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The potentials p, defined on a harmonic space A, with the property :

if p_' and v, are measures on X such thats pdg:S PAv<<oo andg sdy. <

%

Jhyperharmonic function s, then o= v

Ssdv for any nonnegative

are investigated in [3] (see alxo [4, p. 166] and L8, p. 438]).
* This paper Is concerned with functions having similar propertics.

L. Strietly superliuivmonié funetions. Let D be an open subset of
K'(n 2 2) having a Green function @. Let w be a superharmonic funec-
tion on D. Then

(1.1) u(w).;.?-_ Liu : 2 8)

for each xe D and 3 > 0 such that B, s < .D. Here B, 5 is the open Dball
with center x and radius § sL(w: 2, 8) is the average of v on the boun-
dary of B, (relative to surface areay, |

- We say that u is a stricly superharmonic function. on D (see [1,
p.' 72]) if (1.1) holds with « =7 " ' ;

Provosirron 1.1, Let 0 be a measure on D; suppose that w = G0
s a funite continous potenticgl on *D. Then wu is strictly superharmonic on
D iff LB etk B Al P
(L.2) 0(U) >0 for cach non-emply open set Uc D. _

Proof. Let U be a non-empty open set, 6(U) = 0. Then u is har-
moniceon’: U [f7,-Th: 6.6« s - .

Conversely, suppose that (1.2) holds. Let - ze BB L3N0 1 Y e )
% is superharmonie, hence L(w : @, ) < u(x). Suppose L{w vy 8) = u(ax).
Let B = B, and h = Pl{u, B) [7,p. 23]. Then h is harmonic on B,
h <w on B [7,Th. 4.11] and lim Wy) = w(z)[7, Th. 2.8]. It follows

' ¥oze 0B

Mlw) = L(w: 2, 8)y'= u(a)." - CRAS )
Let e By h(@) < u(z,). Fet-e > 0, ;¢ 0B, ,. Then L(h:z,c¢) <
< JI(uw:2,¢). On the other hand, h(x) = L(k:x, ¢) and w(w) = I{uw:
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@, 0) [7,1.4.18]. Hence L(h: @, ¢) = L(u : x, ¢), a contradiction. Thus
% = h on B, ie. % is harmonic on B. But then 0(B) =0 [7,1h.6.9],
which contradiets (1.2).

Let A be the Lebesgue measure on R*,

TEROREM 1.1. Let 6 be a measure on D such that
(1.3) (M) =0 for each M<D with 6(M) = 0.

Let w = G0. If p and v are measures on D such that w(u) = v(u) < co
and u(8) < v(s) for each nonnegative superharmonic function s, then p = v.

Proof. Let D' be a component of D. Then Gy is superharmonic on
D' or Gy = oo on D'. Let Gu = oo on D’. From (1.3) and [7, Th.6.14]
we deduce u(u) = w(@8) = 0(Gu) = o0, a contradiction. Hence Gp. and
Gv are potentials [7, p. 98]. From p(w) == v(u) it follows that w(G0) =
= v(G@0), ie. B(Gn) = B(Gv) [7,Th. 6.14]. Now ((z,.) is nonnegative
superharmonic for each xze D, hence Gu(x) = w(@(z, .)) < v(G(»,.)) =
= Gv(z), ve D. We deduce G = @Gv- 0-a.e., ie. Gu = Gv ra.c. Gy and
Gv are finite A-p.e. [7, Th.4.10]. Henee Gy and Gv are finite and egqual
-a.e. From the proof of Theorem 6.15 in [7] we deduce that == N,

Remark 1.1. Let 6 be a measure on D. Clearly (1.2) holds it (1.3)
holds. Let M be a closed subset of D, A(M)> 0, int(M) =@. Let O(B) =
= MBn (DN M))for each Borel set < D. Ther (1.2) holds but (1.3) does
not hold.

Remark 1.2, The function u from Theorom 1.1 is saperharmonic or
=co on each component of D. Let D’ be a compounent on which w is
superharmonic. Using Theorem 1.1 it is easy to prove that u is strictly
superharmonic on D’. i i

2. Pointwise strietly S~comeave fuuctions. Geomeirie characteriza-
tions. Let K be a compact metric space. Let § be a subset of C(K) such
that

(2.1) aS 4+ bS< S for all o,b = 0
(2.2) There exists So€ 8, so(x) >0 for all ge K

We say that we C(K) is pointwise strictly S-concave (see [2, p. 60
and p. 40]) if

(2.3) [ze K, pe M (K), us e, u(s) < s(w), s € Sl=p(u) < u(z)

Here M, (K) is the sct of all positive Radon measures on K and e, is the
Dirac measure at z.

