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1. Introduetien. In [1] the following optimal control problem was
considered ; find a pair (y, %) that minimizes the functional

T
(.1 g(wu» L gu()dt + Wy(T)) subject to
0
the state equation
y — Ay + By auBy ae in @ =0 x 10, T'[
(1.2) y(a, 0) = yo(@) a.e. ze Q
y(a, 1) =10 for (x,H)e X = 90 x]0, I'[
where Q is an open, bounded domain of R¥ with smooth boundary
Q5 o, U : L¥Q) — R are nonnegative, locally Lipschitz functions, and
g is a proper, lower semicontinuous, convex function that satisfies the
growth condition: 3¢;>0, 0, I such that
(1.3) glo) = Cha® + ¢, for oll we B
In (1.2) ¢’ means the derivative of  as a function of ¢ from [0, T']
to LAQ), A is the Laplace operator in LXQ), Bc R X £ is a maximal
monotone operator such that 0 g(0), B: L¥Q) — L¥Q) is a bounded

linear operator and « is a scalar function from L0, T).
As we have seen in [1] equation (1.2) ean be written as

at 2o AT
(1.2)’ {y O BB aaeont 105l
y(0) = ¥, '
where
1 o . . .
— \I VylEde -\jdr 1 y € Hy(Q)
y) =4 @ g
and
4o otherwise jly) e THQ)

and 95 = p.
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Also we remind (see [1]) that it y, e D(I) and w e L0, T) then (1.2)’
adinits a strong solution y which in addition satisfies y' ¢ L%0, 7'; L2(Q)).

Moreover the operator I': LX0, T') — ([0, T']; L¥Q)) defined by
Vu = gy, where y is the solution of (1.2) corresponding to ue L0, /i
i3 compact.

This allows us to say that there exists at least on pair (y#, u*)
(called optimal] that minimizes (1.1) and satisfies (1.2).

In [1] we have established necessary optimality conditions in order
that (y*, w*) be an optimal pair for problem (1.1), (1.2).

It is the purpose of the present paper to give a method for appro-
ximating the optimal pair (y*, w*), for the pay-off function with $=0.

It uses a Galerkin scheme, regularising techniques and a gradien
algorithm. :

In order to facilitate the reference to the problem (1.1), (1.2) (with
$=0) we shall call it problem (P).

In what follows we shall use the notations V = H3(Q), H = L¥Q),
V' = H-YQ).

(., .) denotes the inner products in I and also the duality between
V and V', while ||. ], |.] and || |, designate the norms in V, H and V’
respectively.

There is no danger of confusion if the same notation is used for the
the norms in £* and R, as in H.

2. Galerkin approximation of Problem (P). Firstly we shall de-
scribe a finite element aproximation of the spaces V and H. The nota-
tions we use are standard (see [2]).

For this l_et H# be a neighbourhood of 10 in R* and he s, h#£0 at
paranieter destinated to converge to 0. For any he # the following ele-
ments are given :

i) a finite real linear space V,;

t1) the prolongation p, : V, — W, <V which is linear, bounded and
one-to-one, W, = p,(V,);

411) the restriction r, : H — V,, which is linear and bounded.

As regards p, and 7, we make the following assumptions :

(2.1) There exists a constant ¢ =0 independent of % such that

2

In what follows we shall use the same letter ¢ for denoting different
constants independent of 7, which will appear in our estimates or assump-
tions.

Only in special situations we shall use other notation.

ran < O, for any he #.

({2.2) Pty — y strongly in V, for any ye V.

(2.3) The convergence u, — w strongly in L2(0, T) implies
glw,) — g(u) strongly in 740, 7).

