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Abstraet. The present paper describes & unified approach to quan-
titative approximation theoreing for certain linear operators L includ-
ing positive linear ones. It is shown for so-called almogt lattice homo;
morphisms A that the difference (L— A (f, ) can be estimated in terms
of a certain three parameter functional L), This functional iy in twrn
bounded from above. by varions classical seminorms such as (modifice -
tions of) moduli of continuity of order 1 and 2, There is a, large variety
of opportunities to combine results of this paper in order to arrive at
dirvect gquantitative assertions. Several examples show thla,L the general
theory implies & number of results which improye those known so far.

1. Introduetion. The aim of the present paper is to study the degree
of approximation  of continuous functions by certain linear operators in-
cluding positive linear ones. Very much hag been do ne in this field especially
as far as direct theorems are concerned. A partial survey, of the corres-
ponding literature is given in a forthcoming bibliography on Bernstein
type operators [9]; these -ave heavily used as examples when treating
positive linear operators (PLO’s) in general. : e

One of the observations that we made while working on the subject
was that almost all of the authors were basically using the same machi-
nery. This boiled down to the guestion of how to deseribe the underlying
idea more closely by giving one single estimate which in turn implies 1MoEL
of the inequalities with ‘classical’ right-hand sides such as moduli of
continuity of different orders. This is part of what the present paper
intends. Another question was how o obtain improvements over the
known results ; this is due to the well-kmown fact that the constants and
sometimes even the order which are obtained atter| applying a quantita-
tive Korovkin type theorem are poor. Angwers to this question can, also
be derived from the present paper.

As far as the underlying mathematical technigue is concerned, all
our estimates:are based upon the use of a new JC-funetional which will
be deseribed in Seetion IT. Moreover, we have made sure that all our
subsequent estimates involve a great degree of freedom in the sense
that when applied to some concrete o perators the choice of the parameters
appearing in the moduli of continunity is up to the user. This is the most
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convenient way to compare our results to what is ‘available in the:lite-
rature. : )

Although we only treat the case of approximation of continuous
funetions on 2 compaet segment [«, b] it is possible to extend these results
to the approximation of functions in several variables by using, for in-
stance, tensor product methods. Thus the main idea of this paper is the
fact that the approximation behaviour of a sequence of certain operators
napping Ola, b] into Ofe, aly [¢,d] = [a, b], can be deseribed by using one
single funetional which can be estimated from above by a variety of more
classical seminorms such as moduli of continnity. For the sake of brevity
our paper is split into five parts. In. Section II the new K -functional
is infroduced. Section ITT establishes relationships between Q and some
moduli of continnity, In Section 1V we give some estimates for the
approximation of so-called almosi, lattice homomorphisms by certain linear
operators in terms of . The combination of the results DPresented in
Sections IIT and TV then turns out to e an effective tool for proving
estimates in terms of the nore classical quantities mentioned above. This
becomes elear in Section V where we apply our results to approximation
by Bernstein operators, by operators of Meyer-Konig and Zeller and by
sSome, non-positive Hermite-Fejér operators. Tt has to be ‘noted,. however,
that the underlying technique works in- many other cases ay well.

Throughout thiy paper [a, b] is a finite interval of the real axis., For
7 = 0 the symbol ¢ = ¢F L@, b] denotes the space of #-times contintiously

differentiable functions. Moreover, ¢ — OV f) denotes the ‘Sup-norm
of the r-th derivative of function f e C7.¢, ig always 'the i“th monomial
given by ex): = af g e [@, &], © = 0.

II. The Tunetional Q. A standard technique for' the study ' of rates

of approximation of continuous functions f in terms of moduwli‘of ismeoth- _
ness is based on the use of : ' 7

B fy ) = inb {If ~ gl + t-lg® s g e 01"

This method is deseribed in an excellent survey paper of R.A. DeVore
[5]. As can be seen from' the definition of K.(f, ), its value expresses
how small the norm of J — g can be made compared to the norm of L-gtn,

In the present Paper we use 'a special case of the funetional .2 NI
given for », 3 > 1 and (38, L0 el 0ise R3 by the expression

‘Qr,r+s(f; t} tr; lr+s) oy
EAS = el 88O — 0 A, 8000 ¥ 01 47 sy b ey,

Q, .., expresses two things. First it does the same as K, as can be seen
from the inequality

'Q'r,r+s(.f§ t) tr; tr+s) < IL(f; t)‘

Secondly, it controls how smooth the smoothing functions are themselves.
For instance, for SeOla, b] we have

Qr,r+s(f; l‘) t’r) t’r+s) <
St'inf(”f(m e 1(23” 3= tr”fr“wL)s ” + tr+s'”f1("-'+—t‘$) ” :fr+a‘ € CH—S)?
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where-the right-hand side is basically a slight modification of X, for p-tinmes
differentiable functions with respect to such in O'ts, :

In the sequel we shall only use Q : = Q, ,. In order to simplify some
of our helow considerations, we shall daseribe ) in a dlﬁereut way. For
this purpose let B denote a real vector space, U a Rub.‘.s_pa,ecﬁ_nt Ifé ﬂ,ngl P
and P seminorms on % and U, respectively. We define & R X —
— Ry by !

Kty by, f 5 (B, p), (U, p)) : — ini {Blf — 9 + twly) + t,p(g) - gel]}
and K : Ry XE — R, by the eduation '

Bt f5 (8, p), (U, p)): =ik {p(f — g) + 1-(g) : g e U}.
We write for simplification If(tl, ty, f)rand K(1, f), respectively,' if it is
clear what (, p) and (U, p) are. Tt iy easy to prove that for fixed (21,
t,) € R%: the functional If(tl, Tos+ ) 18:@ seminorm on B ; thus we can use it
as the seminorm p'when defining a functional () -) for te R,.
We now consider the spaces 0%, i e {0, 1, 2}, of i-times continuously
differentiable | functions defined - on - [, b1 with the seminorms -9].
Here - denotes i-fold differentiation. Then, using the seminorm

(i, o £ (00 ) 0, (02, -1, ‘on O,

we have . .

Q‘(f, i; tl)l ly) = j((t; fv (Oa I ”)7 (01’ K (tlr Toy( - )))

In particular, & isa seminerm on C’ depending upon the th}'e@ parameters
ty ity 5. These three parameters will be used later to deseribe aPProxima-
tion properties of certain linear operators.

