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1. Let X be a compact convex subset of a normed real space. lLet
9 e €(X) and let H be the linear subspace of C(X) spanned by o and the
continuous affine functions on X.

In this paper the relationship between the convexity properties
of o and the Korovkin properties of H is investigated.

2. Let Y be a compact Hausdorff space, §e C(Y?), (=, ) >0
forallz,y ¢ Y, x # y.Let B(Y) be the space of all real-valued bounded
functions on Y with supremum norm and let 7;: ¢(Y) —> B(Y) be a net

«of positive linear operators such that lim ||7'1'— 1| = 0. Let

(1) () = sup { [T () ()] ye Y.
TuroreEM 1 ([B1]). If lim u(¢) = 0, then

{2) Hm | Tf — fIl =0 for all fe o).

3. Let E be a normed real space and let X be a compact convex sub-
set of H. Let e(x) = |22 Let T;: C(X)—> B(X) be a net of positive
linear operators such that

{3) Tl —=1and T = h for all 4 and all b e E*[X.

Bxample 1. Suppose that H is an inner-product space and let ¢(z,y) =
— e(w — y). Then p(¢) = T, e — e]. Moreover (seo [5]): !
{4) ITf — Il < 20 (f, | Tie — e|''*) for all fe 0(X)

where o is the modulus of continuity.

Ezample 2. Let now E = R" and pyz,,...,%,) = ;. Let ¢e
e O(X) with the following property :
{5) there exist ay, @;,...y 0,4 ¢ B(X) and ke R, k>0 such that

b

Y@, y) = ay) ¢ (@) 1 % o) p@) + anny(y) > Re(z —y)

j=1
for all @; e X, and

”» »
o -+ Z P+ Gy =000 X,

j=1
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Then p(¢) = (L9 — @) ay]l. Moreover (see [5]) :
(6) IS = FI< 260(f, (k=U(Zie ~ o) ay 1) for all fe ai),
The case n = 1 ig investigated in [8] and [3].
4. A function ¢ € O(X) with the property
(7)  There exists ¢ e 2, ¢ > 0 such that
(@, 2,95 9) = (1= p) o(2) + p oly) — (1 — pla + py) >
op(l — p) e(w — y)
for all 2, 4 ¢ X and all P €[0,1]

is called e-convex.

It B = R and ¢ is a convex fu tion fr [ i
(31, Hhion’ g% e ”q-)eonvex. unction from C(X) having the property

ItE =R, X = a, bl, ¢ e Cla,b] is c-convex and

(8) ¢r(@) > —o0, gi(b) < 400

then ¢ has the property (5) with ay =1 and % == ¢,
In particular, for a convex function ¢ ¢ Cfa, b] with (8), the con--

ditions (5) and (7 ) are equivalent.
5.Let X « U < E, U open and let f: U B such that
(9) J 18 twice differentiable on U and there exists M > ¢

such that ||f" (@) < M for all & < U.

Let E be an i -prod & f
With (3) gl Inner-product space. Then the Taylor formula together

(10) (Tif — f) ()] < (M/2) (Tie — e) (2) for all g e X,
This yields '

(11) ITof — fll < (M)2) || Tie — ey,
For B = R see [4, § 2.6].

Let now % = 1 in Example 2. Let
_ Le a et oe C[a, b)) be a ¢ ¢ funetic
having the property (6). It is shown in [3] that ,if j] e (2 [agllz’i%t{iiﬁchon

(12) IZf —fIl < (2llagl/k) L0 — o I .

6. The inequalities (4) and (6) hold for i
. : § 8 , or all continuous functi ;
and (12) hold only for smaller classes of functions, but — for thesel gilass;sé; g)

they are better than (4) and W
move e (4) and (6). We shall deduce (10) and (12) from a
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Let F be a normed real space and ¢ e ((X) a e¢-convex function.
Let @y, X and let 0,f) = T,f(x,). By (3), 0, are probability Radon
measures having x, as barycenter. It is shown in [7] that for all f e C(X)
there exist @, y e X 2 £y and p e (0,1) such that

(13) 0.f) — f(@o) = (0i(9) — o(@o)) (%, 45 N/, py ¥5 @)
If M > 0 let us denote
D(M) = {ge C(X): [(w,0,959)] < Mp (1 —ple(z —y)
for all #, ¥ ¢ X and all p € [0,1]}.
From (13) we obtain
(14)  (Tf — ) (@)] < (Mfe) (Tip — o) (z) for all fe D(I).
This yields
(15) ITof — fIl < (Mfe) | Tio — g|) for all f e D(M).
Suppose now that f has the property (9). Then it is easy {o verify
that f e D(M/2). Thus we have
THROREM 2. If f has the property (9) then
(16) [(T.f — 1) (@)] < (M[26) (Tyo — @) () for all @ e X.
In particular,
(17) 1Tf — fIl < (M[2¢) | Ty — ol

! If £ is an inner-product space, then ¢ is a l-convex function, so
from (16) and (17) we obtain (10) and (11). Since ¢ in (12) is &/ ||a,|-convex,
from (17) we deduce

(A8) T — SI < (leol/2k) Tep — ¢ |l If1) for all fe C*[a, b]
which is an improved version of (12).

7. Let now X be a compact convex metrizable subset of a locally
convex space. Liel ¢ e C(X) and let H be the linear subspace of C(X)
gpanned by ¢ and the continucus affine functions on X. The following
are equivalent (see [2] and [6]) :

(i) H is a Korovkin subspace

(ii) o is strictly convex or strictly concave.

On the other hand, the e-convexity of ¢ is a sufficient condition
in order to have (14); if ¥ is an inner-product space, then this condition
is also necessary.

"The signification of the condition e D(M) in (14) is illustrated in
[4, Corollary 5.2].

8. Let E be an inner-product space. For each @ ¢ X let v, be a pro-
bability Radon measure on X having # as barycenter. For »e N and
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%sxj < m le‘)o P, € [0,1] such that p,; + ... p,. =1. Let P X X
LWLy ey W) = P a0t ‘:l‘ . n s),
woL (](,X) a,ndpmlelX—l—let + Dan 2. Let u,, — a @+ . @V, (1 factors).

Bmﬂm>:5 foP,duy,,

xn

B,f are the Bernstein-Tototski-Schnab] bolynomials (see [5])
Let F(x) = v (e). Tt is shown (see [5]) that LB, satisfy (3)

and

(9) me>:(§3ﬁﬁﬂw>+(1-—ﬁpiew>
m = ] oy o '
Thus we have

(20) 1B.0 — ell =11 — o) 3 p2,.

O - ! ]:1
From (4) we deduce

(21) 1B f —fIl < 2w (.f, ( I — e Z pi]-)m) for all f e C(Y).
J=1
It f e D(M), then (14) implies
(22) (Buf = 1) @)] € MF(@) — e(a))y: p3,.
j=1

In particular, let B — R. ¥ — (0, 1]
o AR " e 1 ve(f) =11 — @) (0 ‘
pl,;(ll{::[}Fffh)en B,f Ere(@[}ge) 1}311&1 Bern)stein polynoniials. VS)T({(hé{vt e?ﬂ)ll,
= % a ) = @. By (13), for each e [0, ] ] thers
exist three distinet points in [0,1] such et}Eai;l] andteatinyl e

Buf(@) — fla) = (m)a(1 < @) [a, Ty Ty 5 f1

where [Ia;“ &gy g5 f1is the divided difference of f. This is a result from [1]
It fe D(M), then from (22) we obtain . '

[Bif(@) — f(@)| < (1fn)a1 — o) m
for all « e [0, 1] (see also [3, $2.7]).
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