(2.4) Uppraye) < G, for all he o7,
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In V, we introduce the scalar product (.,.), defined by (¥ 24)a =
= (Dulfns Pu2n), Tor all g,, z,€ 1, and associated norm A,

|:’/hih T iph]/hi) fOl‘ ?Uu K = Vrh'
Besides the last norm we define on' i, the norm [|. |, bY
ol = Hipagnlly for any gye Vo
Because of the compact inclusion VeI it is easy fo see thab
(2.5) Lyl < Collyallyy for any y, e V,, (0 >0)

¥ . . Y T, el
Tt we denote by A the operator —A we may. define Ay V= Vs
as Tollows
S L : - 17
(‘ilhyﬂ zh)h . (-‘IL PrYns /phzh)7 for all Ynsr Zn € } he

As regards A,, this keeps the properties of A. In the same way IS
. 3 - - L — 21t BT ., N
defined the operator B, : 7,—V,. It is easy to see that B, 1s L\Deﬂ.l, bound
ed and
I Bulleor o < 1B liar
Also we detine 8, by
|Bll.(.7/h) = '(p‘n?/h)7 for n € ¥ he

In this wayv equation (1.2) can be written as:

(2 6) {”lﬁ + Ah?/h + Bh(yh)a u’hBhyh
‘ ’i/h(()) = "o
or .
(2.6)’ {.7/;; + OL(yn) 3 W By
1(0) = viu¥o
where 1,(y,) = Upup), while (1.1) becomes
Minimize
T
(P ¢ IN(u,) = S(‘?n( P (0) 4 g(ua(D)) d!
¥ 0

subject to (2.6)". )

It is easy to prove, using the same arguments as in [1], [2] that
for every he #, h#0 the problem (P,) admits at least one optimal pair
(g, u¥). The theorem bellow shows that this pairs converge to an optimal
pair of the original problems (2£).

TarorEM 2.1, Let he 52, h # 0 and (yF, uF) be an optimal pair
for problem (P,). Under the above assumplions

wiF — 4% weakly in L0, T)

puyE - y* strongly in C([0, T1; 1) where (v*, @*) is an oplimal
pair for problem (P).
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Proof. (see also [2]). The proof will be done in 3 steps. Step 1. The
convergence of the pair (¢, uf) to (7%, @*). Step 2. (¥*, 4*%) is an admissible
pair for problem (P) i.c. satisfies (1.1), (1.2). -

Step 3. (y*, #%) is an optimal pair for problem (F). We begin with
Step 1. Since (¢, u}) is optimal for (P,) we may write

(2.7) (uf¥) < Fy(wy), for all w, e L¥0,T)

Making in (2.7), %, =0 and having in mind (1.3) we obtain the bounded-

ness of {uj} in L0, T).
Hence there exists 4* € L20, 7') to which uf converges weakly in
L0, T). On the other hand (#, «f) satisfies
(28) {ylzl + (/)lh(]j;f) 2 u}:thle
© 1i(0) = 1Yo

Multiplying (2.8) by #Ff and integrating over [0,¢] we obtain
through Gronwall’s lemma

(2.9) 220 o, rysmy < O for all e o7,

Here we have also used the inequalities (A4,y,,.) = 0 and
(ﬁh?/myh) > 07 fOl‘ 'El;l]. he -750
Now multiplying (2.8) by ## and integrating on [0, ¢] one finds
1
(2.10) | 15 IEds -+ b)) — L) =

0
2
_ S W) Bay()y w () s,
0

Taking into aceount (2.4), (2.9) and the fact that 7, is bounded below
by an affine function we get

(211) ”_’ph?/;rI”LZ(O,T;H) < O, for all he J/f,

Which implies that {p,yFf} is wuniformly equi-continuous in
C([0, T');H).

Now coming back to (2.10) we see that {I,(y¥(1))} is uniformly bound-
ed on [0, 7] and since ! is coercive on V, we obtain that {p,yf(?)} is
bounded in V, hence compact in H for every te [0, 1.

Finally the Ascoli-Arzela theorem may be applied to obtain
(2.12) pyF — y strongly in C([0, T]; H) and weakly star in L=(0, 1'; V).