I, The Relatiouship betsween Q and Some Moduli of Continuity.
In this section Q will be estimated from above by more classical quanti-
ties such as modali oF continuity. All majorants of Q will contain a
‘free variable’ k> 0 which makes it more convenient to find cloar majo-
rants in conerete examples. g

We first consider the case of contitinounsly differentiable functions
singe this will be used below. Natural majorants for Q are in this case
expressions involving the first order modulus of continuity of 'y defined
DY @y(f'y h) 2 = sup {|f (@) — F'(y) | : @, y €la b, |2 — y| <&}, or the
cast concave rajorant &y () of wi(f’, +) given by

m
]
1=
N
|
=

f=1 =1

oy (f'y by = sup {Z Neog(f7y Ry

v
<

" r
w 7 T
ZJ )\ihz‘ = 7&, ?\i = 01 s il
21 J

Both quantities ave relatod by o (f,") = &B(f, 5 < 2. (75 ).
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TaroreM 3.1 Let Q be defined as above. If (f; t, 1y, 1) € CMa, 51X R}
is arbitrarily given, then the following are true for any'h™>0:

1 g
(i) ' {min(l, t)- 171+ o (1) mx(—j@, T;T) a1, h)} ,
Q'(f : t) tla !9) s ¢ j
(i) [ e (0,1 - )]-eursml-

Here yion 18 the characieristic function of [0,1].

COROLLARY 3.2 For t; = 0 the inequalities from above tmply :

(1) t-max (é—s 1}?) -ay(f', h),

h —

() Q50,8 < .a--[l +t—2-max(o,1 s 2 )]-ml(f’,h),

{it) t-min [max( 2; ) 1+ ] ay(f'y ).
h
Proof of Theorem 3.1. If f is continuously differentiable, then the
definition of Q, being a special K-functional, yields
f.t tyy ly) < t'I{ (b1 Ty f (O(D I '1)”) (C(Z) l S21)):

Several properties of the functionals K were 1nvest1g,ated in [6]. In

particular, it was shown that two functionals K and K constructed with
the aid of the same pairs (E, p)and (U, p) are related by the inequality

(ty ty = 0) K(ty, ty 3 (B, p), (U, p))
2y e (B U, p))-
= 3 () ,p))

1

<min (1, &y,)-p(f) + (1 4 #)- x[o,u(tl)'K(

Since for b > 0 the functional K satisfies the inequality

. ! 2 h : 3
iy e G LD T U <
(1 iRl & I3 (B, p), ( ,p))

\ 21, i MY,
g ma,x(l Ty ) K( =15 (B ), (U,p))

we arrive ab

Of 3, 4, 1) < {mm (X, 6)-p(f) + xomlh)- ma,x(l + 4, 22)

w{3nmm sl
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Tt

Putting (B, p) = (C4 |- V), (U, p) = (0% Il -@), it is- known that (see
J. Peetle[lﬂ, B. S. Mitjagin/E. M. Semenov [13]) ‘

ff(~,/~ B, p), (T, ﬁ)) S, b

Combining this with our observations from above now leads to

sty tz)st-{min(l,-tl)-nf-’n 1 Lo (-cl)-l,lm( T i _‘&) e h}

2 h

This was the claim in (4).. ;
For the proof of (i1) we use again the fact that

Q(f 54, 81y b)) < t-ind (ILf" — fall H o Ifs )+t lfs )| i fae €2)

A_SSlm'le first that 0 <<k < b — a, and let f, be any primitive of gl 9
given by NS Ty

| —Il'(fi‘;)»l-h
USf', =)« :'_:]—' f(w A= t) de.
‘ i
As was shown bv V. V. Zukand G.1. \Ta.ta,nson [22], we hzwe
|/ (@) = fa @)= (@) = U(f'y #)] < &l f'5h),
el = O, <0, and LA = 1T, )<
1 h :
< “i' (1 ‘—‘T) '(1)1(.]/‘, /L).

For izt — a we put U,z = U,_,. Inthis case

(@) —fg(x)|<@1(f', b — a)=ay(f', k) and fy' =0.
This shows the validity of ().

) ' e P :

i ;oo; of Corollary 3.2. (1) and (i7) are nnmedmte consequencey of tife,
corresponding mequa,htleO in FTheorem 3.1. (¥4¢) is a simple consequence
of (v} and (i), if one observes that @,(f7,+) < 2w, (f1, -) and max {(), 1 —

h . )
——} <.

b—a ),

Our next theorem containg estimates of Q(} ;1 b, ty) for arbitrary
continuous functions defined on [a, b], These ave giv )n in terms of the
usual first order modulus of continuity o, a modification of this moduiug
of oontmulty introduced by M. Maraden and T. J. Schoenber ¢ [11] and
denoted by of; and in tertus of the least concave majorant of the fivst order
modulus notmtgd by @,.
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; THEOREM 3.3 Let Q be defined as above. If (f; 1y 1, 1) e Cla, b]XRE
s arbitrarily given, then for any h >0 the following inequalities hold -
O(f 5ty 1y) <

(1) max (1, %) @y (f, h),

%]

h

— &

(11) Ce .,inf{[l —,'—%-max((}, 1-—b )] ray(fciey b) i1 df :ce[R} ,
. /

(i) min [m&x(l, ?), 14 TL] Yoy f) ).
{3 ’

An immediate consequence. is

COROLLARY 3.4,

Q(f580,8) < [1 +%-ma,x(0,1 - h )Jmf(fa h),

b —a

where of(f, h) : = inf {&y(f — c-e5, b): c e R}.

Proof of Theorem 3.3, In order to arrive at (¢) we proceed as in
the corresponding part of the proof of Theorem 3.1 observing in this case
that

Q(f; t’ tla tz) 51{(57]05 (07 I+ ”)7 (Gla ”i'(l) ”))
21 h 21 1
< (1, — ). K|{—, f: 1) = m eI
<ma‘{( ’ h) (2,‘)”,0,0) ax(l, h) i o (f, k),

which follows again from the work of B. S. Mitjagin and E. M, Semenov,
for instance.

(i7) is obtained as follows. For a fixed triple (4, t;, %,) the functional
Q-5 ¢, 4, t,) is a seminorm on 0. Thus, if 7 isany linear function, then
Ufs bty ) < Qf =15 4, 4, 1) + QU3 8, 1, 1,).

