L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 15, No 1, 1986, pp. 69-74

Egyporthic Lat. Land. Some Geometry ment that I had been sufficient to to the earth of the think of the base of a

STRICTLY CONCAVE AND STRICTLY SUPERHARMONIC FUNCTIONS

L RASA = W OIL A IN SO = IN IN I. KAŞA (Cluj-Napoca) = 10 (Cluj-Napoca)

to be and the first and a start of the second and the second The potentials p, defined on a harmonic space X, with the property:

Compartments Name 1 5, The gift Transe Co. Sand Co. Arts Tank Co. Arts if μ and ν , are measures on X such that $pd\mu = pd\nu < \infty$ and $sd\mu \le pd\nu < \infty$ I be a measure on D. Clearly (1.2) halds it [1.3]

sdv for any nonnegative hyperharmonic function s, then $\mu = v$

are investigated in [3] (see also [4, p. 166] and [8, p. 438]). This paper is concerned with functions having similar properties.

1. Strictly superharmonic functions. Let D be an open subset of $R^n(n \ge 2)$ having a Green function G. Let u be a superharmonic function on D. Then

(1.1) $u(x) \geqslant L(u:x,\delta)$ light view Corollary her and

Traday or more and the year west to fit no after those

for each $x \in D$ and $\delta > 0$ such that $\overline{B}_{x,\delta} \subset D$. Here $B_{x,\delta}$ is the open ball with center x and radius δ ; $L(u:x,\delta)$ is the average of u on the boundary of $B_{x,\delta}$ (relative to surface area).

We say that u is a strictly superharmonic function on D (see [1,

p. 72]) if (1.1) holds with ">".

Proposition 1.1. Let θ be a measure on D; suppose that $u=G\theta$ is a finite continuous potential on D. Then u is strictly superharmonic on D iff (1.2) $\theta(U) > 0$ for each non-empty open set $U \subset D$.

Proof. Let U be a non-empty open set, $\theta(U) = 0$. Then u is harmonic on U [7, Th. 6.6].

Conversely, suppose that (1.2) holds. Let $x \in D$, $\delta > 0$, $\overline{B}_{x,\delta} \subset D$. u is superharmonic, hence $L(u:x,\delta) \leq u(x)$. Suppose $L(u:x,\delta) = u(x)$. Let $B = B_{x,\delta}$ and h = PI(u, B) [7, p. 23]. Then h is harmonic on B, $h \leq u$ on B [7, Th. 4.11] and $\lim_{z \to 0} h(y) = u(z)$ [7, Th. 2.8]. It follows $h(x) = L(u:x,\delta) = u(x)$ 00 V 4001

Let $x_1 \in B$, $h(x_1) < u(x_1)$. Let c > 0, $x_1 \in \partial B_{x,c}$. Then L(h:x,c) < c< L(u:x,c). On the other hand, h(x) = L(h:x,c) and u(x) = L(u:x,c) (x, c) [7, L.4.18]. Hence L(h: x, c) = L(u: x, c), a contradiction. Thus u = h on B, i.e. u is harmonic on B. But then $\theta(B) = 0$ [7, Th.6.9], which contradicts (1.2).

Storman Storers and an appropriation for

Let λ be the Lebesgue measure on \mathbb{R}^n .

Theorem 1.1. Let θ be a measure on D such that

(1.3) $\lambda(M) = 0$ for each $M \subset D$ with $\theta(M) = 0$.

Let $u = G\theta$. If μ and ν are measures on D such that $\mu(u) = \nu(u) < \infty$ and $\mu(s) \leq \nu(s)$ for each nonnegative superharmonic function s, then $\mu = \nu$.

