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Abstract. A new method which provides a periodic spline approxi-
mation to a periodic solution of

&+ ko + kya® f(1) = 0, k<1

is presented. The method can be applied to ditferential equations of any
order. An attempt has been made using spline functions of continuity
class C™-2 rather than the shooting method to ensure the periodicity of
such a solution. Some computational examples are given and numerical
results indicate the efficiency of the Procedure.

1. Introduetion. Here, we shall be concerned with the quagi-linear
differential equation t

(1.1) & =P, x) = —kyaw — kyx® f(2), (1) = Xy #(ly) = m,

which governs some physical system and has always been an important
problem for scientists and engineers.

Our aim is to obtain periodie solutions to (1.1), whenever it exists
as the limit of a sequence of spline functions of degree m and continuity
class (m-2, ) '

Let us assume that the following conditions are valid :

(t) Fe 0"~1 in some domain D — {(t, 2)la =1, <t < b} and which satis-
ties a Lipschitz condition with respect to g,i.e.,

IF(t, m1) _-F(ta wz)l < L’ml = wz]-

(i) f(t) is sufficiently smooth periodic function with Period 7 —p _ 1,
and » is a non negative integer.

It appears that this method offers significant advantages over
other methods. Special cases and other procedures have been examined
in (4] and [2] which use the so-called averaging method. Also in [1] g
cubic spline method to obtain periodic solutions to seeond order diferen-
tial difference equations is investigated. Moreover, an approach (see [3])
to solve highly oscillatory ordinary differential equations is dealt with
there. s
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. Construetion of the Approximating -Spline Funetion. Tet (t)
be Lhe (,chct solution of (1.1). We-divide [, 0] into subintervals I, — = [t, +
+ 2(v — 1)k, 2vh], v = 1(1)N of equal length H =21 = (Z) — a)/ZN
N >m.
Now for e I, define the spline funetion S(1), of degree m, m = 4, and in
the contlnmty class 0™-1 [7,,b], as an al)DIO\LHl&thH to (1 1) by

L ,Sg])_ | LK m on 41 4
S(t) = Y O T — 21— Y ]—'— [t— ¢, —2(i —1)h)

7=0 Ni ! F=m=1

(2.1)

where the parameters €;,_, are determined according to the relations

(2.2) Sty 4 ) = —k Sty + 1h) — kyS8*(ty + Wh)f(t, + 1h),

l=2i—1, 203 i =1(1)N,
and

8§ = 89ty + 2vh); S (tg) = at?
We show that the above construction defines S(¢) uniquely as a spline o
degree m, deficiency 2 in the class (- [a b for fixed 7\ yoand k.
Writing (2.1) ai

(2.1%) Sy = A, () ¥+ y L'—‘ [t —1, — 200 = Dn)
J=m—=1 \7- J

it is clear that each 4,_,(¢) is uniquely determined by virtue of the conti-
nuity condition of spline.
Applying conditions (2.2) to (2.1%), ‘we have

Onltimi = Oy ) (Csy iy Oy} B
au.i—lz Dy yp (Omtiiid @n{i—l RO C"v'm,i—1 =1hCy iy
which can be written in the compact form
iy =021 (Cily5'h)

where
Co- bt 2(::1—_ZM6)“_ {7“'1’ [i;/l'i—L(f() 4 (20 — Dh-E
i Jm1 | i it 4 Wlop | n | :
-+ ﬁv (0171—1,1'—1 - E 0,7;.!'_1) i 7"2 Ai-_l(lf(J {21 — i)y 4
m — 1! 1o Al -
7},l;’f1 : i 1 Wl n » ! ,
+ _(’;)—’L ol l—)T ((Jmf-l,i-l + 70“ (/7'",.1'41) 'f(to + (24— J,)/l) i
4 ): . Yokl gy . .
H /11'—1(t0 ot (21, - J)h)} + (_(m_j_');__ {]"'1 [A~L-_1(t0 i 2“],)+
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~1
~1

