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1. Introduetion. Let X be g Banach space, D an open subset of X
and F: D X a nonlinear operator. Given the problem

(1) F(z) =0

we are interested in solutions x* e D for the equations (1) and if the
exists at least one solution, we want to compute it approximately. In this
paper we shall do this by Steffensen-like methods, which are modifications
of the iteration method, which has been established for one-dimensional
fixed-point-equations by J. P, Steffensen in 1933 [16]. This method has
been generalized by Chen [5] and Ul'm [17] for equations in Banach
§paces in the following way. Given %y e D then for all n e N o compute

&, = &y — F(mn)

(2)

solve

(3) J(‘%m wn)cn T _F(mn)
and take

(4) Tpty = &, — Gy

where J(.,.) is a generalized divided — difference — operator. The ad-
vantage of this methods is that i, converges quadratically as well as New-
ton’s method but the computation of the derivative is avoided. Many
authors have given convergence-proofs for Steffensen’s method — local
convergence has been proved by J. W. Schmidt [13], semilocal conver-
gence by Chen [5], Ul'm [17], Bel'tyukov [4], Kippel’ [10], Johnson and
Scholz [8]], Balasz [1] and for the one-dimensional case by Baptist [3]
— , but no a-posteriori hound has been established, which approximates
the error in a numerically sufficient way. Only in the case that Steffen-
sen’s method converges monotonically satisfying a-posteriori bounds are
known — comp. Moneh [117, Hofmann [7] and Schneider [156] — but
then the operator F has to fulfill gome additional conditions.

A further generalisation for equations in Fréchetspeces has been
done by Bal4sz and Goldner [2].
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Since the way of calculating &, by (2) might be crucial, in this paper
we take I
(5) é'n =0, — N F(mn)

with a certain parameter 2, € R*, so that Z, is not ‘‘too far away” from x,
and present a new semilocal-convergence-theorem for the Steffensen-like
method (5), (3), (4). The proof is very similar to that given by B, Doring
[6] to establish an a-posteriori bound for Newton’s method. Furthermore
the conditions are somewhat weaker than those in [1], [4], [5], [8], [10],
since we use ‘“consistent approximations” (see [12] and [14]) instead of
“generalized divided differences’”’, so that our theorem has a wider range
of application. The goodness of the a-posteriori bound is shown by two

examples.

2. Preliminaries. Let X, D be given as in section 1, ¥ be a Banach
gpace and F' Gateaux-differentiable operator from D into Y. If there exists
an operator J : D X D — B(X, Y), where B(X, Y) is the set of all linear,
continuous maps from X to Y, such that

(1) Va,y,2eD: W@, y) —F@)I < O llz — 2l + Cally — 2l

with ¢, 0, ¢ R* independent of », ¥, #, then J is called a consistent appro-
ximation of F'.

Tt is easily seen that if there exists a consistent approximation J
of I on D, then

(8) VoeD : F'(x) = J(x, x)
and
(9) Vo, yeD: |F(@) — F'@)) < [0+ Gz — g

that means F is Lipschitz-continuous. Furthermore
(10) V@, y,2zeD: (@, y) —J@, )| < Cille —y Il + Ooll g — 2|

On the other hand, if an operator J:D X D — B(X, Y) exists
satisfying (8) and (10), then J is a consistent approximation of F' and F’
is Lipschitz-continuous.

From (9) it follows also (see [12], Th. 3.2.12) that if Dis convex,
then

I j d; 4+ C i
(11) Vu, yeD: || Fle) — Fly) — F'ly) (@ —y)l < #5—211 2~y

Using the concept of consistent approximation J we now solve
(1) by the Steffensen-like method (5), (3), (4) and call the sequence
{@,}n € N, the Steffensen-iteration-sequence (SIS).

3. Main result. Let X, D, F be given as is section 1. Furthermore let
D be convex, F be continuous and J be a consistent approximation of I
on D. Then we can prove the following

(B4) x* s the only solution of (1)
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THEOREM : If there ewist elements &,, o, e D, such that
. (@, o)~ emists and %o — @l < &
with § > J (&g, wp) 1 F(a) |

«¥3) S e Ly
; z

(V1)

(V3) |
‘( ) 'f): == ﬁ]fC<z_ baat

with K > max {(, 4 Cyy, 20}, C’l, Cy from (1)
where x, y e § 1= weD| jlo— ay < 4 -
then

(BL) (SIS) determinated by ( ; :

naed by (7) with A, [rom (12) ewis o i
(B2) '(E:q( }%)J%O—othemwe the tteration sto;r{s mw(l ./,L‘):ea;ftqi. e llw‘? )
(B3) W converges quadratically against q solution o* g opution of (1).
; e have the following error bounds on 7% e 8 of (1)

