MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 14, No 2, 1985, pp. 127-130 mg. (7.1) (V.) is a not of positive linear operators from C(X) who C(X) such that

 $\lim F_{i,j} = Fg$ for all g in $\mathcal{F}[g]$, then $\lim F_{i,j'} = Fg$ for all f in C(X) = F

Proof. Since L(H) is a Varset, the Urysohn Lemmal guarantees the

existence of a function with CLY) such that a > 0 and ON SOME KOROVKIN SUBSPACES

miles wor (01) to manage I. RASA . Let y worm to - of mont (Cluj-Napoca) thear functional on C(X) (that is, a positive Radon mersure on X) such

1. Let X be a compact Hausdorff space and C(X) the space of all real-valued continuous functions on X with supremum norm and the natural ordering. For x in X let e_x be the corresponding Dirac functional on C(X). Let H be a closed linear subspace of $\overline{C}(X)$, linearly separating (i.e. for all $x, y \in X$, $x \neq y$ there exist $f, g \in H$ such that $f(x)g(y) \neq f(x)g(y)$ $\neq f(y)g(x)$; suppose that H is a lattice under the natural ordering.

Let $M_{+}(X)$ be the set of all positive Radon measures on X and

that a H [s, be fall?] H s , then a H, c I Y.

$$L(H)=\{x\in X: ext{if }\mu\in M_+(X) ext{ and }\mu(h)=h(x) ext{ for all } h ext{ in } H,$$
 then $\mu=e_x\}.$

Let now X be a compact metric space and H a close We have (see [11)]: another transmit making out substitute desired (L) to

- $_{arepsilon}(1)$ L(H) is a closed nonvoid set.
- (2) There exists $h \in H$, h(x) > 0 for all x in X.

Moreover, for any f in C(X) the restriction f|L(H) has a unique extension in H; let us denote this extension by Tf. Then T is a positive linear operator carrying C(X) onto H, $T^2 = T$ and

(3)
$$\{f \in C(X): Tf = f\} = H.$$

For each $f \in C(X)$ let Rf = f|L(H); then R is a positive linear operator from C(X) onto C(L(H)).

Let $V: C(X) \to C(X)$ be a positive linear operator which satisfies one of the following equivalent conditions: Missingle V. Let V. be n

- (4) III $V \circ T = V$ and leady together matrices mediately a HWH or magnetical
- $\ker \ T \subseteq \ker \ V$ $\ker T \subseteq \ker$ $^{2}(5)$
- (6) supp $(e_x \circ V) \subseteq L(H)$ for all x in X
- $V = A \circ R$, where A is a positive linear operator carrying C(L(H))into C(X). The same of the same of the same X and X and X are same X and X are same X and X

THEOREM 1. If L(H) is a G_8 -set, then there exists a function φ in C(X) such that:

(8) BiHG univolted at the model
$$T \varphi \leqslant |\varphi|$$
 . The proof of the state of the contract of the state of the sta

$$\{x \in X: T \varphi(x) = \varphi(x)\} = L(H).$$

For any φ in C(X) which satisfies (8) and (9) the linear subspace $H[\phi]$ of C(X), spanned by H and ϕ , is a Korovkin subspace for V, i.e. if (V_i) is a net of positive linear operators from C(X) into C(X) such that $\lim_{t \to 0} V_i g = V g$ for all g in $H[\varphi]$, then $\lim_{t \to 0} V_i f = V f$ for all f in C(X).

Proof. Since L(H) is a G_{δ} -set, the Urysohn Lemmal guarantees the existence of a function φ in C(X) such that $\varphi \geqslant 0$ and

(10)
$$\{x \in X : \varphi(x) = 0\} = L(H).$$

Then $T\varphi = 0$, hence $T\varphi \leqslant \varphi$. (9) is a consequence of (10). Now, using Theorem 1.1. from [6], it suffices to show that if $x \in X$ and μ is a positive linear functional on $\widetilde{C}(X)$ (that is, a positive Radon measure on \widetilde{X}) such that $\mu[H[\varphi] = (e_x \circ V) | H[\varphi]$, then $\mu = e_x \circ V$. We have $\varphi - T\varphi \in H[\varphi], \varphi - T\varphi \geqslant 0$ and

This shows that supplies
$$T \phi \in H[\phi], \ \phi - T \phi \geqslant 0 \ ext{and}$$

$$\mu(\phi - T \phi) = (e_x \circ V) \ (\phi - T \phi) = e_x (V \phi - (V \circ T) \ \phi) = 0.$$

This shows that supp $\mu \subseteq \{x \in X : (\varphi - T\varphi) \mid (x) = 0\} = L(H)$. Let fbe in C(X). Then Tf and f coincide on L(H), hence on supp μ ; this yields

$$\mu(f) = \mu(Tf) = (e_x \circ V) \ (Tf) = (e_x \circ V \circ T) \ \ (f) = (e_x \circ V) \ (f).$$

Therefore $\mu=e_x\circ V, \;\; q.{
m e.d.}$ Remark 1. For a generalization of Theorem 1 see [10].

