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1. INTRODUCTION

A set in a vector space is usually called convex if together with any two
of its points it contains the whole interval joining them. At the same time,
the applications of mathematics involve some extensions of this definition.
Namely, in connection with the introduction of locally convex topologies J. von
Neumann [11] requires only the midpoint of the interval to belong to this set.
Then J.W Green and W. Gustin [6] and recently L.F. German and V.P. Soltan
[5] claim that just the points dividing the interval in prescribed ratios remain in
the set. I. Muntean [10] proves existence theorems of supporting hyperplanes
to the sets which are convex in the latter sense. Finally, in establishing some
fixed point theorems V.S. Shulman [13] introduces a concept of convexity
stating that the intermediate points run a portion of a curve joining the end-
points of the interval. We associate with these convexity notions for sets the
corresponding convexity notions for real functions defined on such sets.

In this paper we study an attenuated convexity concept which includes the
convexity notions introduced by J. von Neumann and J. W. Green and W.
Gustin, and we put out some relations between this concept and the concept
of usual convexity. A set Y in a vector space over the filed R or real numbers
or the field C of complex numbers is said to be:

convex if for each x, y ∈ Y and each p in ]0, 1[ we have

(1.1) (1− p)x+ py ∈ Y ;

p-convex, with p in ]0, 1[, if for each x, y ∈ Y (1.1) holds;
weakly-convex if for each x, y ∈ Y there exists a p in ]0, 1[ such that (1.1)

holds.
Every convex set is p-convex for each p in ]0, 1[, and every p-convex set with

a p in ]0, 1[ is weakly-convex. As the following examples show, there exist
weakly-convex sets which are neither convex nor p-convex for any p in ]0, 1[.

Example 1.1. The set {0}∪]1, 2] in R is weakly-convex without being p-
convex for any p in ]0, 1[.

Example 1.2. Every open set Y in a topological vector space is weakly-
convex. Indeed, if x, y ∈ Y, then the function p→ (1− p)x+ py, p ∈ [0, 1] , is
continuous at the point p = 0 and Y is a neighborhood of x, hence there is a
p in ]0, 1[ such that (1− p)x+ py ∈ Y .
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A real function f defined on a set Y in a vector space is said to be: convex
if the set Y is convex and for each x, y ∈ Y and each p in ]0, 1[ we have

(1.2) f ((1− px+ py) ≤ (1− p) f (x) + pf (y) ;

p-convex, with p in ]0, 1[ if the set Y is p-convex and for each x, y ∈ Y (1.2)
holds;

weakly-convex if for each x, y ∈ Y there exists a p in ]0, 1[ such that (1.1)
and (1.2) hold.

In Section 2 of this paper we shall prove the convexity of weakly-convex
closed sets, and the convexity of the closure of p-convex sets. Section 3 is
devoted to the proof of an accessibility theorem for p-convex sets. In the
last section we shall prove the convexity of the weakly-convex and lower-
semicontinuous functions. By a counterexample we shall show that the the-
orems of A. Ostrowski [12], M.R. Mehdi [8] and E.Deák [3] concerning the
convexity of p-convex functions which are bounded on sets of positive measure
or on sets of second with Baire property fail for weakly-convex functions.

2. THE CONVEXITY OF WEAKLY-CONVEX SETS

Theorem 2.1. Every weakly-convex closed set in a topological vector space
X is convex.

Proof. Supposing the contrary, we can find a non-convex closed weakly-
convex set Y in X. Then there are x0, y0 ∈ Y and p0 in ]0, 1[ such that
z (p0) /∈ Y , where

z (p) = (1− p)x0 + py0.

Since the function p→ z (p) , p ∈ [0, 1] , is continuous at p = p0 and Z = X \Y
is a neighbourhood of z (p0) , there exists a δ > 0 such that

(2.1) z (p) ∈ Z for all p in ]p0 − δ, p0 + δ[.

Denote a0 = sup A where

A = {a ∈ [0, 1] : z (p) ∈ Z for all p in [p0, a]}.

From (2.1) we easily derive that p0 < a0. We shall show that y = z (a0) ∈ Y .
Suppose the contrary, i.e., y /∈ Y . Then a0 < 1 and we can find δ′ > 0 with
a0 + δ′ < 1 such that

(2.2) z (p) ∈ Z for all p in ]a0 − δ′, a0 + δ′[

Let a1 ∈ A with a0 − δ′ < a1 ≤ a0. Then a2 = a0 + δ′

2 ∈ A since z (p) ∈ Z
when p ∈ [p0, a1] , and z (p) ∈ Z when p ∈]a1, a2[⊂]a0 − δ′, a0 + δ′[ by (2.2).
Therefore, a2 ∈ A and we arrive at the contradiction a2 ≤ a0 < a2. Hence
y ∈ Y .