An estimate for the first term on the right-hand side ean be given by using
the idea of Zuk and Natanson again. Thus

2
QUf Y5 8 .81, 8).2 [1 pat -max((), el ) Joilfi= 1),
h b—a
Since 1 is continuously differentiable, it follows from Theorem 3.1 that
L5 1, 4y, ty) < ety (|1

Thus, if 7 is given by I = ¢-¢, -+ d-ey, then the combination of both ine-
qualities leads to

Qfstt,t,) < [1 +Tt-max(0, 1/ dmsht

L b%a”'%U-CﬂJ%+%HNL
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(#4t) Substituting ¢ = 0 into (it) gives the majorant

[1+%wm%m1~—liﬁ}%mhu(r+%y%Mhr
T e L

h b — a

Passing to the infimum over all such numbers gives the estimate in (i1):

Moreover, taking the inequality &,( f,.h) < 2-o4(f, h) into account shows
that the right hand side of (i) can be estimated from above by

max (1, %l——)-ml( fy h). A _combination of these observations gives (4ii). 1
2

The inequality in Corollary 3.4 is a trivial consequence of inequa-
lity (¢7) in Thecrem 3.3.

The following theorem provides us with an estimate for €( Fit t, t)
using mainly the second order modulus of continuity wy(f, ) of an fe 0
and again involving a ‘free variable’ & > 0. Here w,(f, - ) is given by

@y(fy h) : = sup{| flo — 3)— 2f(@) + flw + &) : @& + 3 € [a,b],0<<3 <h}.

Turorey 3.5 Let Q be defined as above. If (f; 1,4, 15) € O [a, b] X R
18 arbitrarily given, then for any h>>0 the fullowing inequality holds

Qf5 8, by 1)

3 1 1
< [E + 2tl2-ln&X (?, W)] (Oz(f, L) +
+ [zttl *IMax (—i-, 1 )] '0)1(.f7 h’)
h b —a

An immediate consequence is

COROLLARY- 3.6 If t,-= 0, then the above estimate reduces to

h

Qf; 1,0, 8,) < [_g’_ 4 2tt,-max (.iz (T—La)T)]'%(f.’ n).

Proof of Theorem 3.5. From the definition of Q it follows that

Q(f 54, 1y 8) < inf {lIf — fill + ¢-Co-Uf0 + e llfi' 1) < fy € O

Thus it remains to show that for any &> 0 there is an Ji = f» € % whieh’
yields the estimate claimed above. The idea used to obtain such a func-
tion is different from the one used in Theorems 3.1 and 3.3. First we
define a suitable extension of f € €[4, ] and then use Steklov means with
respect to this extension in order to obtain a smooth approximation of I
which in turn satisfies the necessary inequalities. It is advantageous for
our purposes to define an extension which itself depends upon #.

Assume first that 0 < h < b — a. We define

Sfuila —n, b+ k] — R by

fle +h) — fla 4 k) + fla) for we[a — h, al,
Sl@) = {f(e) for v € [a, b],
flw — k) — f(b — h) 4 f(b) for z e [b, b -+ k].
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Then f,,(#) is well defined and ¢ontintius.
For » € [a, b] we consider. differences of the form
Sulz + ") — 2fu@) + ful@e — 1), 0 <ir < h

(1) @ + », ¢, — » € [a,'b]. In this ease the absolute value of the above
expression is equal to BERUTIE i ; '

e 4 7‘) o 2f(‘0'c’)' +fle —1)]'< d);(f, k).’
(2?)\ L + r, @ e.[»(‘t’ b_], r—r<a a;nd?v < _a;_ﬁb ’Then

i fh(m + 1) 2f (@) + ful@ — r)

= () = Bf(@) + B0 — )+ flof 1) 2 (as+ %)Jr
1A { .

S @= 7 B = f(20 — a) 4 2.f-(w‘_+.. %) S ).

This implies' R
ol + )= 270) -+ fil — 1))

< ol fama+ s | =4 L) o (5 o Lo g 2 )

<oulfy )+ oolf, B2) Hoytf g2y, L

since 0 <r < hya—a <randa — z < 0.

(3) The case @47, we[a,b], & —r <dand o> %

cannot oceur

since this would b¢ a contradiction to the condition = + » < b,

(4) We consider now the particular case where » — J,.

Under the assumptions @ + h, @ e [a, ], x — I < @ we obtain the ine-
qualities ' i i aal

W@+ B) = 2f@) + file — ),

%';;{‘(m _f]_. R AL zf( @+ h +I a ).+ FOE Py 2“%*‘”)_]%_%)’
< coz(f,—é- a— P h’) e i (f, %i al ) e :r';|') |

< oylfy B+ olfy B2).

a b ! ]
By w—rywela,bl,x+r >b and z > 2 This case is analo-

gous to the one in (2).

]
(6) The case o —#», wea, b], x ++ >b and z < .10

(ef. case (3)).

cannot oceur

2]
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(T) The special case 7 = h, @ — h, x e @, b], # + h>b is similar to 1
one under (4).

b—a

(8) # —» <@, » 47 >b. Obviously this implies ry h> . H
we have '
Ifh(w + 7') | 2fh(m) "'_.fh(m L B 7')[
=@ —r 4 &) = 2f(w) + flo b r — ) L f5—n) +
+ 2f(“ L ") By ) - 2f(“ . ”) +f<a>,

Sog(fy, |7 — h]) + wz(f, El“'b L s 2h])+ mz(f, 4 ; a,)

<y (f, %) + 26,0/, b.

(9) For the special case 7 = I the a,ssumpfions 2 —h <oa, ze La,
x h>b(i.e. h > 0

)Iead to the inequality
sl o+ B) = 27(@) -+ folw — W)
:\ — b =B 2f(“ i b)—f(a + ) f(B) — 2f(“ o b)+f(a)

2 2
5‘*’2()

The observations made under (1),....,(9) will now be used to constr
the functions that we were looking for. For 0 < h < b — & the secc

order Steklov mean of f € C[a, b] (with respect to the extension f,) is ded
ed by A

R e G B I

2

It

2

Sful) : z—;—z fle+-s41) ds dt, e [a, b].

1]

wl@k"ml?
o™

Because of

fila) = %hi (/@45 +1) fiw — s — 0)] ds at

00| Ty ol =
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we have

2

] :
= ((oz( ,;_‘) 1 20,(f, h));

the last inequality following from the observations made under (1) — (9).
;\/Ioreovu the second derwa,tlve of the second order Steklov mean satis-
ies

=

T | e _
Ho)' = Ao < 7.i. S S @+ s +6) — (@) 4 fule — s —1) ds ¢
Bk

IA

T
T

I_fzi_'(ﬂ9)| =i @ A b)) 2f(@) A flw — B

< (m( , »’21) + ol f, h));

this follows from (4), (7), and (9).
The 'first derivative of the 'second order Steklov means cail bé estimated
as follows : _ s

, LT
| Ja()] DR g [fn(ertvL—;i) S (m+z_i}]dt
I !
I 3
: : Ll R
S S O3 (fir 1) A == 013 ) < =0l B,
h? J T I

We substitute the estimates for || f — fill, ILfi I, and || fill mow into the
majorant for Q(f;t, u, ¢,) given at the beginning of this proof, replacing
J1€ C?a,b] by the second order Steklov means constructed above.