Step. 2. We multiply (2.8) by al,(¥F) and integrate the resulting equa-
tion over [0, 7).
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It results

L)) + glazhm(t)) 12.dt = Ly0)) -+
0
T
+ S WO Bayd (0, Oy (1), dt

and sinee ,(y¥) and y§ are uniformly bounded on [0, T'] we get
100,(y¥) lle2co,rey < O, hence there exists £e L0, I'; H) such that

(2.13) ob(y7) — & weakly in 120, T'; H).
Now (2.12), (2.13) and the demi-closedness property of 91 implies
&(t) € aUF*(?) a.e. te 0, TT.

As we have already seen Puy¥} is bounded in L0, 7: H) so ther
exists g ZA(0, 75 1) uch thah (ORLZH) so there

(2.14) PaYi — q weakly in 120, T; H).

Multiplying (2.8) by ze L0, T; H) and integrating from 0 to T
we obtain

T T L
S(y:r(t), 2y dt + S(azhw;':(t)), (1)) di =

2 Su;r(thh:mt), (1)) dt.

%‘ending to the limit in the last equality and using (2.13) and (2.14)
we ge

(2.15) g + OUF*) > W BJ* a.e. on 10, T[

1
. (1) = §*/(t a.e. te0, 1. ’
which implies 1 Y e 1€10, I

pmbh;l‘nllli? lz)h)l.ong with (2.15) shows that (7*, @*) is an admissible pair for

Step 3. Putting in (2.8) u, = u* it follows Pu¥n = y*, and since
Fy(uif) < Fy(u*) = F(u*), for all he #
he following inequality is obtained

T

S (PpuE(1) -+ gluk ()t < S (o™ (1) + gl (1)
Q

1]
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Making 7 tend to 0 in the last inequality we obtain #(@%) < F(u*)
which led to the conclusion that (7%, #*) is an optimal pair for (P).

3. Regularization of the finite-dimensional problem. The aim of
this seetion is to solve the finite dimensional problem (P,) for h+#0 fixed
in #. For this, following the ideas in [2] and [3], we shall regularize Pro-
blem (P,) in order to malke it differentiable. Let us denote by n = n(h),
the dimension of 17,. For any « > 0, we consider the regularized problem
(P ) as follows :

Minimize :

»
(3.1) Fit) = (5500 (®) - guun( o) &

0

subject to

(3.2) ' {g/’l; + Ay + Bilyn) = W Bays woe. in 10, T'{
yh(o) = Yu¥o

where of, ., 8; ave the regularizations of o,, g and B, respectively, defin-
ed by

70 T - 100 s sl gaf 92 n
os(yn) = \ oy — €0)5,(0)d0, ¢, — being a € — mollifier in R
R®
g.(w) = inf {lu — v{?/2¢ - g(v), ve H}

L= e HI — (I + &)

Bh,s
55(7/1;) - gh,e(]/h o 50)971( 0)6[0
nw
As regards (3.2) this may be written as
o i + Oliya) = wBuys a-e. on 10, I
(3.3)
Yu(0) = vaYo

where
i )

(3.4) Til) = i) + szwh)u-» at — thm(t)) at
0 0

(3.5) ) ;Sj,.@(yh — <O)py(0) O

R"
jh,s(yh) = iIlf {l ?/7! . Zhl‘l/zs l + jh(zh)7 zh € "'rh}

The following technical lemmas are useful to prove the convergeunce
of Problems (P, .).
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LEMMA 3.1. For any y,e D) the following two velalions hold

(3.6) lim sup G() < Lo
=0

(3.7) lim inf Ii(y,) = L(ya)
g—0

for any sequence {yg} strongly convergent to g, in L¥0, T'; V,) when < — 0.
Proof. From (3.5) we have

ji(?/h) — jh(i’/n) < jn(?/h) .Oh( 0) dO +
Rn
-2\ 101p (0030 — i) = S 10126, (8) 6.

Rn Rn

z
13

This, in conjunction with (3.4) gives (1) <L(y,) + L 10]20,(0)d6
Rn

which implies (3.6).