Further denote b0 = inf B where

B = {b ≥ 0 : z (p) ∈ Z for all p in [b, p0]}.

As before, we have b0 < p0 and x ∈ Y where x = z (b0).
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Now, we can prove (1− q)x + qy /∈ Y for all q in ]0, 1[, in contradiction
with the hypothesis that Y is weakly-convex. To this end we first remark that
(1− q)x+ qy = z (pq) , where pq = (1− q) b0 + qa0 ∈]b0, a0[. There are a ∈ A
and b ∈ B such that b0 ≤ b < pq < a ≤ a0. If pq ≥ p0, by the definition of A
we have z (pq) ∈ Z, and if pq < p0, by the definition of B we have z (pq) ∈ Z.
Hence (1− q)x+ qy /∈ Y , and the proof of Theorem 2.1 is achieved. �

Remark 2.2. a) When X is the Euclidean space Rn with finite dimension
n, Theorem 2.1 has been established by V.F. Dem’janov and L.V. Vasil’ev [4],
p. 16.

b) Since the above proof uses only the continuity of the function p →
(1− p)x0 + py0p ∈ [0, 1], with fixed x0 and y, Theorem 2.1 remains valid
for topological vector groups of special type (cf. [9]).

c) As Example 1.1 shows, Theorem 2.1 fails for weakly-convex sets which
are not closed. �

It is well known that the closure of every convex set in a topological vector
space is convex (cf.[2], p.57). The following corollary shows that this result
preserves for p-convex sets too.

Corollary 2.3. The closure of every p-convex set Y in a topological vector
spaces in convex.

Proof. The adherence Ȳ is p-convex since

(1− p) Ȳ + pȲ = (1− p)Y + pȲ ⊂ (1− p)Y + pY ⊂ Ȳ .
By Theorem 2.1, Ȳ is convex.

When p = 1
2 this corollary has been proved by J. von Neumann [11]. �

3. THE CONVEXITY OF p-CONVEX SETS.

As Example 1.2 shows, Theorem 2.1 is false for open sets. However, this
theorem remains true for p-convex open sets. In proving this we are in need
of the following lemma of J.W. Greem and W. Gustin [6]:

Lemma 3.1. Let p ∈]0, 1[. Denote by (Pn)n≥1 the sequence of sets inductively

defined as follows: P1 = {0, p, 1} : if Pn = {0, p(1)n , p
(2)
n , . . . , p

(2n)
n , 1} where

0 < p
(1)
n < . . . < p

(2n)
n < 1, has been already defined, put

Pn+1 = Pn ∪ {(1− p) p(k−1)n + pp(k)n : 1 ≤ k ≤ 2n + 1},

where p
(0)
n = 0 and p

(2n+1)
n = 1. Then the set P = ∪{Pn : n ≥ 1} is dense in

the interval [0, 1].

Lemma 3.2. If Y is a p-convex set in a vector space, then Y is q-convex for
each q in the set P in Lemma 3.1.

Proof. If suffices to prove that q ∈ Pn, n ≥ 1, implies

(3.1) (1− q)Y + qY ⊂ Y.
When n = 1 and q ∈ P1 = {0, p, 1}, the inclusion (3.1) is immediate.
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Suppose (3.1) is valid for an integer n ≥ 1. Let q ∈ Pn+1. We can admit
that q /∈ Pn so that q has the form

q = (1− p) p(k−1)n + pp(k)n for a k ∈ {1, .., 2n + 1}.

If z ∈ (1− q)Y + qY, hence z = (1− q)x + qy with x, y,∈ Y, then z =
(1− p)u+ pv, where

u =
(

1− p(k−1)n

)
x+ p(k−1)n y ∈

(
1− p(k−1)n

)
Y + p(k−1)n Y ⊂ Y

and

v =
(

1− p(k)n
)
x+ p(k)n y ∈ Y

since p
(k−1)
n , p

(k)
n ∈ Pn. Therefore z = (1− p)u+ pv ∈ (1− p)Y + pY ⊂ Y.

We now state an accessibility result for p-convex sets. �

Theorem 3.3. If Y is a p-convex set in a topological vector space X, x ∈
intY, y ∈ Ȳ and 0 < α < 1, then

(3.2) (1− α)x+ αy ∈ intY.

Proof. First we prove that if x′intY, y′ ∈ Y and 0 < α < 1, then

(3.3) (1− α)x′ + αy′ ∈ Y.

By Lemma 3.2, there is a positive number s in P such that α < 1− s.
Since the function t → x′ + t · αs (y′ − x′) , t ∈ [0, 1], is continuous at t = 0

and Y is a neighbourhood of x′, there exists a γ ≤ α
s , s < γ ≤ 1, such that

(3.4) x′ + t · αs gg · s
(
y′ − x′

)
∈ Y for all

[
0, γ·xα

]
.

