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1. Introduction and results. Many constructive approaches have
been made after the celebrated Telyakovskii [8] and Gopengauz’s [1]
theorems that were established through classical methods. Contributions
by Saxena, Freud, Vertesi [2] and, of course, many others in this direc-
tion are not beyond comprehension. Recently, in a series of papers [4, 5, 6]
we formulated certain identities which formed the actual basis for the
.construction of interpolatory polynomials leading to the reproduction
of Telyakovskii-Gopengauz's theorem [8] for functions whose first deri-
vatives are continuous.

Following an idea put forth by Meir [3], it is possible now to con-
struet a sequence of positive linear interpolary operators which satisfy
Telyakovkii-Gopengauz’s theorem (and, of course, some other type also
in which estimates of the differences can be expressed in terms of the nbds
.of nodal points).

It is worthwhile to. mention that these estimates reflect the fact
that the operators are interpolatory :
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In the following we prove

. . m
M 1. Q,, (f, ®) is a rational function of order {(2m—-4) n +m,
THEOR Qum Uy ; _

(2m + 4)n; and
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THEOREM 2. Let fw)
have for @ ¢ [—1,1]

(210) 'Qa(:v:?z (f’ x) \f{vJ (m)] < Gy {M}m—v o (m) (]/1 == .’I,‘z) Vo=

n n

€ O[ -1, 1] then for any natural number ", we

0, m

where ¢,, is an absolute positive constant and wim) () is the usual
modulus of continuity of fom,

We observe trom (2.6)—(2.4) and (2.2) that the following identity holds :

(2.11) Qunlf, @) =1, f = 1.

It is worth comparing that (2.10) is the stronger ve
results established in this series of papers [4, 5, 6] in the explicit sense
that we have g constructive and simple proof of Telyakovskij—(iopen-
gauz’s theorem. We now do not need the complicated methods to prove
our assertions. At g consequence of (2.10) we can state :

rsion of our previous

THEOREM 3 : fet J® e ¢f—1,1] and 0<<a<<l1 be gien, then for
any natural number n, we have wniformly in [ ~1,1]

4 - © — a;r,ot M-y . m__mra .
PR & = @) =0 S o (2l o
for v =— 6,7’),

We remark that (2.12) explicitly exhibits the interpolatory nature

of the operators Qun(f; @). It also shows that the estimates are best pos-
sible in the neighbourhood of nodal points.

3. In the following we prove a few assertions given in the form of
lemma which we need to establish our theorems.

LEMMA 1 : We have uniformly in [—1,1]

I
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Proof. Owing to the transformations by putting # — cog by Zy=cos t,

and using (2.5)—(2.7), we have
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where j is defined by

T
— < =,
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Here we have made use of
loxl(t)] < 1,
and .
(3.6) |sin nt | < | n|sint].

Thus from (3.5) owing to (3.4), we have (3.1).
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In order to establish the second part of the lemma we have, on ac-
count of Leibtniz’s formula

3.7 i) [ Real? ]M
W Vx(2)

i Y pe (5 ( 1 )“
ugo( n )p o (z) Sk

Now, owing to the repeated use of Markov’s inequality for the derivative
of the polynomial, we have,

(3.8) P8 ()] < ( -—’3'“)” Do ()

V]_ = i

It is observed that

p Memfr
(3.9 [V x(@))— | <e e y
(3.9) A
Thus we have
i~ : : ‘ 7 v
(3.10) ()] < 2e(ﬁ) Do ()

On aceount of (3.10), (3.9), (3.8) and (3.7), we obtain (3.2).
LEMMA 2. For g ¢ [—1,1] and v = 0, m

” J ===
Y lo—a " g (@) = 0 (Ja — Y = O, £k
k=0 ;

kd

Z o — @, [n+1-v ¢ IE“:?IIL (@) = 0 (|lo — a[.‘.ll)m»l»l—’zv’ =0, # k.
£Z0

The proof depends upon the following inequalities :

" . t g - g
sinf € 2 sm( tt)
and
. o NI
(3.11) sin wi| < 2usin ¢ [t — ..

We make use of Lemma 1 to accomplish the proof.