(Zh)m-1 gL ; !
Q— (Om—l,i——l '|" % Om,ifl):, ‘%* /i?*_z [ l,fli—](to + 2"’) ‘JF

o (m—=1)!
and
B e —(;’;:: A {kl[ L DR #)‘T}( 6,y
42 o )] ] oo - (57)7')1) (i

+£6m.1—1))] Jlo + 20R) 4 A (1, 2 21’/L)} His
m

(m — 2) !

hm 3

Jym -1
{hl [A (g ed ity e B (1,;,{”7]_7! 3
1 ~ =t
+ "—'(’vm,i—l)] + ky I:Ai—l(to + (20— Db e ((—Ym,fl.iq'l—
7 B~ il

1 ~ ® Sl " : .
2| Eomz 1)] Jlo + (20 — I)h+ A, (1, + (20 — l'/)}-

fet €4, 07 e R? and
HQ%-l | Q%~1 ” =5 !O}Il——l,i—l T Om S 1| + (J’mv 1 0;—:1,1'——1!
Thus, in consideration of condition (i), a straightforward calculation
shows that
LhF(Bm — 4) 1o
(m — 1)(m —2)

Clearly the vector-valued function ®, , defines a strong contraction
Lh(hm — 4) ol )
< 1.
(m — )(m — 2)
Hence ¢, _; are uniquely determined and may be found by the iteration

O =@, (O 5 k)5 p=0,1,".....

19— 1(C11) — Q1 (CF_1)1I <

/t 1”

mapping for all & satisfying

It might be noted that the initial values €9, ,  and C9,_,, i = 1(1)¥,
are defined by \ : .
Yo I 1. 0 I J
Onlvey = S8 O = SGy
‘Thus, we have established the Tollowing :
\ Lh3(dm. — 4)

Turorum 1. If : < 1, then the spline function
: . (m — 1)(m — 2) : e
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approzimation S(t) to the solution of (1.1), defined by the above construc-
tion, exists and s unique.

3. The Basic Algorithm. Since we seek continuous periodie solution
to (1.1) of period (b — a). This solution can be approximated using the
spline function constructed above such that

{fl(kl’ Iey) == S(b, by, k) — @5 = 0
Jalley, Biy) = S(b, kyy b)) — @ = 0

An iterative method will be introduced to solve (3.1) for &, and k, and
consequently produces a sequence of splines which converges if the system
(3.1) does, then the limit spline will have properties that we require.
The steepest descent method is the proposed 1tera,t1\"e method we
shall use to find k;, %k, that uses a damping factor to avoid the_ almost
singularity or the ill-conditioning of the Jacobian. We can write (3.1)

in the form

(3.1)

(3.2) fi) =0
where f= (fl), = (;Gl), and hence
- 2 (5
By = ki ;pr;f_“’), p=0,12,...
where
(f®, w, w,f®)
o &
i I[ee, 20, f ||2
afM T ., .
is the damping factor, 0 < p, < 1 and w,= [ “;c ] is the Jacobian,
ofty

w;, ity transpose. i
’ o compute the entries of w, we can represent the derivatives by

using the finite difference approximations, e.g.,

afy . O8(by kyy Ky)  S(by By + 1, Kp) — S(b, Ry, Kp)

ok, ok 1
where ! is a suitable small value which keeps the local error bounded,
then we have

N i afl afz(p)
T+ = kP — (flm ok, i ak,
(3.3 y
cof(®) (D)
kprh = k@ — o, [ f@ o 1 fo afs” )
) ‘ ¢k, ik, )
The limit value of k% as p — oo will produce a contin periodic solution
to (1.1) with the period T =1b - ¢,
CoroLLARY 3.1. If the system (3.1) has a unique _solution  given
via the iteration (3.3) with suitable initial value k. Then (3.3) will produce a
sequence of splines {SP(t)}2, which converges uniformly on [t,, bl
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It should be pointed out that (see [5], [6]) the spline function appro-
ximations §'e C™~2, applied so far, are unstable and hence divergent as
h— 0 for m> 6 and are stable for m — 5.