Bzample 2.1. Let I be a compact convex metrizable subset of a
locally convex Hausdorff space. Let S={min (h,,. oy h): ne N, hy con-
tinuous and affine on K}. Then we C()) is pointwise strictly S-concave
iff % is strictly concave on K (see [9]).

Example 2.2. Let X be a strictly harmonic space [1] and K a com-
pact subset of X. Let s be the function from the preof of Theorem
2.7.6 in [1]. Then s|K is pointwise strictly S-concave, where S=(, &, n
n 0(X))|K. :
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Let us remark that in the above examples the cones S are min-
stable, c

] In the proof of the next result (Which, in case 4 1€ § is contained
in Corollary 1 from [5]) the hypothesis that K is metrizable is not necessary.

LemwaAY 2.3, If 8 is min-stable and ge O(I0), then the following
asseritons are equivaleni :

(2.4) [#e K,pe M (K),u(s) < s(x) Vse ST=u(g) < g(z)
(2.5) _ ge 8
(2.6) Voe KVe >03s¢e 815 2 g,8(a) < g(a) + e

Proof. (2.4)=(2.5). S being min-stable, we apply the Choquet-Deny
type theorem established in [6, Bix.3.2]. Thus, if g¢ &8 then there exists
a lattice homomorphism §': C(K)— R and a measure ve M +(J0) such
that v(s) < 3(s) for each ¢ § and v(g) > 3(g). If § = 0, then 0 < v(s,) <
< 8(8) = 0, hence v = 0; it follows 0 = v(g) > 8(g) = 0. Hence 5+£0.
Then there exist » >0 and ae K such that 8 =re,. If =
=(1/r)v, then p(s) < () for each se §.

(2.4) implies p(g) < g(2) and therefore v(g) < 8(y), a coutradiction.

(2.5)  =(2.6). Let w¢ K and ¢>0. Let d, ge R, 0 < d < gs,< ¢/2. Tet
$1€8, llg — 81|l < d. Then s =g + gs, satisties (2.6).

(2.6) =(2.4). Let « and yu be as in (2.4). Let ¢>0 and let se S, s> ¢,

$(a) < g(#) + = Then u(g) < g(w) - e Sinee e was arbitrary it follows
wa) < gla).

Remark 2.1, The min-stability of 8 was used only in the proof of
the implication (2.4)=(2.5). Another proof of this implication may be
obtained applying Corollary 1.6 and Theorem 1.11 from [2].

The coneave and strictly concave functions in ¢f [«, 8] may be cha-
racterized geometrically by studying the position of the tangent line at
any point of the graph. We shall obtain similar characterizations for the
pointwise strietly S-concave functions.

(2.4) means that g is pointwise S-concave (see [2, p. 40]). From
(2.4)=(2.5) we deduee that if S iy min-stable, then the set of all pointwise
S—uunca.ve_fun.ct;iom coincidey with §. The equivalence (2.4)<(2.6) yields
a geomefric characterization of the pointwise S-coneave functions.

The next proposition gives a sufficient condition in order that a fune-
tion be peointwise S-concave.

ProposITion 2.1. Let ge O(K). 1f
(2.7) Yo e Kise S:5 > ¢, 8(xw) = g(x),
then g is pointwise S-convave.

Proof. (2.7)=(2.6)=(2.4) . (see also Remark 2.1).

] A similar sufficient condition for the pointwise strictly S-concavity
18 given in
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PROPOSITION 2.2, Suppose that for each =€ K there eyists $,€8
such that s,(z) — 0. Let fe CI). 1f

(2.8) = VaeK 3se8: s(y) > fly) Yy #2 and s(x) = f(s),
then f is potntwise striotly S-concave.

Proof. Let xeK, veM (K), u#e, u(s)<s@), seS. Let ses with
s(y) > fly) for all y #& and s(x) = f(x). Then p(f) < w(s)<s(@) < fla). It
w(f) = flx), then w(f) = u(s), i.c. supp(p)<izl. We deduce p = ae,,
with a> 0. From p(s)) <sp(x) and p(s,) <s.(x) it follows that «<1, a1,
hence p = e, a contradiction. Therefore u(f) < f(w).