Let now X be a compact metric space and H a closed linear subspace of C(X) which contains the constant functions, separates the points of Xand is a lattice under the natural ordering. Then H is linearly separating and L(H) is a G_8 -set; moreover, L(H), the Choquet boundary and the Shilov boundary of H coincide (see [11]), i.e.

$$L(H) = \operatorname{Ch}(H) = \operatorname{Sh}(H).$$
Let T and V be as above.

Let T and V be as above.

COROLLARY 1. There exists φ in C(X) which satisfies (8) and (9). $H[\varphi]$ is a Korovkin subspace for V.

This result, with V replaced by T, was obtained by F. ALTOMARE in [1] a dutily rotation about a vitisor a ad (7.) Sec (4.

Example 1. Let K be a metrizable Bauer simplex and H = A(K)the space of all real-valued continuous affine functions on K. Denote by exK the set of extreme points of K. Let V be a positive linear operator from C(K) into C(K) such that

(12)
$$\operatorname{supp} (e_x \circ V) \subseteq \operatorname{ex} K \text{ for all } x \in K.$$

Let φ be a strictly convex function in C(K). From [1, Es. 1.5] and Corollary 1 above follows that $A(K)[\varphi]$ is a Korovkin subspace for V.

Example 2. Let Ω be an open bounded subset of \mathbb{R}^n such that $\Omega =$ = int $(\overline{\Omega})$. Denote by $\partial\Omega$ the euclidean boundary of Ω . Suppose that for any f in $C(\partial\Omega)$ there exists a unique solution of the following Dirichlet

(13)
$$\Delta u = 0 \text{ in } \Omega, \ u | \partial \Omega = f, \ u \in C(\overline{\Omega}).$$

Let $H = \{u \in C(\overline{\Omega}) : \Delta u = 0 \text{ in } \Omega\}$. Let V be a positive linear operator from $C(\overline{\Omega})$ into $C(\overline{\Omega})$ such that

(14)
$$\operatorname{supp} (e_x \circ V) \subseteq \partial \Omega \quad \text{ for all } x \in \overline{\Omega}.$$

Let φ be in $C(\overline{\Omega})$, $\varphi \geqslant 0$ such that $\{x \in \overline{\Omega} : \varphi(x) = 0\} = \partial \Omega$. It follows from [1, Es. 1.6] and from Corollary 1 that H is a Korovkin subspace for Vertuno additional and and analytical and a single file of a soil of the sail of the s

Example 3. Let $X = [0, 1] \times [0,1]$, $H = \{h \in C(X) : \text{there exists}\}$ $(a, b, c, d) \in R^4$ such that h(x, y) = axy + bx + cy + d for all $(x, y) \in$ $\in X$. In this case

 $Tf(x, y) = (1 - x)(1 - y) \quad f(0,0) + (1 - x) \quad yf \quad (0,1) + x(1 - y)$ f(1,0) + xyf(1,1).

Let φ_1 , φ_2 be two strictly convex functions in C[0,1] and $\varphi(x,y)=\varphi_1$ $(x) + \varphi_2(y)$. Then $H[\varphi]$ is a Korovkin subspace for T (see [1, Es. 1.9)].

Let $a_i \in C(X)$, $a_i \ge 0$, i = 1, 2, 3, 4 and $V: C(X) \rightarrow C(X)$, Vf $(x, y) = a_1(x, y) \ f(0, 0) + a_2(x, y) \ f(0, 1) + a_3(x, y) \ f(1, 0) + a_4(x, y) f(0, 0)$ (1, 1). By Corollary 1, $H[\varphi]$ is a Korovkin subspace for V.

2. Let now X be a compact metric space, H a linear subspace of C(X) which contains the constant functions and separates the points of X, S the minimum-stable convex cone spanned by H in C(X). In [8] and [9] we have considered the set Sp of all $f \in C(X)$ with the following property: Lauronal To unitaribrousy is skall (N) to retain or altiful

 $(15) \quad \text{if} \ \ x\in X, \ \mu\in M_+(X), \ \ \mu\neq e_x \ \ \text{and} \ \ \mu(s) \ \leqslant \ \ e_x(s) \ \ \text{for all} \ \ s\in S,$ then $\mu(f) < e_x(f)$

and the set St of all $f \in C(X)$ for which

IN LOWER S. II. LETTE, IL. PERSUNCE POSICOUS IN (16) if μ , $\nu \in M_+(X)$, $\mu \neq \nu$ and $\mu(s) \leqslant \nu(s)$ for all $s \in S$, then $\mu(f)< \mathsf{v}(f)$. The second state of the sec

From [9, Proposition 5.2] and [4, Corollary 1] it follows

$$\mathrm{Sp}=\mathrm{St}\neq\emptyset.$$

THEOREM 2. If φ is in St, then $H[\varphi]$ is a Korovkin subspace for any lattice homomorphism P from C(X) into C(X).