Vn . _ 1 n—1
€MNo:llw, — a*| < (—2~) ¢ (a-priori bound 1)

Ve INg: lle,— a* || < w(

ooy \@priori bound 2)

V_n € [N: ”mn — % I < 26»-—1 K Ci-;
1l — 27)11—] -+ Vl = 4’7’)7,_1

(a-posterior: bound)

‘with
M= By: = B
(12
( ) Cn: =5 Hxn+1~—wn” "efNo
Bn o= ‘Bn—l o
- 1 Np = BnKCm ne N B
A, = min { o O T 0 Iy — @y a)
SIIJ(wn-—l; wﬁ—l) ” ; ”F(mn) ” Jl

i S and

(13 1
(13) l]x*—x0(]< _ILVI‘QL") 4
l_),. 27}
roof : (B1) We show by induction
(A1), : J71: = J(Z,, #,)1 exists and < B

(42),: 7, < 2
4
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(A3),: 8= {weD|lle —a,| < 24} < ... c Sp: =8
(A4)n:”a~9n_$n” < Cn

(41),, (A2),, (A3),, (44), are true because of (V1), (V2) and (V3). There-
fore we suppose that (A1) _,, (42),_,, (A3),_, and (A4),_, are true for
some & e [N. We show, that (41),, (A2),, (A3), and (44), are true as well.

First let us show that &,, «, < S. By (43),_, we know that Sy_,=8.
Then

12y — @1 ]l = &, because of (12)
80 that «, e §,_,c 8. Furthermore
€ — @,_y | < I, — @, + 12 — @4 )
< MIF @) + e — o,y by (12)
S 2@y — @y || = 28,
and x,e 8, ;, < § as well.
Now let E be the identity-map in X and define the operator U, :
X > X by
(14) Upi=F —J4, J, = J} (Jy-1 — J).
Then
Nl < Wil [y — F(@ o) | + 1 (24_y) — Jil]
S Br=alOy 18—y — @) + € %% — Trmpll + Cp Giey T (A1)4a, (7)y (13)

1
< ‘?‘Bk—l ch—l — 27)]:—1 < '2—(V3)’ (A3)k—17 ('A2>k—:l (A4)L—1

By Banach’s lemma (see [9], page 154/5) B — U, = Il J s invertible,
so that J;! exists as well and

(15) Wty < coPror Be

-27)1:—1

and (41), is shown.
From (42),_, and (15) it follows, that

(16) Pr < 2B,y < ... < 28,
Next we estimate
(@) | = | F(w,) — F(w,-) — Ji-1 Cy_1 || by (3)
< (0 — Blwey) — F(@4-y) (3 — @0y) |

+ W (®)-y) — Spma I Sy
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K i
< ?[Ck—l @, — 21184 by (11), (7)

< KG:, by (A4)k—1
80 that
& < B 1l B(w,) I < BeH &2,
Biy I( iy
s 21 r
gy G by (1)
(17) = Nr-1
1 gl [ by (12) ana (A2)k-—1
1
< ?Ck—l'
Therefore we have by (17)
1

= B I & < 2 Bio1 If? Croy = Nr-1 < i
4
80 that (42), is shown.
Let < 8,, then
12 = @all < o~ o + oy 1 < 22, + gl
< 28, by (17)

?&I‘;dlezset&m that meansg S, < Spo1<= 8, that is (43),.

@, — Tyl = Ml B2z < A Il by (3)
but ||J,) < T yoy I ey — kll
< W) + |7y Ul by (14)

3
<?”Jk—1” o

80 that by (12)

and (A44), and even (B1) is shown.

1
(B2) From ¢, < - G-y for all n e [N it follows by induction that
(18) g<(if
5) %
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and {{,}.em, converges to zeros. Then we have for n, m e [N,
- m=—1 m—1

”mn-Hn — Tl < Z “ Lty — wn+1” = Eo Cnﬂ'
i=0 j=

m=—1 1 ) 2 c
< Cn q.. < ' om
Ly () <2
{ i V- in the closed
‘hich it follows that {®,luew, i8 2 Cauchy sequence i
lf)raolrlng‘and therefore has a limit &* € §. For m — oo we have
(19) le* — @, < 2,

and from the cont.inuity' of F' we conclude from the derivation of (17)
that 2
0 < IlF(x*) ) = lim | F(x,)|| < K lim & =0

"~ 00 N300

and thus «* is a solution of (1).
Now we estimate

“a’* Wl mn” < H(L’* — Py -+ J;EI-F(wn-—l) “<
<||J11—»]1“‘{HJ11—1(56* - m’ll“l) n F’(mn—l)(W* - a‘/‘n-—l)n}<
EY
<J|J17—11||—§‘ {“57?1—1‘ xn—l“ + “wn—l T: m*”}”wn—l — & “

by (V3), (7), (11)

and _
ey — Zaoll = Doo lF (%) — F(may) < An_l{nﬂ‘ ()] +
+ £”m* - wn—l”} ”w_*'_m’ll—lu
2
so that |
(20) lo* — ) < My_la* — Gy |
with

M, — ”ngng {M(H-Zﬁl(x*)” + %Hw* - mnll) + 1}, 7 € [Ng.