There is a t0 in ]0, γ·sα [ such that

(3.5) (1→ δt0)x′ + δt0y
′ ∈ Y where δt0 = (1− t0) α

1−s .

Indeed, the interval I =
[(

1− γ·s
α

)
α

1−s ,
α

1−s

]
⊂ [0, 1] has a positive length

hence by Lemma 3.1, there exists q ∈ P ∩int I. It follows that one can find a
T0 ∈]0, γ·sα [ with q = δt0 ∈ P and, by Lemma 3.2, we obtain (1− δt0)x′+δt0y

′ ∈
Y .

From (3.4) and (3.5) we deduce (1− r)x′ + ry′ ∈ Y , where r = α
s · t0, and

(1− α)x′ + xy′ = (1− s) [(1− δt0)x′ + δt0y
′] + s

[
(1− r)x′ + ry′

]
∈ Y

because Y is s-convex. Thus (3.3) is proved.
Now, we are in a position to prove (3.2). Denote z = (1− α)x+ xy. Since

the function f : X → X given by

f (u) = u+ 1
1−α (z − u)

is continuous at u = y and f (y) = x, there exists a neighbourhood V of
y such that f (V ) ⊂ int Y . There is a y′ ∈ Y ∩ V because y ∈ Ȳ . From
f (y′) ∈ f (V ) ⊂ int Y and (3.3) we derive z = (1− α) f (y′) + αy′ ∈ int Y .
This proves the theorem.
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It is well known that the interior of a convex set in a topological vector
space is convex (cf. [2], p.55). The following corollary shows that this result
holds even for p-convex sets. �

Corollary 3.4. The interior of every p-convex in a topological vector space
X is convex.

When X = C Corollary 3.4 has been established by D.A. Horowitz, D.A.
Rose and E.B. Saff [7].

4. THE CONVEXITY OF WEAKLY-CONVEX FUNCTIONS

The epigraph of a real function f defined on a set Y is the set

Ef = {(x, z) ∈ Y × R : f (x) ≤ z}.
We need the following well-known lemmas (cf. [1], pp.75-76):

Lemma 4.1. A real function defined on a convex set in a vector space is
convex if and only if its epigraph is convex.

Lemma 4.2. If a real function f is lower-semicontinuous on a topological
space X, then its epigraph is closed in the topological product X × R.

Theorem 4.3. Let f be a real function defined on a closed set Y in a
topological vector space. If f is weakly convex and lower-semicontinuous, then
f is convex.

Proof. First we prove that the epigraph Ef is weakly-convex. Let (x1, z1) ∈
Ef and (x2, z2) ∈ Ef . Since f is weakly-convex, there exists a p in ]0, 1[ such
that (1− p)x1+px2 ∈ Y and f ((1− p)x1 + px2) ≤ (1− p) f (x1)+pf (x2) ≤
(1− p) z1 + pz2, hence ((1− p)x1 + px2, (1− p) z1 + pz2) ∈ Ef .

Now, by Lemma 4.2 and Theorem 2.1, Y and Ef are convex, hence, by
Lemma 4.1, f is convex. �

Corollary 4.4. Let f be a real function defined on a closed convex set
in a topological vector space. If f is wealky-convex and lower-semicontinuous,
then f is convex.

Remark 4.5. When the weakly-convexity is replaced by the stronger con-
dition of p-convexity and the lower-semicontinuous is weakened in different
ways, Corollary 4.4 remains still true. More precisely, the convexity of every
real function f which is 1

2 - convex on an interval in R has been established
by A. Ostrowski [12] when f is bounded on a set of positive measure, and by
M.R. Mehdi [8] when f is bounded on a set second category having the Baire
property. An extension of last results to p-convex functions has been given by
E. Deák [3].

However, as the following example shows, the results of A. Ostrowski and
M.R. Mehdi fail when the considered functions are only weakly-convex. �

Example 4.6. The function f : R→ R, defined buy f (x) = 1 if x is rational
and f (x) = 0 if x is irrational, satisfies the conditions of A. Ostrowski and
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M.D. Mehdi and it is weakly-convex. We shall show that f is not p-convex
for any p in ]0, 1[. Supposing the contrary, there exists a p in ]0, 1[ such that
for every x, y ∈ R the inequality (1.2) holds. If p is irrational, use (1.2) with
x = 1

1−p and y = 1
p to arrive at the contradiction

1 = f (2) = f ((1− p)x+ py) ≤ 1− pf (x) + pf (y) = 0.

If p is rational, use (1.2) with x =
√

2 and y = p−1
p

√
2 to arrive at the

contradiction.

1 = f (0) = f ((1− p)x+ py) ≤ (1− p) f (x) + pf (y) = 0.
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[3] Déak, E., Über konvexe und interne Funcktionen, sowie eine gemeinsame Verallge-
meinerung von beiden, Ann. Univ. Budapest. Eötvös Sect. Math. 5, 109–154 (1962).
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