This shows that for 0 << h < b — a the inequalities

f 12 ’51, “f fh||“|“5 1'||f/:'|| ‘Il‘tz'”f)’;’”)
3 1 . il
< (7+2t-t2- ) et 1) 2t Sty 1

hold which proves the assertion in Theorem 3.5 for the cases where
0<<h <b—a Forh>b— a the Steklov means were not defined since
in this case the estimates concerning the second order differences of the
above extension £, cannot be proved in the w a,y we did" it.

Therefore for h>b — a we define f,: = f,_,.
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In this case we have thelinequalities

”f o .fh”oo == ”f _fb—(t ”ooS %mz(fi b—'a)' < %'(’)Z(f’ h),

| ” ' 2 7 | | :
1 fild |]65 =" falq lls = W'mz(.fa b—a)'< Tb—_ia—)z—'@z(fa I,

2
T -oal(f, b ~'a) < AR »ml(_f,' ).

!
”f;; ”oo o “fb—a ”oo <

Oombining these mequahtles Wlth the ones proved before for 0 < h <
<'b'"" 4 we arrive at the estimate claimed in Theorem 3.5. J

Remark. In view of Theorems 3.3 and 3.5 it is natural to ask what
the relationship between of and w, is sineé both annihilate linear functions.
It has to be noted that there is no constant ¢>0 such that of(f, 3) <
< ¢-wyf, 8) for all f and 8> 0. This can be seen from looking at f(w
= ? on [ 1 ,175 for instance. Howevel it i3 possible to show that thcro
exists arGonstant d> 0 satisfying 'of f, 3) < d wy(f, d/2) for fe Cla, b]
and 3 > 0.

1V. Estintates for the Approximation of Almest Lattice Homowmor-
phisms by Certain Lincar Operators. Here we present some estimates for
the approximation of so-called almost lattice homomorphisms (ALH )by cer-
tain linear operators in terms of the functional Q introduced in Section
IT. As is clear from the last section such estimates can immediately be
turned into' inequalities containing different kinds of moduli of conti-
nuity. Examples will be, given in Section V.

DEFINITION 4.1 If Y 4s a non-empty set, B(Y) is the Banach space of
real-valued bounded functions on Y and if O’[a b] denotes the space of real-
valued continuous functions on an inter val [a, b] with a < b, 'then an ope-
rator 4 : Ola, b] — B(Y') such that

AL, y) = baly)-flgaly)), bae B(Y), g4:Y — [a, b], f e Cla, b], y € ¥,

1s called an almost lattice homomorphism (ALH).
The ALH’s include all lattice homomorphisms Z': Cla, b] — C(Y ),
where Y is a compact topoloomal space, as can be seen from the Wollf

representation theorem in [21].
The starting point for our investigation is the following observa-

tion.
Provosirion 4.2 If A is an ALH given by A(f, ¥) = baly) f(g4 (1),
and if L is an operator, both mapping Cla, b] into B(Y'), then for all fe
eCla, b], y € Y, the inequality
LL(fs y) — AU )] < [, y) — Ldeo, ) - J(ga@)) | + [ Ldeos y)
— Aleg, )1 1flgly) | holds.

The main purpose of the above propesition is to shift the problem
of finding a good majorant of | (L — A) (f, ¥) | to two similar ones. The

2—c. 1211
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first of these is to find a majorant for the difference [(L— A) (f, 4
wher'e‘ A is given by A(f, y) = L{e,, ) Slgay). 4 :0la, J’JS — ]3(%’g'f’ié;)zi
mapping satisfying the equation Le,, y) = Aleg, y) for all ¥ in Y, The
second resulting problem is to find a majorant of | (L ;A_)({; )
where A denotes the initial ALH. Thus our approach follows the (tla?i’:-;iba.i
pattern . of estimating the difference between 5 PLO and the identity
(canonical embedding) as for instance employed by R. A. DeVore [4]
Ouar naxt theorem generalizes a result given in [7]. o

TueoreM 4.3. Let L :Cla, b] — B(Y) be « continuous linear oper tor
and 4 # 0 as above such that th(’a pair (L, A) satisfies the ineqz.mlitiespe? e
(1) (L — Ay, 9| < Q) - Nfill for all f, e O'a, b] with a Junction
®>0 and

() AL =AY )| < (@) I fall + valy) NN for adi J2 € C2 (a, b] with
real valued functions v,, v, = 0.

Moreover, we assume for. all ye Y that the quotients v,(2 B
o . ye V. ents vi(y)|®(y), i —1, 2
are finite. Then for every feCla,b] and every ye Y the fl?'nequalf’ity 7

Sy y) — A(f, )| <(1 L) + HAH)-Q(f,- Oy) V) , 1Y) )
holds. WLH Al BY) oY)

Proof. For f e Ola; b, f, e O'a, d]; and f, e C%[a, b] b  assump-
tions the following estin,la,té liold's P s e bt Bl

I = A g = L= AN L e e oY) |
(L — A0S — fi, 9| + (L= A)fy — foy y)] + (L — A)(fy )]
S LA A 0ADNS - fill + ) 1 f— fall + vilw) -1 fo) +
+ va(y) - If2 Il

In other words,

IA

(L =AY (f, )| < (WL -+ 1Ay - 1f — £,

o) {1 — - By g ) I
1w o) [fall o(y) (f"

Passing to the infimum over Js € C*[a, b] implies

<

I(L—A)(f,?/)lS(HLII+HAII)-IIf'—fll|+®(y)-ﬁ(m—y),M, .o 2).
| o) " gy 1190

This can be rewritten in the form

(L — A) (f, )| < (1L -+ Ap) - {uf~_f1n o Q)
WL+ 14
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Passing again to the infimum over f; e O, b] we obtain

O(y)
ML + 4

( o IE)( n®) "(2(1’/), *)))2
Oy)  Dy)
D(y) : ) . _'(ﬂ(if'j ) {
ILN A 04A)  Dy) Oy)

L — A (f, ) < WL+ HAH)-.K( o f5 (0, - 1Dy

— (I + 4.0 (f;

Ouwr next theorem treats the case where L is a positive linear ope-
rator satistying the -additional assumption: that L(e,, y) = 4A(e, y). If L
does not have this property this difficulty can be circumvented by using
Proposition 4.2.