4. Proof the theorem 2 for v = 0. On account of the identity (2.11),
we have from (2.9), (2.8) and (2.7) the identity

(4.) flo) = Quii (5 ) = % 1@) ~ gu ()] g (0):

k=0
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We make frequent use of

(4.2) fla) — E (@ — @) fO (@) = 0 (|x — 2" o (m) (|w—a,])

v=0
which is based on the finite Taylor’s expansion. Making the transformation
by using @ = cos t, @, = cos ¢, and using (2.9) — (2.6), we obtain from

(4.1)

f(w) — Quu (f5 ) = 2”Z—I(f(cos t) gt o™ (4)
JAN U n,m ’ P . Gm AN (t)
kg
1 | (f (COS t) i .(Ij.m) ngm-HI (t) = T] + T2 .
An (1)

In order to estimate the summands 7 and 7'5, we make use of lemma 1,

(3.1) for v = 0, (4.2).
In the similar fashion, we can prove theorem 3 for v = 0 where
we have to use lemma 2 for v = 0. We distinguish the following two:

cases separately :

2 xr — x. 1%
Case T: When Ji—« < (a7
N ni—®
and
- — 2 x — @,]?
ase TT : When /1 = @* _ 12 alig
" Nl

To illustrate the validity of theorem 2 and 3 for arbi.tra-ry' v, let us
take the particular case of m — 2. We have from [6] the identity

N 1
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Aw(®) = 3 6t 7!(%)7[[
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1111 . 11
4 — | sin*nt — == gin® —
" [60 n 0 sin' nt]

17 11 11 8ind ni
—— - sintpt -~ ——8in®nt | — —0" .
nt [336 e 168 1 ] 71 (2n)?

A direct computation gives the inequality

Now,

(4.4)

1> A1) > .874.
our main aim is to show

143

084, @) — @) =0 (L2 )™ = )o 1,2

1"

ny R -
The version of theorem 3 reads as follows :

0 (f, @) — fo)(a) | =0(’“"—‘”’)",('—”“—”'):1 2

(4.5)

(4.6)
and
(4.7)

(4.8)
then,
(4.9)
and

nl-o nl-a
To prove theorem 1 for v — 1, 2 we require the following

o (1) = or (%) = ppp1 (tx) = 0 for, I = m

(P;"‘, (.t"’) # 0 = ¢f” (t).
If we denote by
8
b () = 28
from (4.6) and (4.7), we have, o
b;c,z (tk) =0

bioa (8) = 8 @i/ (8) — Ash (8)
b () =0,k # 3.

Therefore from (4.9), (4.8) and (4.7), we obtain

(4.10)

(4.11)
and

L9262 (0) bro ()l = J(®y), b = 027 —1
(90,2 () byo ()]ice; = 0, T £ j

[92.2(8) brse (t):.lt’;tl. = @) {8 @i/ (8) — Aww (B)) + 1 (@) = f" (@).
To complete the proof, we shall reguire

(4.12)

(4.13)

” . s 1—.—_ \8-v
]EO 6 — 4P qrop (@) = O(V—‘”) , v =12

n

» _ , ]Tz 3-v
I o~ w1k, (a)] = O(VT”) v=1,2,3
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and

2 =my—
(4.14) Y | — @l gils ()] = O, (_n—_ w=1, 2.
5 ,

(41 | 3.1), (4.12)
Ve sketch proofs of (4.12)—(4.14). Erom Lemma 1, ( ),
can e;‘sitlaysbg dedlI;ced. For (4.13) to establish we once muore take (3.3)
into consideration and write

7

E g — @, [t (Ji’.’z () =14, + 1,

k=0 \
where ' 8
PR LS | Dk [8<p5-(t> 9u (1) — Asu () <p_k.<_n]
15 o cos t — cos i, 2 7.
(D) Y7 sint & AsalD)
k#]
and

893 (1) 94 (1)~ Ak (1) @} (1 ] :

1 4 y4—v
— — €O8 1;
(416) I, = i (€08 b7 cos 1) [ A (1)

2

For the estimation of (4.15), we have, from (3.4)

27-vp 11 1 iy 1 g 8-2v7 |sin? nt |
—v oy, 21— . . A N Ute il
L < i Y [{sm t sm;]t — 1] } + {sm 2 (1 )

o}
gint #=o i
ktj .

27vn [(sin tyi=y 2n1 |gin? nt| 1 -1 18in? ni |
< 8§—2y A 2V
i 4y & PR o0 s Vi
sint | (2n) k0 V4| (2n) r=a
n sin ¢\ 1
<2 — ) D
sint \ 2n CH
3 a)d—v
=0 u) A=, 28
n
Here we have made use of 1 "
)] < =
c e <
(4.17) .|

and

[(Asa ()] < 8o |

Similarly, owing to :
r (t)| < 4‘”’,2,;
lc?L = 'vk;
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and

[As(t)] < 56 ne

we can easily demonstrate the proof of (4.14).
The same method applies to get the version of theorem 3 for m = 9.
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