Since ||[F'(z*)] is constant and we know from (18) and (19) that
” o* — wn” <2cn <2C0

and from (12)

2
A< < 2T
31 Jacall 3
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we only have to estimate |2 | uniformly in . Defining T, :== F—J o'
we have as in the proof of (A1), for ne [N

24l <B26,¢ 4 Ciley — @, Collzg — 2|1
<ﬁ[201C + (01 _I"‘ 02)“330 i ‘IDNH + 01”5/'1; - mn”]
<ﬁ[201C + (01 + 02)2C + 01C71] by (A3)n

< % B = —n <1 by (V1), (V8), (18

and
N << = » which is also true for » — ¢ because of (V2).
11—y '
2
Theretfore
K .
YN e N i, <— B L[y +—L e+ k) =0
1-— E 0 2 1— o 7 :

and from (20) the quadratic convergence follows

VREIN: 2% — a,]|<C {|a* — g, |2

and (B2) is shown.
(B3) From (18) and (19) we have

Ve Ny [l — xnn<(—;—)’”c

that is the a-priori bound 1.
From the deviation of (17) we have

Nn-1 ;
(21) << —— G
n ] . 2_{)n_1 n—1

so that by (12) and (A2),

i K E
(22) Na< -1 Br-1 ey < Nn—1 )
1— 2Mpy 1 — 2n,-4 (1 — 2Mn—1)?
Now let us define the function
Nih :— 1-]/1-47;2 2 for 0 < pelt
2h 1+)1 =4 4
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then ‘
(23) 1< N()<2 and
2
< Ca 1T _ A ..
Ca+1 V(M 41) 1-— 29, 14 Vl — 4,4
My S ok | NN
1—2 12, +|1— 4y,
< 2, g =it Vindy LN () — &,
12, 14y, e

from which it follows that

m—1

”xn+m T wnllg Z Cn+J:<C1LN(7)n) BT Cn+mN(7)n+1n)
=0
and for m — oo beecause of (23) and (18)
W,
(24) [a* — @, |1<LN(E,) = m
For #>1 we then have by (17) and (22)
2'0”—1{11—1 2 Bn—lKCi—l

* < ———————win
”m mn“\ 1— 27)11—1 + Vl . 47)"_1

From (21) and (22) we have
Cn<2nn—-1Cn—1

7)n<47)721—1'
Now we show by induction
(49)”" L
(25) N T&nd L.< 5

20 4)20—1
n=0:9=n=-2" 4ng C0=C=-(7’2—0C

Now let (25) be true for some % [N;, then

(40)% ) _ (dm)+t
nk+1<47)§<4 (T - 4

B+
- s (40"t (4n)?
Ck+1<2nkck<—5(4n)2k oF { = oFT1
so that (25) is proved for all »n e [INo- Thus

m—1 (47))2"—1
%0 sm — mn”<§0 Ck+1<T

1-— 27}7;—.1 + V]'Tm

- 4% ,
C(1+?+Z+“' S
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from which the a~priori bound 2 follows a8 m — oo. Therefore (B3) is
shown.

(B4) Let 2’ Dbe g solution of (1) with g* # o' ef,
Then

l2" — m,]j<2C.
We show by induction

1 \»-1
(26), Vi elN, : o’ — wnug(E) Z
For k>1 we have analogously to the deviation of (20)

lo* — ay< B’“;K

1901 = @4osll + Nopy — 27, — 2| <

1 1 \k-2 1 \ ka2 1 \%-2
<-—2F-19) .t N R ol
e (GRS OB D

by (26),-,, (18), (16) and (A4),_,.

9 KC 1 k—2C 1 k—zc 1 k—lc
= = = 99 [ < = .
P(a) () (2
Therefore x, tends to " as n — co in contradiction to s’ # x*. Thus
x* 1 the only solution of (1) in 8 and (13) follows from (24) for »n = .
Q.E.D.

REMARK 1. The a-posteriori bound can be improved it we take
l721]] instead of Ba-1 and if K—reSpectively C, and (¢, — ig restricted at
each iteration step to the ball S,

EXAMPLE 1. Thig eéxample shows the optimality of the a-posteriori
bound.