It should be mentioned that we have not yet been able to find a
sufficient condition to assure the convergence of the coupled equation
(3.1). A theoritical analysis to determine k is still required.

4. Ilustrative Computations. This section decribes results of applying
the procedure to some test problem. All computations were fone on an
PERKN EL MER 1625 in single precision.

The example is :

& + ko + kyo? cost = 0, x(0) = 0.5, #(0) = 0
Numerical results are listed in Table 4.1 using a spline function of order

4. It turns out that the coefficients C,_, ,_, and C,.i-, remain bounded,
a8 h— 0.

Table 4.1
(m=4, k=0.999, k= 0.01, tc [0,2])

! I = /40 _ = /80 =
Cm_y,ica Cim,iq S(0) Cm_1,iy Cm,iq S ()
/2 0.500377 —0.029388 —0.001515 0.499880 -—0.010268 —0.001123
T —0.001576 —0.509585 —0.500197 | —0.001863 —0.511580 --0.500077
3r/2 —0.500710 0.036228 0.003265 | —0.500049 0.017315 0.003270
2 0.003716 0.509572 —0.500340 0.004384 0.511501 0,.500147

It is worth pointing out that the method is unstable and hence
divergent if m > 6, as indicated in Table 4.2

Table 4.2
(m =6, h=m/20, ky = 0.998, k, = 0.01)

t Cm_1,i1 Com,i_y S(t)
0.31416 —0.801944E 400 6.828334E 400 0.459608KE4-00
1.25664 —0.374151E 404 0.351783E4-05 0.224893E 402
2.51327 —0.183616E-4-07. ... 0.172662E4-08 0.110357E4-05
3.14159 —0.114210E-09 0.107385E-4-10 0.686343E--06

The solution by the spline method is compared to the solution by
the generalized averaging method [2] in Table 4.3. Using a spline of order
five it is apparent that the spline method can achieve much gain in effi-
ciency ever the generalized averaging method if smaller step size is used
{c.f. Table 4.4)



80

S. SALLAM i}

Table 4.3
U =35, ky = 0.9909690, ky= 0250861, 1 = 1/40)

{ oy (Sno ] “&0211 . bi\/]’] (‘tLllllci) d spsl(i)lll‘::t ll(iqllctﬁ?)rd e
/4 0.3525831 15400 0.3534291E 400 0.8460283FE —03
/2 —0.3187807E - 06 | --0.2067024E — 04 0.20351561= —04
dm/4 —0.3525837E--00 | --0.35349391< +00 0.9101629E —03
T —0.4990201 15400 | --0. 5003836 4-00 0.13863575E—02
o /4 —0.35258261X 100 | —0.3535237% -+00 0.9410977E—03
37/2 0.95622631% — 06 }.26161555 —03 0.26065941K —03
T4 0.3525841T%4-00 0.35394881 4 00 0.1364648E — 02
27 0.499020113 + 00 .5008035E -+ 00 0.17834901Z —02

Tuble 4.4.
(m =5, Ly == 11.250024, ky = 0.010408, 5 = 7/40)

! solulion by the sglulion by Differcnce L
gen Aver. melhod spline method
/2 0.35470961 400 0.3511344E4-00 | o 3079414 --02
b 0.2139138E—02 | —0.4748825E-—02 0.68879831 02
37/2 ~-0.352397312400 | —0.35751175400 | 0 51143761502
27 —0.4992483E 400 | -0 S013575E--00 | 0 21091705 —02
5m/2 —0.3523962E 400 | —0 .3560276E4-00 | 0 3631711 -—02
3 — 0. 3431366 — 02 0.2140437E—02 | 0 5571804 —02
77/2 0351511000 0.3547107E--00 | 0.3199696% 02
47 0499986415 00 05007516400 | 0.76526401 —03
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