MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 14, N° 2, 1985, pp. 131-135

APPROXIMATION OF TWICE DIFFERENTIABLE FUNCTIONS BY POSITIVE LINEAR OPERATORS

I. RAŞA (Cluj-Napoca)

2', f = f) (ep) = (at a) tra | t.0] = q fts bure Z_1 a sc. y ftg rol

The case a - 1 is investigated in its and [3].

2. Δ (nucleion φ ∈ C(X) with the property

1. Let X be a compact convex subset of a normed real space. Let $\varphi \in C(X)$ and let H be the linear subspace of C(X) spanned by φ and the continuous affine functions on X.

In this paper the relationship between the convexity properties of φ and the Korovkin properties of H is investigated.

2. Let Y be a compact Hausdorff space, $\psi \in C(Y^2)$, $\psi(x, y) > 0$ for all $x, y \in Y$, $x \neq y$. Let B(Y) be the space of all real-valued bounded functions on Y with supremum norm and let $T_i: C(Y) \to B(Y)$ be a net of positive linear operators such that $\lim ||T_i 1 - 1|| = 0$. Let $\mu_i(\psi) = \sup \{ |T_i \psi(\cdot, y)(y)| : y \in Y \}$.

THEOREM 1 ([5]). If $\lim \mu_i(\psi) = 0$, then

(2)
$$\lim ||T_i f - f|| = 0 \quad \text{for all } f \in C(Y).$$

3. Let E be a normed real space and let X be a compact convex subset of E. Let $e(x) = ||x||^2$. Let $T_i: C(X) \to B(X)$ be a net of positive linear operators such that vignai (2) stabu

 $T_i 1 = 1$ and $T_i h = h$ for all i and all $h \in E^* | X$. (3)

Example 1. Suppose that E is an inner-product space and let $\psi(x,y) =$ =e(x-y). Then $\overline{\mu_i}(\psi)=\|T_i e-e\|$. Moreover (see [5]):

 $||T_i f - f|| \le 2\omega (f, ||T_i e - e||^{1/2}) \text{ for all } f \in C(X)$

where ω is the modulus of continuity.

Example 2. Let now $E=R^n$ and $p_j(x_1,\ldots,x_n)=x_j$. Let $\varphi\in$ $\in C(X)$ with the following property:

there exist $a_0, a_1, \ldots, a_{n+1} \in B(X)$ and $k \in R, k > 0$ such that (5)

$$\psi(x, y) = a_0(y) \varphi(x) + \sum_{i=1}^n a_i(y) p_i(x) + a_{n+1}(y) \ge ke(x - y)$$

for all $x, y \in X$, and its set blest (ii) has the subflational set \mathbb{R} .

$$a_0 \varphi + \sum_{j=1}^{n} a_j p_j + a_{n+1} = 0 \text{ on } X.$$

Then $\mu_i(\psi) = \|(T_i \varphi - \varphi) a_0\|$. Moreover (see [5]):

- $\|T_i f f\| \leqslant 2\omega(f, \ (k^{-1}\|(T_i \varphi \varphi) \ a_0 \ \|)^{1/2}) \ \text{ for all } f \in C(X).$ The case n = 1 is investigated in [8] and [3].
 - **4.** A function $\varphi \in C(X)$ with the property
- There exists $c \in R$, c > 0 such that

$$(x, p, y; \varphi) = (1-p) \varphi(x) + p \varphi(y) - \varphi((1-p)x + py) \ge cp(1-p) e(x-y)$$

for all $x, y \in X$ and all $p \in [0,1]$

is called *c*-convex. If $E = R^n$ and φ is a convex function from C(X) having the property (5), then φ is $k/\|a_0\|$ -convex. If $E=R,\ X=[a,b],\ \varphi\in C[a,b]$ is c-convex and

(8)
$$\varphi_{r}'(a) > -\infty, \ \varphi_{l}'(b) < +\infty$$

then φ has the property (5) with $a_0 = 1$ and k = c. In particular, for a convex function $\varphi \in C[a, b]$ with (8), the conditions (5) and (7) are equivalent. * Little Table I like the second

5. Let $X \subset U \subset E$, U open and let $f: U \to R$ such that

f is twice differentiable on U and there exists M>0such that $||f''(x)|| \leq M$ for all $x \in U$.