Proof. Let D' be a component of D. Then $G\mu$ is superharmonic on D' or $G\mu = \infty$ on D'. Let $G\mu = \infty$ on D'. From (1.3) and [7, Th.6.14] we deduce $u(u) = u(G\theta) = \theta(G\mu) = \infty$, a contradiction. Hence $G\mu$ and Gv are potentials [7, p. 98]. From $\mu(u) = \nu(u)$ it follows that $\mu(\dot{G}\theta) =$ $= \nu(G\theta)$, i.e. $\theta(G\mu) = \theta(G\nu)$ [7, Th. 6.14]. Now G(x, .) is nonnegative superharmonic for each $x \in D$, hence $G\mu(x) = \mu(G(x, .)) \leq \nu(G(x, .)) =$ $=G\nu(x), x\in D$. We deduce $G\mu=G\nu$ 0-a.e., i.e. $G\mu=G\nu$ λ -a.e. $G\mu$ and Gv are finite λ -a.e. [7, Th.4.10]. Hence $G\mu$ and $G\nu$ are finite and equal λ -a.e. From the proof of Theorem 6.15 in [7] we deduce that $\mu = \nu$.

Remark 1.1. Let θ be a measure on D. Clearly (1.2) holds if (1.3) holds. Let M be a closed subset of D, $\lambda(M) > 0$, $\operatorname{int}(M) = \emptyset$. Let $\theta(B) = \emptyset$ $=\lambda(B\cap(D\setminus M))$ for each Borel set $B\subset D$. Then (1.2) holds but (1.3) does not hold.

Remark 1.2. The function u from Theorem 1.1 is superharmonic or $=\infty$ on each component of D. Let D' be a component on which u is superharmonic. Using Theorem 1.1 it is easy to prove that u is strictly superharmonic on D'. and as food of appropriate to the state of the property of the

2. Pointwise strictly S-concave functions. Geometric characterizations. Let K be a compact metric space. Let S be a subset of C(K) such that

(2.1)
$$aS + bS \subset S \text{ for all } a, b \ge 0$$

(2.1) $aS + bS \subset S$ for all $a, b \ge 0$ (2.2) There exists $s_0 \in S$, $s_0(x) > 0$ for all $x \in K$

We say that $u \in C(K)$ is pointwise strictly S-concave (see [2, p. 60]) and p. 401) if

(2.3)
$$[x \in K, \mu \in M_{+}(K), \mu \neq e_{x}, \mu(s) \leq s(x), s \in S] \Rightarrow \mu(u) < u(x)$$

Here $M_{+}(K)$ is the set of all positive Radon measures on K and e_x is the Dirac measure at x. Take there The marinan is not be a stone of

Example 2.1. Let K be a compact convex metrizable subset of a locally convex Hausdorff space. Let $S = \{\min(h_1, \ldots, h_n) : n \in \mathbb{N}, h_i \text{ con-}$ tinuous and affine on K. Then $u \in C(K)$ is pointwise strictly S-concave iff u is strictly concave on K (see [9]).

Example 2.2. Let X be a strictly harmonic space [1] and K a compact subset of X. Let s be the function from the proof of Theorem 2.7.6 in [1]. Then s|K is pointwise strictly S-concave, where $S=({}_{+}\mathscr{S}_{\times}\cap$ \cap C(X)) |K| \cap C(X)

Let us remark that in the above examples the cones S are minstable.

In the proof of the next result (which, in case $\pm 1 \in S$ is contained in Corollary 1 from [5]) the hypothesis that K is metrizable is not necessary.

LEMMA 2.1. If S is min-stable and $g \in C(K)$, then the following assertions are equivalent:

$$(2.4) \hspace{1cm} [x \in K, \, \mu \in M_+(K), \, \mu(s) \leqslant s(x) \, \forall s \in S] \Rightarrow \mu(g) \leqslant g(x)$$

$$(2.5)$$
 and a minimum of $g \in \bar{S}$

$$(2.5) g \in \bar{S}$$

$$(2.6) \forall x \in K \ \forall \varepsilon > 0 \ \exists s \in S : s \geqslant g, s(x) < g(x) + \varepsilon.$$