A necessary and sufficient condition for the pointwise strictly
S-concavity is given in

THROREM 2.1. A funciton feC(K) is pointwise strictly S-concave
iff Yoell, « < 0, B > 1, V open neighborhood of xy Is€S, ¢ > 0 :

(2.9) (¢of — s)x) =
(2.10) of —s<B on I
(2.11) of —s<a on KN V.

Proof. (see also [12]). Let T = {—¢ + s:¢ > 0,s€ 8., Then f is
pointwise strictly S-concave iff :

(2.12) (el : [pe M (K), u(t) <t(x), (€ T]=p = e} = K.

On the other hand, by Corollary 3.6 in [13], (2.12) is equivalent to
Vae K, o 0,8 >1, V open neighborhood of x, 3te T:

o) < 0,1 = Bi(x) on K, ¢t = al(x) on L 1.

But ¢ = —¢'f + s, with ¢’ > 0,s"e S. It suffices to consider s =
= —s'[t(x), ¢c = —c'[t{x). '

Remark 2.2. Proposition 2.2 inay be obtained as a consequence of
Theorem 2.1. Indeed, let ze K, « < 0,8 >1, V open neighborhood
of w. Let s'e S, s'(y) > fly) tor all ¥ £, 8'(») = f(a). Let s e N, s(z) =
= —1 and let s =c¢s" + 8. If ¢ >0, then se 5. We have ¢f —s =
=co(f — 8’) — s, hence (¢f — s)(@#) =1 for all ¢ > 0. For & sufficiently
large ¢, (2.10) and (2.11) hold too.

3. Strietly S-coneave Tumetions. W¢ say bthat we O(K) is sirictly
S-concave (sec [2,p. 22]) if
(3.1) [y ve ML (K), w# v, pls) < v(s), 5.6 Sl=p(u) < v(w),

Hearly, every strictly S-concave function is pointwise = strictly
S-concave. .

TaworeM 3.1. If § s min-stable, then every pointwise stricily
S-concave function s strictly S-concave.

Proof. Let f be pointwise strietly S-concave. Then (2.4) holds,
hence fe 8. Let p, ve M (K), u(s) < v(8),s€ 8. Then u(f) < v(f). Suppose
u(f) = v(f); we have to prove that p = v.
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Let t,e 8,1, — f. Since I iy metrizable, C(K) is s rable, he
there exist s, e S with Scelis,:ne N, AGLART sepatable, dince

Applying Theorem 1.12 in [2] we deduce that th ists
5 T, of K into M.(K) such that ere exists a map

3.2) For every ge O(K) the function z — T.(g) is v-summable and u(g) =
=S ' (g)dv()

iy
and

(3.3) ;1:01* every se S we have T,(s) < s(z)v-a.e. on K.
Then there exists A< K, w(A) = 0 such that for all we K\ A and

all ne N :
(3.4) o) < 1,(2)
and

(3.5) To(s)) < s,()
rom (3.4) it follows that 7'( f) < flx) for all ge TN
On the other hand, v(f) = u(f) :S T.(f)dv(x); hence
K
(3.6) Tolf) = f(z) v-a.e.

From (3.5) we deduce T.(s)<s(z) for all ze K\ A and all
follows that there exists Be I , ¥(B) = 0 such that\ S B
(3.7) TW(f) = fla) and T.(s) < s(z) for all ge KN\ B and all se S,

But f is pointwise strictly S-concave: it follows that 7. —
all we I\ B. Then, for each ge O(K) we. have Ao

) — Sﬂz,.(g)rzvm =Sg(m)dv(w) - vlgh;

and the theorem is proved.

Some applications of this result are given in [10 11
present another application. ° sl

With the notations from Example 2.2, let ne M, (K). B K, u®
measure defined in [1, Th. 3.4.1]. Then pe I, (K) [+1(, T)l’l. 54.37 the

Prorosirion 3.1. If w(C,E) >0, then p* "
potentiel p on X, . i pip) < wp) for LR R

Proof. Sce [1,p. 116].
~ Prorosirion 3.2, Tf wfstu, then u¥(f) < wlf) for each pointwise
striclly  S-concave function f. :

X Proof. S 1; min—s}tavble [1, Cor. 1.1.2]. By Theorem 3.1, fis strictly
S-concave. We have u%(s) < u(s) for all s € S{1, .50 a1 d Cor. 3.4.2
Henee uf(f) < u(f). LE S I
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