Let E be an inner-product space. Then the Taylor formula together with (3) imply

The said We will be and all the (10) $|(T_i f - f) \ (x)| \leqslant (M/2) \ (T_i e - e) \ (x) \ \ \text{for all} \ x \in X.$ This yields

(11)
$$\|T_i f - f\| \leq (M/2) \|T_i e - e\|.$$

For E=R see [4, § 2.6].

Let now n = 1 in Example 2. Let $\varphi \in C[a, b]$ be a convex function having the property (5). It is shown in [3] that if $f \in C^2$ [a, b], then

$$||T_{i}f - f|| \leq (2||a_{0}||/k) ||T_{i}\phi - \phi|| ||f''||.$$

6. The inequalities (4) and (6) hold for all continuous functions; (10) and (12) hold only for smaller classes of functions, but — for these classes they are better than (4) and (6). We shall deduce (10) and (12) from a more general result.

Let E be a normed real space and $\varphi \in C(X)$ a c-convex function. Let $x_0 \in X$ and let $\theta_i(f) = T_i f(x_0)$. By (3), θ_i are probability Radon measures having x_0 as barycenter. It is shown in [7] that for all $f \in C(X)$ there exist $x, y \in X$ $x \neq y$ and $p \in (0,1)$ such that

(13)
$$\theta_i(f) - f(x_0) = (\theta_i(\varphi) - \varphi(x_0)) (x, p, y; f)/(x, p, y; \varphi).$$

If M>0 let us denote now have blanched and some state of the second s

2:

$$D(M) = \{g \in C(X) : |(x, p, y; g)| \leq Mp (1 - p)e(x - y)$$

for all $x, y \in X$ and all $p \in [0,1]$.

From (13) we obtain

(14)
$$|(T_i f - f)(x_0)| \le (M/c) (T_i \varphi - \varphi)(x_0)$$
 for all $f \in D(M)$. This yields

$$||T_i f - f|| \leq (M/e) ||T_i \varphi - \varphi|| \text{ for all } f \in D(M).$$

Suppose now that f has the property (9). Then it is easy to verify that $f \in D(M/2)$. Thus we have

THEOREM 2. If f has the property (9) then

(16) $|(T_i f - f)(x)| \leq (M/2c) (T_i \varphi - \varphi)(x) \text{ for all } x \in X.$ In particular,

$$||T_i f - f|| \leq (M/2c) || T_i \varphi - \varphi||.$$

If E is an inner-product space, then e is a 1-convex function, so from (16) and (17) we obtain (10) and (11). Since φ in (12) is $k/\|a_0\|$ -convex, from (17) we deduce has fitting a dame of (EL) will be a wife bout to

(18)
$$||T_i f - f|| \le (||a_0||/2k)|| T_i \varphi - \varphi || ||f''|| \text{ for all } f \in C^2[a, b]$$

which is an improved version of (12). where bus many if is the divided directainer of f. this is a result from [1] |

- 7. Let now X be a compact convex metrizable subset of a locally convex space. Let $\varphi \in C(X)$ and let H be the linear subspace of C(X)spanned by φ and the continuous affine functions on X. The following are equivalent (see [2] and [6]):
 - (i) H is a Korovkin subspace
 - (ii) φ is strictly convex or strictly concave.

On the other hand, the c-convexity of φ is a sufficient condition in order to have (14); if E is an inner-product space, then this condition is also necessary.

The signification of the condition $f \in D(M)$ in (14) is illustrated in [4, Corollary 5.2].