Let now {5} be a sequence convergent to i, in L0, T V,;) as
e — 0, s0 we may infer on a subsequence

i) — () strongly in V,, a.e.'t1€]0, T for ¢ — 0
Whritting

(3.8) JEyit) = S(ji(zi(t, 0)) -+ |21, 0) —

— yit) — <0]3/2e0,(0) dO

T
and assuming that S Je(ys(t)) dt is bounded for & sufficiently small we
0
find that
25(t, 8) — %5(1) — ¢ 0 — 0 strongly in V, a.e. te J0, 1], |8|e [0,1],
hence
25(t, 0) — (1) strongly in V,-,, a.e.te 10, I'[,10]e [0,1], for «— 0.

Since I, is lower semicontinuous, using Fatou’s lemama and '(3.8)
we geb 3

Wi T g
tim inf Sﬁ(ﬁ(t))dt > SS Jua1)) pa( 0) 46 — th(yhm) at
! O jn 0

from which (3.7) is easy obtained.

S
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For = >0 we define the operator

Ty : L0, T; V,) — L0, T V) given by T, cun —= 2
where 2, u, verity the system
{zllb + 0[5(zh) -~ uerhzh a.e. on [0) T]
3.9
() 2(0) = 1Yo

1t is velatively easy to show that I', . is compact. In addition we
can prove that I, . sabisties the properties desceribed by

TeMMA 3.2. Let u, € L0, T) and vyy,€ D(l,) be fimed. Then
(3.10) | T, — Dty oy < O 2y for all e>0
(3.11) (T, ) — Ty) weakly in L0, 1'; V,) for ¢ — 0.
Proof. Let y; be the solution of (3.3) corresponding to w, l.e.

yi' -+ OU(yR) = w.Buyi
(312) {?/;:L(O) = YIL?/O'

iplying this by #§’ “respectively by
Multiplying this by ;' and respec y D3
W — YaYo and h?tegrating from 0 to ¢ we obtain

12
t
(5.13) S lys’ 12 ds -+ L(ys(D) < Bi(vaye) + C S g 1% 9517 ds
2 0
0
and
12 12
(3.14) | wa(t) — vavoli + Sli(yi)ds < Sli(vwo) ds—+
0 0

t
t
1 5 5
g\ 0 = lids + 5\ 1Banisiu s
2 0
0
Since 15 is uniformly bounded below by an affine function, anc

li(\(h ?/o) < lh(Yhyo) _|[_ ET/Q

i 18 i Y / l
e obtain by (3.14) via Gronwall’s lemma that {yh_} 153 1}13131“?‘1 J%}quu\ln l;}gt
i‘:lb& [(I;I .T].; Vo) i et e T bac%( toc( {1.3} is bounded in
st iv\, uniformly bounded in L0, T'; V), le‘l'lr?' ‘Elll{c b it sdticen ot
%%'%(OLT- 11"-;)' which in conjunection with (3.12) gives .
A _a_‘, i
oLy} in L0, T5 Vy)- ‘ |
: I{"‘kl*T}mJ\r introducing the inequality (see 131

(CLAC 012(%)7 Y — 22 — Cle + )\)(l(ali)o(?/h)l% +
+ @)@ I + 1)
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in (3.12) we get

(3.15) 1950 — i) < Cle + M2, ¢, 0 >0, 1€ [0, 7.

From the above relations we dedu

Vi) and ¢, € L0, T;V,

such that for ¢ — 0 the following conver
hold

¥i — ¥, strongly in ¢([o, T 7))
Y — ¥Yn weakly in I2(0, 57,
oli(ys) — ¢, weakly in L0, T; v,).
This together with (3.12) gives
Uit + q() = W) Bg,(1) ae. te jo, 7|
In order to prove (3.11)) we must show that

a(l) € IL(y,)(1) ae. te 10, T'.

For this we multiply (3.12)
{ obtaining

() — o |2 — |yi(s) — v, 12 i i
i) — 9 - [4(5) — g +S<zz<yz<v>)~1;,<yh>> a-

s

?