ToroREM 4.4 Let L : Ola, b) — B(Y) be a positive linewr operator and
let A#0 be given as above. If Ley, y) = A(ey, y) for all ye Y, the for
all feCla,b] and all y eY the estimate

(e 9491, 9) |
211 L)

L — A)(If, y)l < 2-HLH-Q-(Ii

[ Loy — 94y), 9)| | Lller — gu(y))* 9) ) latit e
L{ler — ga() |, ) 2L(les — gy, ) '
holds. The estimate is also true if lone or ‘more of the three ‘differences’
occurring on the right side are replaced by majorants, such that the appearing
quotients remain finite. | A |

Proof. In order to prove the above inequality we have to find suit-
able functions ®@, v;, and v, in Theorem'4.3. If A is given by A(f, y) =
~ Ao, 9)f(0,9) = Leq, ) f(gay ), then we haye for every f, e (f[a, b]
and every y e Y : . ; ; ;

Ly ) — Al 1 = 1L = filgay)), o)
: < L{ley — galw)l, )11
= : O(y) 1l f1 - |

If f, e C?[a, b], we proceed as follows : We interpolate f, at the point
g4(y) by a polynomial p of first degree satisfying the properties

P9ay)) = falga(y)) and p/(galy)) = fa(g4(y)).
This polynomial is given by "

P() = folgaly)) + falgaly)) - (2 — galy)).
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Then it is known that

0 = 2O = Il8) ~ [fugaln)) + fikgaly))- (¢ — guig))]]

' : (t b gA(?/))z
J2'(&) =

fl

<

Lo | =

= — ga(y))?,

where £ € [min {t, 94(y)}, max {t, 94(9)}]. We now consider the differ
(L — A)(f,). Firs;; of all ,We Write, AR i erence

Her]e,L(fz, Y) = Alfo )| = [I(f,, y) — Lip, ) + Lp, v) — A(f,, y) [

Alfor y) = Aleg, ) - folga(y)) + Jog4(y) [ Aler, 9)— g.u(y) “Afeg, y) 1= A(p, ).
Thus,
[ Lifsy y) — A(f5, y)| = [ Lfor 9) — L(p, y) + L(p, 4) — A(py y)]
< I(fy —ply) + | IKp, y) — A(p, y)|

i .
< ?-L((Gﬁ 94D 9) U A 1Ldp, y) — A(p, )1,

It remains to investioate the second term on the right-1 3 " this
inequality, We haws g ) 1ight-hand side of this

(L — A)p, y)| = [fa(galy)) |- (L — A)ey )| <lfsll- (L — A)(ey, v) |
= lf2ll - [ Z(er — gu(y), ¥)|, which follows from Le,, y) = A(e,, y).

Putting now 1(y) : = |Lie, — g.(y), y)| and y,(y) : = %-L((el—gd(y))z, ¥

and observing the fact that WL =14 w ive 1114 ity i
i 4.4.b| L [A]l we arrive 'at the mequality in
The following corollary of Theorem 4.4 i of particular import

) ! ! . ‘ ance.
Ittdea,ls with the approximation of the identity by positive ligea,r ope-
rators.

COROLLARY 45 If YV isa non-empty subset of an interval [a, b] and i
L:0la, b] — B(Y) is positive linear operator saﬁsfying Le,, *) L ]eo thm{
Jor any f e Cla, b], and all x ¢ Y ihe estimate ’

L, ) — fia)| < 2,Q(f; Mo —2ba)  (He—o )
2 | L{e;—x|, »)
Li(e, — @)% o)
2-Lie; — |, w)J
holds. The estimate remaing true if one or more of the three ‘differences’

occzm"ing on the right side are replaced by majorants such thas the quotients
remain finite,
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Another consequence of Theorem 4.4'is & Korovkin type theorem for
the approximation of almost lattice homomorphisms 4 -mapping ([a ,01
into B(Y). This will be seen in a corollary of the following Theorem, 4.6,
where we show as an example how Theorem 4.4. and the estimate given
tor Q in Theorem 3.5 can be combined.

TuporEM 4.6 Let Y be a non-empty set and [a, b] @ compact interval
of the veal axis. If A :C[a, b] — B(Y')is an almost laltice homomor phism
given by A(f, y) = A(ey, @) flgaly)) and if L is a poswtive linear operator
between the above spaces, then for all f e Cla, b], all y € Y 'and each h >0
the following estimate holds : ;

1

& [3.“” gy (_i. —_) CL{(e = gay))y y)]'wz(f, 1)
: hE (b — a)2

+[2-max (i, 1

h b — a

)-lL(el— 0a9)y y)i] ‘()

+ (Lo, ) — Alewy 9)1 If -
Proof. In view of Proposition 4.2 we first have
(L ) — Afy )] < LI ) — Loy ) Flgud) | + | Doy ) —
T A(eoy y) l X ”f”

Now A given by A(f, y) = Liey, #)-F(g.(y)) is a lattice homomorphism
satistying A(ey, y) = Lie,, ).
Theorem 4.4 yields the inequality

(L — A) (f, 1) < 2-1LI-Qf 38, 1, 1,),

where £ — Al — 9., y) f = 1He — 949), 9)] |
2111 Lile; — ga(y), )
1, = M = g.9)% y) | i

2-L(les — galy) ], )
Theorem 3.5 now implies

(& — A, )|
< [3-uLn + Il(ey + ga9))?, y)-max (hi !

W] oy f, ) +

h b —a

Together with the observation made at the beginning of the proof we

obtain the desired inequality. g

The following corollary which we state without giving a proof
shows that Theorem 4.6 indeed contains a Korovkin type theorem for the
approximation of almost lattice homomorphisms.

+ [2-1L<el — g, y)l-max(i, L )] ‘ol f, 1),
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COROLL;AR.Y 4.7 Let Y [ a, b]; and A be given as in Theoren 4.6. Suppose
Umj: Y # Ois as subsetof Y. For fe B(Y)we putl fliv, : = sup{|fly)] 1ye
€ Vol lIf L, : Ola, b] - B(Y), n = 1,s a sequence of ' positive linear ope-
rators, then the following are equivalent : 2

(4) 1Ly f — Afllv, — 0 for all f € Ofa, b], n — oo,

GRS I ;' — Ae,lly, ~ 0 for i {0, 1,2}, n — oo,

. V. Examples: Relined, Estimates for Approximation by  Speciat
Linear Operators. After what has been said before it is clear. that the
combination of Theorem 4.4 or Corrollary 4.5 with the results obtained
in Section ITI yields a variety of ) propositions concerning the approxima-
tion by certain linear operators. It is the aim of this section to show that
many of these combinations give estimates which ave better than the ones
known _until now. We restrict ourselves to three prominent examples :
Beppstem polynomials, Meyer-Konig and Zeller operators, and Hermite-
Fejér type interpolation operators. - '

