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The author puts the question : which of the n roots of an algebraic
real equation increases indefinitely in absolute value when the coefficient
g of " tends to zero, and gives the answer to this question for such an
equation with alternate coefficients provided that all the coefficients of
the equation are different from zero; he shows in what manner a cerfain
root of the equation under consideration tends to -+ oo.

As an asymptotic expression for a, polynomial with alternate coelti-

cients of degree nin 2z 3) we take the following trinomial
12
(1) " — @t -t o Y (—1y ay&"=, & — -+ oco.
V=0

With regard to this trinomial we consider.a finite sequence of polyno-
mials of the form
(2) Yol; ay) = a - Yp=1(Ty ) 4 (—1)» Upy P'=3,4,5,...,n
with the initial term Yol @) =y — Gz 4 a,. _ X
We assume the eoefficients a(v=0,1,2,3,. . -5 P) of the polyno-

mial (2) o be positive. The greatest real zero of the polynomial (2) we
call the last zero and we denote it by p.h

It is known from the theory of algebraic cquations [2], [3], [1]:
If in the equation :

?

. b
(3) ZO(—l)" @y &= = 0, («,>10)

the coefliciont a4, of the highest power tends 1o zero, then pne of the roots

of the equation (3) ihereases indefinitelv in absolute valye.
In the case of alternate coetiicients this theorem will here he proved
hy means of a 1new method, thatis, by means of certain asympt otic relations.
Referving o this theorem we put the question : which of ‘the rools
of equation (3) increases indelinitely in absclute value when the coeffi-
cient a, tends to zero?
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For equation (3) with alternate coefficients we shall prove the follow-
ing theorems :

1. The geatest real root of equation (3), whose coefficients are all alter-
nate, tends to 4-oo as a, tends to zero

(4) ) (@) — 400, @y — 4 0.

2. In case all the roots of equation (3) with alternate coefficients are
complew, two conjugate complex roots with the greatest reul and positive part
become real and the greater one of these real roots tends then to + oo as a,

tends to zero.
We consider one more finite sequence of equations
b
(5) M (—1)Va, a2 =0, p=2,3,4,...,n(a, >0).

A
v=0

For equations (5) we shall prove the following theorems :

3. The roots 7, ,(p = 2,3,4,...,0), which tend to oo, are distri-
buted as follows .
(6) 0 Ty <Trgg < v < Papiap < Taparaptr < ovee < g < Tage

1. Between the 10018 Typ 0y ONA Tyyyy o4y there exists the asymptotic
relation
(7 Pop. 20 (M0) ~ Tapiy9p41(%), G — + O.

5. F'rom (6) and (7) it follows that the roots, tending to +oo, of equa-
tions (9) are situated in the interval (ry,, ry5) which tends to zero as a, tends

to zero.
1. We consider a family of parabolas of degree (n--2) with alter-

nate coefficients in its equation

n--2

(8) Yuss (@) @) = ZO(_ 1) a, a"*+2=", (a,> 0)

y=a

where a, is the parameter of the family. For polynomial (8) we introduce
the asymptotic relation

(9) Yuas (@, 05) ~ &" -« (0g2? — )2 + @,), © — + o0

as well as for the first and the second derivate

st~ [(* 1)t = (*F ) o (2] e o
10)

Yorg (T, )~ l:(” ;- 2) @y ¢ — (% _g 1) L w’{‘(;) a’z] 2% & — o0,
(11)

"With regard to relation (9) we consider the sequence of functions

{12) wealal®, @) = 2"+ (g 22 — a2 4 a,),n =1,2,3, ...
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With regard to formula (2) we consider the parabolas

a? . a2
(Z) Yalxy N) = 1 g2 — T -k dy, @y = >
day ) day,n

, A > 1

eutting the7 X-axis. For this reason we introduce the parameter A in place
of %(i .B); Aztwhve dentote th)c} X-axis of parabola (2,). We call this system of
coordinates the system (X,). If, by (2), we multiply #.(z %) by z :
from this subtract a,, we 2obtai’n ’ Sopomerbaryly S0
(2,) (e, ) =~ g

o 3(X, A) = 20, T° — MF* 4 Gy — .