Lot X =R, Fa) = g2 104 22 that F(e) — 0 has
25 25
the solutiong

o= — 0.2017536
and y* < 4.3617536

with 2, =0, 3, = 0.1 and J(z, y) = y +y — %we have K = 2, B =

== 0.2463055, ¢ = 0.216749 ang therefore 1 = 0.1067728 <-]i», @, =
=— 0.2167487 50 that the exact error ||, — gz* | = 1.49951 + 10-2 while

the a-posteriori bound ig @y — %||<1.49951 « 10-2 which is the same
value.

REMARK 2. If we choose 2, = 1 for all n e [N, that mmeans if we take

(2) instead of (5) even for n — 0, we have the original method of Steffen-
sen. Then we get the following

167
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_ CoroLLARY. Let X, D, F,J be given as in the preceding theorem.
If there exists an element x,'e D, such that

(T4) J(Zg, o)1 ewists with T, from (2)
S:={weX|lle — <} =D where
rzmax {|F(@)l, 20J(@, 20)~2F(w,) |1}

(V2) 19 (@, 30) 1<

(V5) = BE(Z + 1) _<% with €3[|, 1)~ F (1) |

and l{=max {C,+0C,, 20,} with Oy, Cy from (7) where, ®, yeS then
(Bb) the method of Steffensen determinated by (2), (3), (4) gives a sequence
{w,}neme S, which _
(B6) converges quadratically against a solution x* e S for (1).
(B7) We have the following error bounds

n—1
VneNg: @, — m*l[g(%) ¢ (a-priori bound 1)

)2”—1

VneNy: ||lo, — 2% (2;)”7_1?; (a-priort bound 2)

Bn—lK(Cn—l + Zn—l) _
1,4 Nn—-1 + Vl i 27)7;—1
(a-posteriori bound)

Cn—l

VeeN: ||z, — %<

with
M=, Boi=P, Go:=1T, rpi=7r
Coi=Baar —ully Cor= 1B, — @ull = || F(w)|
Bn—l
1— Nn-1
N = BnK(Cn + Tn)
(B8) a* 18 the only solution of (1) in S and
1—)J1i—="2y ¢
- )

The corollary can be proved in a similar way as the theorem, so that the
proof can be omitted. We only give an example which shows that our
error-bounds are much better than the bounds from [1], [17], [10] and

[71.
!

5 — &t -
28 F — if jid iO,WZ(a,ﬁ)q
. ) (21 b1, + £ —13) 15

7,0 = mMax {2(_,1, zn},ﬁn ==

(27) ¥ — &<
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be given. It is easy to see that a solution of this system, which is symmetric
in & and &,, is given by the roots of the quadratic polynomial ¢2 — 8t -5,
‘which are 4 -4 /11, that means W)
; ' (’4 +']/T1‘) ( 7.3166 24790 35540 0)
PR Sl (s ‘ '

4— )11 P.6833 75209 65560 0

is a solution of (29). If we choose for J'( 'y *) the symmetric operator

i + 2 H g ~ !
- 2 : 2 - 1 _;"1 x = (&, &)
it B PR

‘then the ‘example is simple enough to compare all known bounds except
7"“071‘;§t<131st1mates of Chen [5], where a contraction-condition has to be fulfilled.
i

xy = (7.317, 0.683)" _
using  the | -|lo-norm we have § = 2.3572, K =2, ¢ = 3.7533 104,
= 2.489-10-3 and v = 0.01351 < éand Steffensen’s method gives

@y = 7.317 0.683

@ = 7.31662 46707 57539 0.68337 53292 42461
@y = 7.31662 47903 55388 0.68337 52096 44612
@y = 7.31662 47903 55400 0.68337 52096 44600.

'The error-estimates are as follows

[[&* — ]l 2% — @[leo [ 2% — @a

Balasz [1] not applicable 534146 .7-10-7 9078077500 -10-18

Ul'm [19] 40.1-10-4 2019.0.10-7 5630000 -10-13
Koppel’ [9] 39.6 104 2033.3 107 6300000 -10-13~
Johnson & 37.9.10-¢ 1413.3.10°7 1010000-10-18
‘Scholz [ 7]

a-priori 2 7.51-104 101.4-10-7 36966 -10-1°
aus (BT7)

(28) 3.78-10~14 — —
‘a-posteriori — 25.7-10-7 2.6:10-1
aus (BT)

.exact error 3.76 -10-4 1.2-10°7 0.122-10-1®

and we see, that especially for # > 1, the only error-bound of practical use
is given by the a-posteriori bound in (B7). At least it should be mention-

-ed that for many problems (for example (28) with =, = (7.31,0.683) only

the corollary of this paper is applicable.

5 —~ c. 1517
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