Proof. (2.4) \Rightarrow (2.5). S being min-stable, we apply the Choquet-Deny type theorem established in [6, Ex.3.2]. Thus, if $g \notin \bar{S}$ then there exists a lattice homomorphism $\delta: C(K) \to R$ and a measure $\gamma \in M_+(K)$ such that $v(s) \leqslant \delta(s)$ for each $s \in S$ and $v(g) > \delta(g)$. If $\delta = 0$, then $0 \leqslant v(s_0) \leqslant$ $\leqslant \delta(s_0) = 0$, hence v = 0; it follows $0 = v(g) > \delta(g) = 0$. Hence $\delta \neq 0$. Then there exist r > 0 and $x \in K$ such that $\delta = re_x$. If $\mu =$ =(1/r)v, then $\mu(s) \leq s(x)$ for each $s \in S$.

(2.4) implies $\mu(g) \leq g(x)$ and therefore $\nu(g) \leq \delta(g)$, a contradiction.

(2.5) \Rightarrow (2.6). Let $x \in K$ and $\varepsilon > 0$. Let d, $q \in R$, $0 < d < qs_0 < \varepsilon/2$. Let $s_1 \in S$, $||g - s_1|| < d$. Then $s = s_1 + qs_0$ satisfies (2.6).

(2.6) \Rightarrow (2.4). Let x and μ be as in (2.4). Let $\varepsilon > 0$ and let $s \in S$, $s \ge g$,

 $s(x) < g(x) + \varepsilon$. Then $\mu(g) < g(x) + \varepsilon$. Since ε was arbitrary it follows $\mu(g) \leqslant g(x)$. The the state of the state of g(x) is the state of g(x).

Remark 2.1. The min-stability of S was used only in the proof of the implication (2.4) \Rightarrow (2.5). Another proof of this implication may be obtained applying Corollary 1.6 and Theorem 1.11 from [2].

The concave and strictly concave functions in C[a, b] may be characterized geometrically by studying the position of the tangent line at any point of the graph. We shall obtain similar characterizations for the pointwise strictly S-concave functions.

(2.4) means that g is pointwise S-concave (see [2, p. 40]). From $(2.4) \Leftrightarrow (2.5)$ we deduce that if S is min-stable, then the set of all pointwise S-concave functions coincides with \bar{S} . The equivalence (2.4) \Leftrightarrow (2.6) yields a geometric characterization of the pointwise S-concave functions.

The next proposition gives a sufficient condition in order that a function be pointwise S-concave.

Proposition 2.1. Let $g \in C(K)$. If

 $(2.7) \ \forall x \in K \ \exists s \in S : s \geqslant g, s(x) = g(x),$

then g is pointwise S-convave.

Proof. $(2.7)\Rightarrow(2.6)\Rightarrow(2.4)$ (see also Remark 2.1).

A similar sufficient condition for the pointwise strictly 8-concavity is given in All of returns of overall own type it

Proposition 2.2. Suppose that for each $x \in K$ there exists $s_x \in S$ such that $s_x(x) \to 0$. Let $f \in C(K)$. If

(2.8) $\forall x \in K \exists s \in S : s(y) > f(y) \ \forall y \neq x \ and \ s(x) = f(s),$ then f is pointwise strictly S-concave.

Proof. Let $x \in K$, $\mu \in M_+(K)$, $\mu \neq e_x$, $\mu(s) \leq s(x)$, $s \in S$. Let $s \in S$ with s(y) > f(y) for all $y \neq x$ and s(x) = f(x). Then $\mu(f) \leqslant \mu(s) \leqslant s(x) \leqslant f(x)$. If $\mu(f) = f(x)$, then $\mu(f) = \mu(s)$, i.e. $\mathrm{supp}(\mu) \subset \{x\}$. We deduce $\mu = ae_x$, with $a \ge 0$. From $\mu(s_0) \le s_0(x)$ and $\mu(s_x) \le s_x(x)$ it follows that $a \le 1$, $a \ge 1$. hence $\mu = e_x$, a contradiction. Therefore $\mu(f) < f(x)$.