_ 1. Pointwise Approxzimation by Bernstein Polynomials. In this subsec-
tion we discuss what our theorems yield for the approximation Dby

Bernstein operators given by the formula |

B, 1 0[0;1] — 11,00, 1], B(f, v)= ¥ f(i)( ',”)m*‘ (1 - @y,
k=0 n v
It is well known that B,(e, #) = (i =0, 1) for all e [0, 1] and all
;?/ 112 1. Thus the quantities appearing in Oorollary 4.5 can be written as
ollows ' il -

il |
21l — z
| Buley — @,,2), =10, Bal(ey — ), ) = 22 =D, ana
7
I
2 A L G [
Billoymely @) = 2= ) (M) oot — ape,
n '
where » iy given by » = [nz] and where [n&] denotes the largest integer
not exceeding nw (see F. Schurer and F.W. Steutel [15]). However, we
shall frequently use the estimate B,(j¢, — x|, @) < (B,((ey—@)2) @),
We assume first that f is in C'[0,1]. For this case, using o (f ),
very good estimates were given by F. Schurer and F. W. Steutel [15].
A certain analogue using the least concave majorant of w,(f’, -) is given in

Tesormy 5.1. For any f e €10, 1], we [0,1], 7 = 1Land h >0 we have

| B,(f, @) — f(x)] < %-max(‘m & o], |2, li-B”«efw)z, 2))-B,(f's 1)
1
< _1-7 max (( 20—y )1/2, Hly—,2) ).al(f’, ).
2 7 nh :

The proof is obtained by combining Corcllavies 3.2 and 4.5,
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o) \V2
___-—m(l z) ) the

COROLLARY 5.2 (1) For the particular choice h :( "

above inequality implies

URE S TRl 1oL — ) 1/2-6 ' (:z:{.l — ) )1/_2)
B ) = flo] s 5 (FE R, (R

p ( x(l — @) )1/2_0)1 (.f,r( {1l — ) )1/2)."'
n n !

(ii) Ve also have the wniform Lorentz type estimates

. 1 ~ ’ 1 = 1 -1/2 4 14 L2
By 1= fll1 7tﬂo»~“2-ml(f, i 1”) <1 —gatels i O | iy, =10y

. ; ol — o) \V?
Remarks. (i) If x and n are fixed, for h < (—T——-—H) the func-
—p) \M2 M B
tion ¢,(z, k) : :»21— -max (( {1 3) ) ’ m(lnh w.) \’from Theorem 5.1
n nh '
is best possible in ‘the sense that the estimate becomes an equality for
Jo(1) 2 =1(Be—=m)2 Sy -
(i1) A similar statement is true concerning the first inequality in Oorollary
5.2 (#1) : the constant 1/4 cannot be replaced by any number ¢ < 1/4.
(ii1) The second estimate in Corollary 5.2 (i) should be compared to

another result by Schurer and Steutel who showed that ||B,,f—f_l1 51/4'”_%’2'
cy(f', m12). As can be seen from Corollary 5.2, for functions f with

w,(f’, +) concave we even obtain
1Buf — fll. < 1/4-n= 2 o(f", 1/2-n7"%).
Our next theorem deals with approximation of arbitrary continuous
functions.
TaroreM 5.3. For fe €0, 1], € [0, 1], n = and h >0 we have :

7

(4) | Bu(f, @) — fla)| <max (1, D Zly @) )-61<f, 1),

@) | Bulf, 2) — fl@)] sz-max(l, B"(‘81;m|’m))-wi“(f, n).

Proof. Inequality (i) is obtained by combining Corollary 4.5 and
Theorem 3.3 ; the second estimate is due to the fact that B, reproduces
functions. Ji

COROTLARY 5.4 Under the assumptions of Theorem 5.3 one gets for h=

=(M1~m)y2

n

HT 1/2
M 1B ) = @) <51 (ZE=22)") <m0, 1

n



24 HEINZ H. GONSKA 18

(ii) |Bf, @) — f(2)] <26 (f (-ﬁl:—"’)’) < oF(f12 nel),

"

Remark. As'can be seen from the choices n= land f, = |¢; — 2L in
' 2

both estimates in Corollary 5.4 (i) the constant 1 in front of &,(f, )
cannot be replaced by any number ¢ < 1.

Ouwr last example concerning, Bernstein operators arises from the
combination of Corollaries 4.5 and 3.6.

THEOREM 5.0 For any [ € C[0, .1], ze[0,1], n=1,"and h>'0 the
following inequality holds : -
w1l — & 1
| B, @) — f(@)] = [3 b2 —) e (72—, 1)] g (f, 1)-

1 (2

."N_(l — &

1/2
COROLLARY 5.6 For I — ( 3 ) ) , £ €(0,1), the above inequa-
n f ] ]

lity leads to

. I i -'U{l L3 ;f:r) 12 ) 4 lalss,
| B(f, %) — f(&)] < 50, (f, e )for ol e [0)1].
As faras the constant in front of w,(f,+) 18 concerned this is an impi*o"i‘e-
ment 'of an inequality given by H. Berens and G. G. Lorentz [2]. For

o Ve o )
h = (___r(l a) ) we get
7

}.Bn(f, I) i\ jr(m) |‘ S e (f; (_1(1_.__2/.)_ )1/2)

n
which refines a recent estimate of L. I. Strukov and A. F. Timan [19,20].

4 =1 12
The choice b = ( 2= ) ) vields
"

n

I B,(f, ) — f(&)] <.3.25 - w, (,]", (M)UZ)_

This is a pointwise version of a result first proved by Yu. A. Brudnyl
[3]. Tt is not yet known what the optimal constants in the above inequali-
ties are.

After this look at the Bernstein operators it should havel become
clear that it is worthwhile to combine the theorems in Section IV with
the estimates for Q ag given in Section IIL in order to arrive at a variety
of refined inequalities sometimes even giving optimal constants. It has
to be mentioned that there are a number of modifications of the Beinstein
operators to which our above theorems can be applied. For these the read-
er is referred for instance to two bibliographies which have recently been
compiled [17, 18, 9.
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2. Poiniwise Approximation by the Operators of Meyer-Konig and
Zeller. This subsection parallels the one for Bernstein polynomials. The
operators of Meyer-Konig and Zeller are given by the formula (neN,
&€ [07 1]7 f = 0[07 1])

M, )= (L=t 30T 7“) wf(7—) i 0<o <1,

k=0 15 n 4=k

and

M(f, 1) = f(1).
These operators are also positive and linear and satisty the equations
M, e, — e; tor i = 0, 1. Thus we have M, (e, — @, ) =0 for 0 < &'< L
An explicit representation for M,((e, —'w)? @) was only recently given by
J.AH, Alkemade [1] who proved

ol — x)? 4
M e, — xy2, ) = ———L KB (1, 2;0+252) £ ——7
(€1 )% @) w1 (L, 25 nt 25 @) 2T T 0

for 0 < ¢ < 1L and n = 2. Here ,F,(1, 2; n { 2; @) denotes the hypergeo-
metric series given by
oo ‘1)7{1(2’7»7 mk

“o(n +2), k!