Proof. Let μ be a positive Radon measure on X and $x \in X$ such that $\mu[H[\varphi] = (e_x \circ P) \mid H[\varphi]$. Let $s \in S$. Then $s = \min(h_1, \ldots, h_n)$ for some $h_1, \ldots, h_n \in H$. Since P is a lattice homomorphism, we obtain $\mu(s) \leq$ $\leq (e_x \circ P)$ (x). Now (16) shows that $\mu = e_x \circ P$.

By Theorem 1.1 from [6], $H[\varphi]$ is a Korovkin subspace for P.

Remark 2. By (15) and (17), if φ is in St then $\operatorname{Ch}(H[\varphi]) = X$. Theorem 3 from [3] shows that Theorem 2 above holds for any lattice homomorphism $P: C(X) \to F$, where F is an arbitrary real Banach lattice.

Example 4. Let E be a locally convex Hausdorff space and X a compact convex metrizable subset of E. Let H = A(X) be the space of all real-valued continuous affine functions on X. Then (see [8] and [9], (5.39)): A), systemed by II and v. it is featurable (figuresian (Q)) more

 $\operatorname{St} = \{ f \in C(X) : f \text{ is a strictly concave function} \}$

Applying Theorem 2 we obtain

that to be in their \$ 5 0 such that COROLLARY 2 ([7, Theorem 3]). If \varphi is a strictly convex function in C(X), then $A(X)[\varphi]$ is a Korovkin subspace for the identity operator on C(X).

This result was proved by H. BAUER, G. LEHA and S. PAPA-DOPOULOU [2] in the special case when X is a compact convex subset of \mathbb{R}^n and by $\tilde{\mathbf{C}}$. A. MICCHELLI [6] in the general case with the additional hypothesis that φ is smooth.

Remark 2. Let X be a compact metric space and H a linearly separating, closed linear subspace of C(X) which is a lattice under the natural ordering; let $1 \in H$. If φ is in St, then φ satisfies (8) and (9) (see [8, Proposition 5]). Hence in this case H is a Korovkin subspace for any lattice homomorphism P and for any positive linear operator V which satisfies one of the equivalent conditions (4)-(7). In particular we have

Example 5. Let K and H be as in Example 1. For $f \in C(X)$ let Tfbe the unique extension of f|exK in A(K), Let φ be a strictly convex function in C(K). Then $A(K)[\varphi]$ is a Korovkin subspace for T and for the identity operator on C(K). This is a generalization of Theorem 1 from [5].

REFERENCES

- [1] Altomare, F., Teoremi di approssimazione di tipo Korovkin in spazi di funzioni, Rend
- Mat. Univ. Roma, 13, 409-428 (1980).

 [2] Bauer, H., Leha, G., Papadopoulou, S., Determination of Korovkin Closures, Math. Z., 168, 263-274 (1979).

 [3] Berens, H., Lorentz, G. G., Theorems of Korovkin type for positive linear operators on Banach lattices, in : Approximation Theory, ed. by G. G. Lorentz, Academic Press 1973, 1 - 30.
- [4] Edwards, D. A., Minimum-stable wedges of semicontinuous functions, Math. Scand., 19, 15-26 (1969).
- [5] Karlin, S., Ziegler, Z., Iteration of positive approximation operators, J. Approximation Theory, 3, 310-339 (1970).
- [6] Micchelli, C. A., Convergence of positive linear operators on C(X), J. Approximation Theory, 13, 305-315 (1975).
 - [7] Raşa, I., On some results of C. A. Micchelli, Anal. Numer. Théor. Approx., 9, 125-127 (1980).
- [8] Rasa, I., On a measure-theoretical concept of convexity, Anal. Numer. Theor. Approx., 10 10, 217-224 (1981)) HILL
- [9] Raşa, I., On some boundaries and determining sets, "Babes-Bolyai" Univ. Cluj-Napoca, Fac. of Math. Preprint, 5 (1983).
- [10] Raşa, I., A Korovkin type theorem for the Lion operators, "Babes-Bolyai" Univ. Cluj-Napoca, Fac. of Math. Preprint, 6, 157-158 (1984).
- [11] Rogalski, M., Espaces de Banach réticulés et problèmes de Dirichlet Publ. Math. d'Orsay, 425, 1968—1969