8. Let E be an inner-product space. For each $x \in X$ let v_x be a probability Radon measure on X having x as barycenter. For $n \in N$ and 4

 $1 \leqslant j \leqslant n$ let $p_{nj} \in [0,1]$ such that $p_{n1} + \dots p_{nn} = 1$. Let $P_n : X^n \to X$, $P_n(x_1,\ldots,x_n) \stackrel{x_n}{=} p_{n_1}x_1 + \ldots + p_{n_n} x_n. \text{ Let } \mu_{x_n} = \nu_x \otimes \ldots \otimes \nu_x \text{ (n factors)}.$ For $f \in C(X)$ and $x \in X$ let

$$B_n f(x) = \int_{\mathcal{X}^n} f \circ P_n \ d \ \mu_{xn}$$

 $B_n f$ are the Bernstein-Lototski-Schnabl polynomials (see [5]). Let $F(x) = v_x(e)$. It is shown (see [5]) that B_n satisfy (3)

and

(19)
$$B_n e(x) = \left(\sum_{j=1}^n p_{nj}^2\right) F(x) + \left(1 - \sum_{j=1}^n p_{nj}^2\right) e(x).$$
 Thus we have

(20)
$$\|B_n e - e\| = \|F - e\| \sum_{j=1}^n p_{nj}^2.$$
 From (4) we deduce

(21)
$$||B_n f - f|| \le 2 \omega \left(f, \left(||F - e|| \sum_{j=1}^n p_{nj}^2 \right)^{1/2} \right)$$
 for all $f \in C(X)$.

If
$$f \in D(M)$$
, then (14) implies
$$|(B_n f - f)|(x)| \leq M(F(x) - e(x)) \sum_{j=1}^n p_{nj}^2.$$

In particular, let $E = R, X = [0, 1], \forall v_x(f) = (1 - x) f(0) + x f(1),$ $p_{nj}=(1/n)$. Then B_nf are the usual Bernstein polynomials. We have e(x)= $=x^2$ and F(x)=x. By (13), for each $x \in [0,1]$ and each $f \in C[0,1]$ there exist three distinct points in [0,1] such that

where for
$$B_n f(x) - f(x) = (1/n)x(1-x)$$
 [x_1, x_2, x_3 ; f]

where $[x_1, x_2, x_3; f]$ is the divided difference of f. This is a result from [1]. If $f \in D(M)$, then from (22) we obtain

$$|B_n f(x) - f(x)| \le (1/n)x(1-x)M$$
 for all $x \in [0, 1]$ (see also $[5, \S 2.7]$).

for all $x \in [0, 1]$ (see also $[5, \S 2.7]$).

REFERENCES (100) Diriging to the control of the co

(i) If is a Korovkin subspace

- [1] Aramă, O., Proprielăți privind monotonia șirului polinoamelor lui S. N. Bernstein și aplicarea lor la studiul aproximării funcțiilor, Studii și Cerc. (Cluj), 8, 195-210 (1957).
- [2] Bauer, H., Leha, G., Papadopoulou, S., Delermination of Korovkin closures, Math. Z., 168, 263-274 (1979).
- [3] Censor, E., Quantitative results for positive linear approximation operators, J. Approx.
- [4] Devore R., The approximation of continuous functions by positive linear operators, Lect. Notes in Math., 293, Springer Verlag, Berlin-Heidelberg-New York, 1971.

- [5] Nishishiraho, T., Convergence of positive linear approximation processes, Tôhoku Math. J., 35, 441-458 (1983).
- [6] Raşa I., On some results of C. A. Micchelli, Anal. Numér. Théor. Approx., 9, 125-127
- [7] Raşa, I., On the barycenter formula, Anal. Numér. Théor. Approx., 13, 163-165 (1984).
- [8] Shisha, O., Mond, B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA, 60, 1196-1200 (1968).

minimum that of laraepolistics and committed out our to the expendentian

Received 10, XI, 1984

Institutul Politehnic, Catedra de Matematică. 3400 Cluj-Napoca ROMANIA