A necessary and sufficient condition for the pointwise strictly

S'-concavity is given in

THEOREM 2.1. A function $f \in C(K)$ is pointwise strictly S-concave iff $\forall x \in K, \ \alpha < 0, \ \beta > 1, \ V \ open \ neighborhood \ of \ x, \ \exists s \in S, \ c > 0$:

(2.9)
$$(cf - s)(x) = 1$$

$$(2.10) cf - s \leqslant \beta on K$$

$$(2.11) cf - s \leqslant \alpha on K \setminus V.$$

Proof. (see also [12]). Let $T=\{-cf+s:c>0,s\in S\}$. Then f is pointwise strictly S-concave iff

$$(2.12) \{x \in K : [\mu \in M_+(K), \mu(t) \leq t(x), t \in T] \Rightarrow \mu = e_{x_0} = K.$$

On the other hand, by Corollary 3.6 in [13], (2.12) is equivalent to $\forall x \in K, \ \alpha < 0, \ \beta > 1, \ V \ \text{open neighborhood of} \ x, \ \exists t \in T:$

$$t(x) < 0, t \geqslant \beta t(x)$$
 on $K, t \geqslant \alpha t(x)$ on $K \setminus V$.

But t = -c'f + s', with c' > 0, $s' \in S$. It suffices to consider s == -s'/t(x), c = -c'/t(x).

Remark 2.2. Proposition 2.2 may be obtained as a consequence of Theorem 2.1. Indeed, let $x \in K$, $\alpha < 0$, $\beta > 1$, V open neighborhood of x. Let $s' \in S$, s'(y) > f(y) for all $y \neq x$, s'(x) = f(x). Let $s_1 \in S$, $s_2(x) = f(x)$ =-1 and let $s=cs'+s_1$. If c>0, then $s\in S$. We have cf-s= $=c(f-s')-s_1$, hence (cf-s)(x)=1 for all c>0. For a sufficiently large c, (2.10) and (2.11) hold too.

3. Strictly S-concave functions. We say that $u \in C(K)$ is strictly S-concave (see [2, p. 22]) if out state with a supplication with a sufficient wor

$$(3.1) \qquad [\mu, \nu \in M_+(K), \mu \neq \nu, \mu(s) \leq \nu(s), s \in S] \Rightarrow \mu(u) < \nu(u).$$

Clearly, every strictly S-concave function is pointwise strictly S-concave.

THEOREM 3.1. If S is min-stable, then every pointwise strictly S-concave function is strictly S-concave.

Proof. Let f be pointwise strictly S-concave. Then (2.4) holds, hence $f \in S$. Let $\mu, \nu \in M_+(K), \mu(s) \leq \nu(s), s \in S$. Then $\mu(f) \leq \nu(f)$. Suppose $\mu(f) = \nu(f)$; we have to prove that $\mu = \nu$.

Let $t_n \in S$, $t_n \to f$. Since K is metrizable, C(K) is separable, hence there exist $s_n \in S$ with $S \subset \operatorname{cl}\{s_n : n \in N\}$.

Applying Theorem 1.12 in [2] we deduce that there exists a map $x \to T_x$ of K into $M_+(K)$ such that

3.2) For every $g \in C(K)$ the function $x \to T_x(g)$ is v-summable and $\mu(g) =$ $T_x(g)dv(x)$

(3.3) For every $s \in S$ we have $T_x(s) \leq s(x)$ y-a.e. on K. Then there exists $A \subset K$, $\nu(A) = 0$ such that for all $x \in K \setminus A$ and $(3.4) T_x(t_n) \leqslant t_n(x)$

$$(3.4) T_x(t_n) \leqslant t_n(x)$$

and
$$T_x(s_n) \leqslant s_n(x)$$

$$T_x(s_n) \leqslant s_n(x)$$

From (3.4) it follows that $T_x(f) \leq f(x)$ for all $x \in K \setminus A$. On the other hand, $\nu(f) = \mu(f) = \int_K T_x(f) d\nu(x)$; hence

$$T_x(f) = f(x) \text{ v-a.e.}$$
From (3.5) we deduce $T(x) < c(x)$ for $x > 0$

From (3.5) we deduce $T_x(s) \leq s(x)$ for all $x \in K \setminus A$ and all $s \in S$. It follows that there exists $B \subset K$, $\nu(B) = 0$ such that