An explicit representation of the quantity M(|e, — @[, #) was derived by
1. Schurer and F. W. Steutel [16]. However, as in Section V.1 we shall
use the estimate M,(le, — xl, #) < (M, ((e, — @) @))% which simplifies
some inequalities. Again we investigate differentiable functions first.

TurorEM 5.7. For any fe C'0, 1], 2 € [0, L], n = 2 and h>0 the
following inequalities hold :

(i) | Mn(f) CU) *f(m)l <
= %—-max [Mﬁ( iG] L m'? x): }i'ﬂ[n((el e m)2, “)] ‘al(f,’ ]")1
/)

{ii) | M(f, ®) — flw)] < | i

M((e, — @)? .
4 71(((’1 .7/‘) ] x) ]'wl(j,, h/).
2h

< [Mnuel ~aly @) +

Proof. Both statements are obtained by combining Corollaries 3.2
and 4.5. 1
COROLLARY 5.8 Under the assumptions of Theorem 5.7 we also have :

1 (w(l — )

K1) | ML(f; @) — fla)} = Eﬁ n 41

'y 2 \1/2
'al (f’) (%'zlﬂl(L 2; n 4+ 2; Z) ) )’

1/2
IN(,25 2 m)) .
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L L R (g
i r)*f(r)lﬁ?( t— 1 ) l(f,(l n—1 ) )

1 N 2
100 1 RN i P S PR 5 i Y S S | P
(i#2) AL f = g 330 - 1 l(f’3]/3n+1)

B 2 (f/ 2 )
Tl N (V] —ye———— I
3V3n -1 '\ '3)Y3n + 1

Proof. (1) is obtained by using the estimate M,(le, — &/, ») <

<(M,((¢, — 00) 2))V% and ,sub.smtutmo o= (My((ep — )2, @))H>
For (#4) we use the inequality ,/7,(1, 2; n-F 25 z) < B(1, 2; n-+2; 1)=
n -+ 1

’

n— 1
Thus we get

: (1 )2 \12 o1 — )2 \V2
| M(fy ) — ()] gi(i(i_@_)/ _51(][,’(.1(1 ) ) ) .

n > 2.

2 n—1 n— 1
z(l —
For the proof of (i1i) observe that Ly 2) AL, 250 -2 1)<
n+ 1
< —4— The inequality from (i) implies
27n + 9
1 2 o
]‘J[ﬂ,” I = T e— ( 7——) S
1= 11 = 3Y3n 1 "3)3n 4 1

2 2
T (f, ) !
3h3n 4 1 3V3h L1
Remark. (i) As was the case for Bernstein operators, the constant
1
s in GCoroliary 5.8 (i) cannot be replaced Dy any number ¢ < Ch
()

(it) It f" has a concave modulus of continuity, then the first inequality in
5.8 (#17) even reads

1 2
Jl[n (RG] e s Err ey Rl 0)) [N, a1 | i1
” B 3 V3 ani l( 3 V?m i ) )

Forany function of the form f(¢) = «i* + bf 4 ¢ it becomes an equality
and thus.the above estimate is best possible in a certain sense. The second
estimate in 5.8 (i41) is an improvement of Theorem 8.in [1]. +

(137) It would also have Dbeen possible to use the sccond estimate in

Theorem 5.7 to obtain e.g. improvements of Alkemade’s result. However,

in most cases the first ine quality gives better majorants.
Ifor the operators M, the analogue of Theorem 5.3 is given in
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o THEOREM 5.9 For f e ([0, 1], 2 € [0, 1],'n = 2 and any h>0 there
holds

| M, @) — f(2)| <max (1, M(ley ; 2ly%) ].al(f, h).
b

COROLLARY 5.10. Under the assumptions of Theorem 5.9 the following
mequaln‘zcs’ are tr ue :

@I, ) ey <, (f, (M
n—+ 1

(i) | M (f, &) — f(2)] <&, (f, (M)m) ,
n—1

I3
LI, 25 n + 2 m)) ),

{14 (], @) — J(@)] < ( y ( 111 : i) ) /2)'

Proof. The above inequalities are obtained by using again the Cauchy-
Schwarz inequality, the explicil leplesentahon of M ((e1 — )%, @) as
given by Alkemade, the inequalities &,(f, -) < 2-o,(f, -) and I (1, 2;
-+ 258 < (0t l ) — 1) for 0 < o < 1, w > 2, and the fact that 2,
reproduces linear functions.

We now turn to estimates 111\'01v1n0 the second order modulus of
smoothness. For the operators M, one has

~ THEOREM 5. 11 Ifm (mg/fe C’[O 1], @ e[() 1], w ="2, ‘and >0 there
Jolds' '

n -l

‘max (;‘1‘7 1)] . ojz(,f, h).
h?

CoroLLARY 5. 12 Under the assumptions of ’Umwem 511 the f()ll()wul_/
inequalities are true :

!JIzz(fv‘ 9*7) e f($)| = [3 1 Mi'2[ﬂl(1; 2 s+ 25 97) :

(1) | M,(f, @) — f(a)] < (f; LLi L),wg (.f.- (r(]——r}_)lﬂ)'

— 1 n+ 1
| , 4 oy
'(11) H ﬂfnf‘ f“ S3*'®2(f) (" + l) -‘)'
21

Proof. (1) is a simple consequence of the substitution 7} —

(1 — z)2 /2 : il
={ ——— | and the fact that ,/,(1, 2; n L+ 2; 2) < ™ For the

T - n —

4

proof of (ii) we use the uniform estimate || M,e, — ¢, < —— .
27n +- 9
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Substituting & =(n 4 1)~V2 into the inequality in \Theorem 5.11 yields

| M,(f, ) — f(x)] < [3 + ﬁ “(n -+ 1)] coy(fy (n+ 1)~1/2)

<3 —Say(f, (0 + 1)),

Both inequalities in Corollary 5.12 improve as obtained by the
author earlier (see [6]). However, to our knowledge the exact value of e.g.

WM, f —
sup  sup L R 55
N2 fecCio,1l ] ) 19~
; f#linear (*)g(f, (/" + ) )
has not yet been determined. A similar statement holds for Bernstein
operators.

