the same hypothesis that the random coefficients are affine functions of
a single random variable.

3) When
o) = ¢, + o), i1 e M, o' = 0, (i € M),
and /() (i € M) are independent random variables with the distribution

functions 7', continuous strictly increasing then the minimum risk solution
of problem (4.3) depend on T as follows:

max F(x, w) = max [ ] Ti(w—clx)'

i
r€S r€S i=1 Cy X

4) When the functions z (¢ < M) defining the objective function
# are nonlinear such as linear fractional, linear-plus-fractional or linear-
plus-indefinite functions, the minimum risk approach to the Chebyshev
problem can be restated and solved under appropiate hypothesis in a
similar manner to the linear case.

5. Stochastie linear-plus-indefinite programining

Consider the following problem
(5.1) min (¢’x - d'x - ¢'x)
subject to

(5.2) ye S={xe R 'dyr =10 x 20}
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where the notations have the same meaning as in §3. Also, as in 3, we
consider that the vectors ¢, d and ¢ are affine functions of a single ran-
dom variable #(w), about which we make the same assumptions as in §2.

Then the minimum risk approach to the problem (5.1)—(5.2) consists
in finding the optimal solution of the following problem:

(5.3) max Pl{o/c(o)'x + d(o)'x - e(w)'x < w}.

We shall consider the following cases: (¢) ¢ is random ; (i7) the vectors
¢ and d or ¢ and ¢ are random; (#7i) the vectors d and ¢ are random;
(7v) the vectors ¢, d and ¢ are random.

In order to simplify the exposition we make the following assumptions :

(AS) cax >0, for all x € §;
(B5) chx 4+ dyx - ¢'x > 0, for all x € S.

Only in the cases (i) and (i7), the solution of the problem (5.3) does
not depend on the distribution function of #(») and is got by solving a
deterministic fractional programming problem. The cases (i) and (i)
has not yet been solved.

Case (i). Using the assumption (A5) and the hypothesis that T is
continnous strictly increasing, we have:

F(x, w) = P{ojc(o)x 4+ d'x - ¢'x < w} =
= Plw/jc;x + Ho) gx + d'x - ¢'x < w} =

3

:P{w/t(o)) < W—Cix—d'”ie'a’}:T[w—c;x-—a!’x-exj‘
) (-4

Co%
Therefore
] F
w— e —d'x - e'x w—6x—dx-ex
max F(x, w) = max T[ LAt ] = T{max ! .
P PN Cg¥ €5 (%

Hence, it follows the theorem :

THEOREM 6. If (o) = ¢, + tHw)c,, and assumption (AS) holds and
if the distribution funciion T(z) of t(w) is comtinuous strictly ncreasing, then
ihe mimimum risk solution of problem (5.3) does not depend on T(z) and can
be determined by solving the following problem :

(5.4) max fx_"’_—_ii” 7.
xES Cy¥

Remark. In the special case when ¢, = e the problem (5.4) can be redu-
ced to a linear-plus-fractional programming probiemni. BANE:

Case (i7). The vectors ¢ and d are random. The minimum risk problem
associated with the problem (5.1)—(5.2) has the following form:

(5.5) max P{ofc,x + tw)egx + (djx + Ho)dax)e'x < w})
rES J -
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Following the same way as in the case (i) we have the theorem :

rarorEM 7. Lot c(o) = ¢ + Ho)e, and d(w) = d; + H{w)d,. If the
assumption (BS) holds and the distribution Sfunction T of t(w) is continuous
strictly increasing, then the minimum 7risk solution of problem (5.5) does
not depend on T and can be determined by solving the following problem :

’ ’ ’
w—Cx —dy - X

(5.6) max

eSS c4x + dax - €'x

Remark. The problem of finding the distribution function of the opti-
mal value i.e. of the random variable

E(w) = m;rsl [e{w)'x + d(w)'x - &' (w)x]

can be done in any of the cases (z), (i), similar to the previous paragraphs.
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