(3.7) $T_x(f) = f(x)$ and $T_x(s) \le s(x)$ for all $x \in K \setminus B$ and all $s \in S$. But f is pointwise strictly S-concave; it follows that $T_x = e_x$ for all $x \in K \setminus B$. Then, for each $q \in C(K)$ we have

$$\mu(g) = \int_K T_x(g) d\nu(x) = \int_K g(x) d\nu(x) = \nu(g).$$

and the theorem is proved.

Some applications of this result are given in [10], [11]. Here we present another application.

With the notations from Example 2.2, let $\mu \in M_+(K)$, $E \subset K$, μ^E the measure defined in [1, Th. 3.4.1]. Then $\mu^{E'} \in M_{+}(K)$ [1, Th. 3.4.3].

Proposition 3.1. If $\mu(C_K \overline{E}) > 0$, then $\mu^E(p) < \mu(p)$ for any strict potential p on X.

Proof. See [1, p. 116].

Proposition 3.2. If $\mu^E \neq \mu$, then $\mu^E(f) < \mu(f)$ for each pointwise strictly 8-concave function f.

Proof. S is min-stable [1, Cor. 1.1.2]. By Theorem 3.1, f is strictly S-concave. We have $\mu^{E}(s) \leq \mu(s)$ for all $s \in S$ [1, p. 50 and Cor. 3.4.2]. Hence $u^{E}(f) < u(f)$.

REFERENCES

- 1. Bauer, H., Harmonische Räume und ihre Potentialtheorie, Lect. Notes Math. 22, Springer-Verlag 1966.
 - 2. Boboc, N., Bucur, Gh., Conuri convexe de funcții continue pe spații compacte, Ed. Academiei, București 1976.
 - 3. Constantinescu, C., Some properties of the balayage of measures on a harmonic space, Ann. Inst. Fourier, 17, 1, 273-293 (1967).
 - 4. Constantinescu, C., Cornea, A., Potential Theory on Harmonic Spaces, Springer-Verlag, 1972.
 - 5. Edwards, D. A., Minimum-stable wedges of semicontinuous functions, Math. Scand., 19, 15-26 (1966).
 - 6. Flösser, H. O., Irmisch, R., Roth, W., Infimum-stable convex cones and approximation, Proc. London Math. Soc., 42, 104-120 (1981).
- 7. Helms, L. L., Introduction to Potential Theory, J. Willey, 1969.
 - 8. Mokobodzki, G., Sibony, D., Principe du minimum et maximalité en théorie du potentiel, Ann. Inst. Fourier, 17, 1, 401-442 (1967).

 9. Rasa, I., On some results of C. A. Micchelli, Anal. Numér. Théor. Approx. 9, 125-127
 - (1980).
- 10. Raşa, I., On a measure-theoretical concept of convexity, Anal. Numér. Théor. Approx., **10**, 217—224 (1981).
- 11. Raşa, I., On the barycenter formula, Anal. Numér. Théor. Approx., 13, 163-165 (1984).
- 12. Raşa, I., Generalized strictly concave functions, ,,Babeş-Bolyai", Univ. Cluj-Napoca, Fac. of Math., Preprint nr. 6/1985, pp. 177-180.
- 13. Wittmann, R., Shilov points and Shilov boundaries, Math. Ann., 263, 237-250 (1983)

Suns the band of the transfer of (c) & (8) The transfer of (1) To (7.8)

Received 28.VIII.1985

Institutul Politehnic Catedra de matematică Str. Emil Isac, nr. 5 3400 Cluj-Napoca România

their exist is a Santa Section and