< Suz,(f)(Bhyi(T), Yi(w) — m dv for all y,e v,
and 0gs <t < T.
Making = — 0 and using Fatou’s lemma, we obtain
12
i":t = th_ !N $) — 2L ~
Dl = i = ) = 1l G NI ~ (¢~ i) <

H

Suhh)(Bﬂyh(T), TulT) — gy .

s

Dividing the last by (¢ — 8) and making s — ¢ we obtain

Yit) + 0h(ys(1) 3 w() Byu(1) ae. 1c1,0 7Y,
hence q,(t) € 0L,(7,(t)) a.e. te]0, TT.
Finally (3.11) follows from (3.15).

Sinee the properties invoked for establishing the evistence of an
optimal pair for problem (P) are kept for (P, ) we conclude that there
exists an optimal pair in this case.

with ¢ — », and integrate from s to

ce that there exist 7, e Wi, By
gences
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cction presents the convergence of the
) to those of (), for e — 0. I

be an optimal pair for the problem

The main vesult of thlS) 8
optimal pairs for problems (1 e
marorEM 3.1, Let (i, U

(P ).
h,e
TIL(;’NA; fO? {3 e 0 we har'lre

us* — u, weakly in L¥0, 1
yit — y, strongly in C(10, T'75 73)
where (Yp, Up) 15 ON optimal pair for (P,).
Proof. Since (y§, ui) is an optimal pair for (P )
lity holds

the following inegua-

A
T i
(@ii*) + gelus*)dt < S(@ﬂfh,sum) + gului) dt
0

0
¥ i oar imal control for () .
& i an optima . .
M ( 5 ¢he lipschitzianity of ¢, and the inequality g. < ¢
Using (3.10), the lpscehitzialib o

we obtain atter some caleculations
2

] etz
lCPrEL( I‘I;-,s(/“;f)) T (Ph( FIL/U’Z)‘ < Y el

which implies

g0

T
T
lin sup S (o7 () + gelui®) @b < % (oul Tytif) + glui)) a.
0
0

ivi implies that {u;} 18 unded in L0, T,
Now the coercivity of ¢, implies that {uj} 18 bo -

hence on a subsequence we have
d M
us — i, wealkly In 120, 1) for ¢ — 0.
f goes i an s manner as in Lemma 3.2.
The test of the proof goes 1n an ‘ma,lngum manne T
In order to solve the problem (P?.E) b\lr an _:'1,1}_1]1.0),;11: n(l_la. 1‘0101111 1)[;2] e
se @ gradi dphm. This algorithm 18 mspire - X
all uge a gradient algorit e inepired. | A, For
?bh%altmvm'mﬂc;s we refer the reader Lo [;i-]. Zt or oux pl}?_; pL{s; :,ux(vg I;}y
(":ﬂate the derivative of the fanetional #¢ : L2(0, T') — Kk dellne

1y
Flu) :S(aoi(y,,) - gulun) @ Where gy = T (w)
0

F;:L('M/,L + 7\’l)h) Fin Fﬁ(uh)

(I(Tletl(luh% /Uh) = }\1_{101
A0
T

j
=S (7 @)y 2l G-+ S(v.qa(uh), o)
0

0
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where (2,, v,) satisfies the system

{2’;; + VHi(y)z = 0By, + 0Bz,

2,(0) = 0.
Let us consider now p, € W20, T; V,) the solution of
{p” — V() Py = — w, Bfp, + VAV
}9,‘(17) =0

After some calculations involving the last formulas we obtain

’,W;I(u’h) e vgs(“h) . (pha B/l]/h)h

and the algorithm, we propose is the following.
Step 0. choose u{®

set n: =0
Step 1: compute y® by solving the system
4P+ V) = u” By
{.7/(1:1)(0) = o
Step 2: test if the pair (44", w{™) is satisfactory
if YES : then STOP
it NOT, G @ T O Step 3
Step 3 : Compute py® from the system
{pﬁl”’ = VIO — wi Bipi? 4V ¢i(y)
pi(T) =0
Step 4: Compute u{**? given by

- /u';t1l+1) = u;tn) - pn(vgs(‘uﬁ”) - ( ’I(L”)7 Bhy;:l))h)
Step 5: Set n: =n 4 1.

GOTO Step 1.
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