3. Pointwise Approzimation by Hermite-Fejér Type Imterpolation
Polynomials. This subsection is devoted to pointwise approximation by
Hermite-Fejér interpolation polynomials which have been investigated
intensively. For a good survey sece e.g. the ‘Habilitationsschrift’ of 1. 13.
Knoop [10] or the bibliogiaphy in a paper of T.Y. Mills [12]. As was
shown in '[8], it is possible to prove pointwise estiates for the APProxi-
maftion of functions in ([ — 1,17 which are of order 0(1/n) for f"eLip 1
and at the same time reproduce the interpolation’ conditions. However,
these estimates ave rather lengthy. This is why 'we'shall investigate slight-
ly modified operators which salisfy simpler estimates of the salne order.
This will show at the same time that the general theory developed so
far is also applicable to the case of non-positive linear operators. For the
sake of hrevity we shall only consider the most prominent example.

The classical Hermite-Fejér polynomials H,(f, ) interpolating a.
tunetion feR!-"1 at the zeros of the Cebyg&ev polynomials 7, and having
a derivative equal to zero at these points, i.e.

(1 — wa) T ()2
H

0@~ w;)?

Hn(fa x) = Ef(wh)
k=1
where @, = cos((2k — 1) =/2n), satisty, for fe CU-—-1,1], ze[—1,1}
and n > 2, the following inequality (sec [8])
[ Hylf, 2) — ()]
1 ¢

| (@) Tyca(@) I+ ] Tal) (1 + YT o logn)-
n "

W s ITH(‘C(’.)l l 3
l(f,( 1+ )1— @2 log n )

Unfortunately the term containing I f I cannot be removed from this
estimate which is due to the fact that £, does not reproduce straight
lines except for constant:. However, it is possible to get rid of this quantity

<
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by' ‘passing ' from the positive ‘opeérator H, to a non-positive linear
operator H, yielding appropriate slopes at the z,’s. In order to be some-
what more general we prove the following theorem which deseribes the
hackground of our following ‘considerations for the classical Hermite-Fejér

operators. It is of advantage for many other interpolation schemes as well.

THroREM 5.13 If € :C[—1,1] — C[— 1,1] 45 a. positive linear operator
with Qe, = ¢, and if for fe C[~1,1] the capression Lf denotes the linear
Junction interpolating [ at —1 and 1, then Jor the operator @ given by
Qf, @) : =Q(f — Lf, &) 4- Lf(a) the Jollowing inequalites hold

() Q) <3,

(i) 19 @)~ g@)] < 2:Qlo, — al, @)lg’l  for all ge C[—1, 1],
@) G, @) ~ Wa)| < H—--Q((q — @) 2) 4216, — o, m)i]-nh"u

Sor all b e C2[ -1, 1].
Proof. (i) follows from [ @f || <1 Q(f ~ Lf)| + LI < 3-1fy.

(¢i) can be obtained as follows. For ¢ e C'[—1,1] we have

g, 2)— g(@)) = 1Qg — Lg, @) = (g Lg) (#)| Q(le; - @], ) (g —Lg) |
< 2:Q(e — xf, )-llg|.

Here the first inequality follows from the fact that @ is positive and
satisfies the equation Qe, = e,. v
(#44) Proceeding as in the proof of Theorem 4.4 vields the inequality

|Q(h, @) — h(®)| = |Q(h — Lh, x) — (h — Lh)(®)|

2 %'Q((fﬁ — @)% @)l (b — LR)"|| + |Q(e, — @, )|l (h — LhY|

4 [—;—-Q«el o @) 2] Qe - w, w)l]ﬂ N

As can be_seen from the formulation of Theorem 5.13 it prepares
the operators @, for an application of the above Theorem 4.3 and a
combination with suitable results from Section IIT.

Remark. The method used in Theorem 5.13, namely the perturbing
of a positive linear operator in order to obtain simpler estimates, is only
one particular example of a more general technique. This technique,
which will be deseribed elsewhere, allows to impose side conditions of
different types on a given sequence of linear operators.

Using the above theorem it is now casy to give shorter estimates for
a version of the classical Hermite-Fejér operators which reproduce straight
lines. We restrict oursclves to the case of continuously differentiable
functions.

THEOREM 5.14 Let H,: O[—1, 1] — O —1, 1] denote the classical
Hermite-Fejér operator deseribed above. If L is given as in Theorem 5.13,
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then the perturbed operator H, grven by the formula H, f: = H(f = Lf) +
~+ Lf satisfies for f e O =111, z.€ [0, n > 2, the inequality

Jey

VL, #) - f(o)] <

| Ta(@)] (1 YT a2 log n)-
i ! _

i 1
. (.L) e — -
vl YT log' »

Here ¢, is the optinyal 'constant in H,(ey— x|, x) < G [T ()] (1 -
n .
+ l/l — m—glog n).
Proof. We use the (in)equalitios (ck. [8]).

Hle, — ], @) < [ Ty@)] - (1 + V1= 2 log n),
n

1 2
H,((e;, — a)3 &) = —. Ti(x), and H,(e, — T ), = — i-.’l’n(m)- T,_. (@).
[ R n
From the last equality it follows that H,(ley + 1], —1) = (e, +
. il ' '
n

Jhus, jeli=>, 1!
Theorem 5.13 yields the estimates :

() 1H,| < 3.

(@) g, @) — g(x)] < 2 %le

(14 V1 =22 1og n)-llg' |l

for ge C'[—1,1],

(Gii) | Hy(h, @) < )] < [ Loy | 22 T,y ]»n W

2
_ for he O*[—1, 1]
Theorem 4.3 now tells ué that for an arbitrary f e ¢1[ +1,1] the inequality
B(f ) = f)| |
S4.Q(f; QT 4 VT =R logn) | T(w)| + 4|7, (o) )
2n © 7 de (1 VT— a2 log 7)

is true, and Corollary 3.2 shows that the latter quantity can be estimated
by

s

a1 T(@) (1 + V1T 22 log a) ( ol | T(@)| + 4] T,_y()| )
i —— ; (]
doy (1 + )1 = 2%1og n)-h
sl )y

7~

n
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where £ >0 isa given positive number. Choosing 7 = 1/(1 —H/l—wz log n)
yields the desired inequality. f '

Remark. With respect to the constant ¢y appearing in our last theo-
rem we would like to mention the following : Some numerical evidence
suggests that it equals 1. As far as we know this has' not' been proven
yet. It would imply, among others, the following estimate for the classi-
cal Hermite-Fejér operators

[HL(f, @) — fla)] < 30[f—i~ 1T @) [-(1 + VT 2% log ,,,)J.
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