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1. Let n ∈ N and the following two systems of n+ 1 real values:

(1) 0 = x0 < x1 < . . . < xn = 1

(2) 0 = y0, y1, . . . , yn.

In the papers [1], [2] it is proved that if n ≥ 1 and yi − yi−1 6= 0, i =
1, 2, . . . , n then there exists a polynomial P which assumes at each point xi
the preassigned value yi and which is piecewise monotone, more precisely:

(3) P (xi) = yi, i = 0, 1, . . . , n

(4) P ′ (x) (yi − yi−1) ≥ 0, x ∈ [xi−1, xi] , i = 1, 2, . . . , n.

There are many papers related to the piecewise monotone interpolation; such
references can be found in [4], [5].

The purpose of this paper is to prove the existence of a piecewise convex
(by order p = 1) interpolating polynomial. Our proof uses the Wolibner-
Young’s theorem [1], [2] concerning the piecewise monotone (convex by order
p = 0) interpolation, in the same way that the last one uses the Weierstrass
approximation theorem.

2. Let n ≥ 1 and denote by ∆2
i (y) the divided difference [xi, xi+1, xi+2; yi,

yi+1, yi+2] for any i = −1, 0, 1, . . . , n− 1 where x−1 < 0, xn+1 > 1 are fixed,
and y−1 = y0, yn+1 = yn.

We have the following

Theorem 1. 10. If 42
i (y) 6= 0, i = −1, 0, 1, . . . , n−2, then there exists

a polynomial P satisfying (3) and

(5) P ′′ (x) · 42
i−2 (y) ≥ 0, x ∈ [xi−1, xi] , i = 1, 2, . . . , n.

20. If 42
i (y) 6= 0, i = 0, 1, . . . , n − 1, then there exists a polynomial P

satisfying (3) and

(6) P ′′ (x)42
i−1 (y) ≥ 0, x ∈ [xi−1, xi] , i = 1, 2, . . . , n.

To prove it we need the following
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Lemma. For any ε > 0 and ν ∈ {0, 1, . . . , n−1} there is a polynomial P2,xν

satisfying

(7) ‖σνϕ2,xν − P2,xν‖ ≤ ε,

and

(8) P ′′2,xν (x)42
i−2 (y) ≥ 0, x ∈ [xi−1, xi] , i = 1, 2, . . . , n,

where

(9) ϕp+1,xν (x) =

{
0, x < xν

(x− xν) , x ≥ xν
(p ∈ N),

σν = sign ∆2
ν−1 (y) ,

and ‖·‖ is the uniform norm in C [0, 1] .

Proof. For ε and ν fixed we choose a sequence:

(10) z0, z1, . . . , zν , z
′
ν , zν+1, . . . , zn

with the following properties:

(11) |zi| ≤ ε/3 if i ≤ ν, |σν − zi| ≤ ε/3 if i ≥ v + 1,
∣∣σν − z′ν∣∣ ≤ ε/3,

(zi − zi−1)42
i−2 (y) > 0 if i ≤ ν or i > ν + 1,(12) (

z′ν − zν
)
42
ν−1 (y) > 0,(

zν+1 − z′ν
)
42
ν−1 (y) > 0.

Applying the Wolibner-Young theorem we get a piecewise monotone polyno-
mial Q2,xν , which interpolates the values (10) on the nodes:

(13) x0, x1, . . . , xν , x
′
ν , xν+1, . . . , xn

where xν < x′ν ≤ xν + ε/ (ε+ 3) < xν+1, that is

Q′2,xν (x) (zi − zi−1) ≥ 0, x ∈ [xi−1, xi] , i ≤ ν or i > ν + 1,(14)

Q′2,xν (x)
(
z′ν − zν

)
≥ 0, x ∈

[
xν , x

′
ν

]
,

Q′2,xν (x)
(
zν+1 − z′ν

)
≥ 0, x ∈

[
x′ν , xν+1

]
,

(15) Q2,xν (xi) = zi, i = 0, 1, . . . , n, Q2,xν

(
x′ν
)

= z′ν .

Now P2,xν (x) =
∫ x
0 Q2,xν (t) dt is the desired polynomial.

In order to prove this we make use of (12) and (14) and obtain Q′2,xν (x)42
i−2

(y) ≥ 0 if x ∈ [xi−1, xi] , i = 1, 2, . . . , n. Thus (8) is verified.
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Further, to prove (7) we have:

|σνϕ2,xν (x)− P2,xν (x)| =

=

∣∣∣∣σν ∫ x

0
ϕ1,xν (t) dt−

∫ x

0
Q2,xν (t) dt

∣∣∣∣
≤
∫ 1

0
|σνϕ1,xν (t)−Q2,xν (t)| dt

≤
∫ xν

0
|Q2,xν (t)| dt+

∫ x′ν

xν

|σν −Q2,xν (t)| dt+

∫ 1

x′ν

|σν −Q2,xν (t)| dt.

Using (11) and the piecewise monotonicity of Q2,xν we obtain∫ xν

0
|Q2,xν (t)| dt ≤ ε/3,∫ 1

x′ν

|σν −Q2,xν (t)| dt ≤ ε/3,

and ∫ x′ν

xν

|σc −Q2,xν (t) dt| ≤
(
x′ν − xν

)
(1 + ε/3) ≤ ε/3.

These inequalities prove (7). �
Proof of Theorem 1 First we observe that the elementary function of order

p = 1 on [0, 1]

f (x) =
n−1∑
ν=0

cν+1 · ϕ2,xν (x) ,

where cν = (xν − xν−2)42
ν−2 (y) , v = 1, 2, . . . , n satisfies the conditions of

interpolation

f (xi) = yi, i = 0, 1, ..., n.

Since f (x) =
∑n−1

ν=0 |cν+1|
(
sign 42

ν−1 (y) · ϕ2,xν (x)
)

and |cν+1| > 0, v =
0, 1, . . . , n − 1, it follows that if ε > 0 is small enough there exist aν+1 >
0, v = 0, 1, . . . , n− 1 such that the polynomial

P (x) =

n−1∑
ν=0

aν+1P2,xν

satisfies (3), where P2,xν are due to the previous lemma.
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Finally the positivity of the coefficients aν+1 and the piecewise convexity of
P2,xν assure that (5) holds true.

The proof of the last part of Theorem is similar. �

Remark. Based on the construction of the sequences (10), (13) (for p =
1) we obtain a discrete ε-approximation of the function ϕp,xν such that its
associated polynomial Pp+1,xν ε-approximates ϕp+1,xν and its derivative of

order p+ 1, P
(p+1)
p+1,xν

has the same sign as the divided differences of order p of

the values (2) an the nodes (1). This method applied before for p = 1 can be
adapted to prove (inductively after p) the existence of a piecewise convex of
order p (p > 1) interpolating polynomial. �
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