Parajbola. (2,) is referred to the system (X3); we obtain the axis X, by
puttmg,.m the system (X,), the parallel to the axis X, above this axis
at the distance a,. We obtain the axis X, by putting, in the gystem (X,)
the parallel to the axis X, below this axis at the distance a,; and inda,l
corresponding manner also for the following axes. That is th:?, sence of
formula (2).

For the real roots but different from zero of the equation

2

ns2 Yo (2, @) = 0, where a, =% _ 3> 1, we obtain
da,n

ok 2a,\
(13) wm=a&P*%‘i}m>1

) a, : . 2 ’

2a,n
(14) %uﬁzxt(1+y1~iﬂ,x>1
a, A
(15) Far(N) =~ A = oo
Ul

(16) PN g0, L4 shod
(17) % * Tap (@) — @y, @y — 4 0.

For the equation ,,,ys(z, a,) = 0 we obtain

] 2t h 0 - 12 p
(18) o (M) = e TN ot (1 -, V]_ e A>T
(n 4 1) a

oy W+ 2
, 20/‘}\ ; 1 n2
(w)rMhm;~i“Juj%1+V'_iiﬁfi-x>r
a om 2 (1) ) )
(20) (0 P e TR VR
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{21) 1 Pho( Ny R)— 4 00, A — - 0O,
For the cquation , .5 (%, @) = 0 we obtain
i TN n 141/1# nt o — 2 .1)’)\21
Tagly ) = ka]# n L2 n{n + 1) PN
(22)
26,0 n i +V1 ot s 2 .71>, P
alb ) = avl_l n 42 ( ' n(n 4 1) 7
(23)
b a, M — ill A
(24) oy (X 1) — AT TR ,
(25) 78 (N, W) = 4= 00, N T 0O,

The final conclusion on the diztribution of the cousidered abscissas
iv as follows N
Sz <K =T ) << i Ny i) << Taa ().

0 < Téll ()\7 n") e T‘;l()V N) ~ '21()\)< mem ())\~ -3( b ) 22 )

(26)
n:—n
] i riL(n, n)exists for n = 3 and for » > —-—— -
The nequality y @, (W) <1 (X, #)existsfor n =5 ¢ nt —n— 2

iC 3 1 for each real
All other inequalities ave valid for » =1, 2, 3,... Elﬂ.l(l for ctzitp‘hv {1
number & > 1. Inequalities (26) are proved by means of elcmep «»é}l (;[Ch*
c‘ulationq whereby on starts from the formulae themselves for the
i h [l e
mentioned abscissas. | '
Among the abscissas 2y, (), 7500, )y Tha( X, 1) and 7,(R)  there
oxist the following asymptotic relations

day

: i W) v —— 22— A — -0
(27) Paa(N) — Tag( Xy 1) o T 2 ;

’ 4 42 A
(28) T (N, 0) — 735(Xy M) ~ - 2)ﬂj——, A— + oo

~ Y

2a,n n — 2
(29) ras (1) @A) ~ T e

a, n -+ 2
Pau( M) — 75a( 2, 1)
Tho(hy ) — oy 2)

(30) ~&r & T

hence there exists the

TarorEM (1), The point ri(A, n). lies c_o__ppro‘mwmtely i the maddle
between e voints Ti(h, n) and To(N) when k — 00,
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It in the formulae (14) and (18) we expand the square roobs in a
Dbinomial serics, we obtain

Pog (2) — Pio(hy 0) w4 2 1/2 1 1/2 1y
S Ny = i) S T
0(2%7\ i i { ( 1)(7\}+(2)(A)jr' }

a ‘ w4 2
n + 1 1/2 /2y , _ 2) 1
_”T. —()a%—(‘ )oc‘q‘ ,a:ﬂw‘_z——~,7\>l,
2 1 2 (n 4+ 1)

from which relation (27). The argumentation for relation (23) is similar to
that for relation (27). -

2. At the points @ = vy (M, n) and x = vl (,n) the ordinates of
curve (12) increase indefinitely in absolute value when X\ — +o0; for con-
venience of the calculation we can take n=2p — 1 without diminishing - ihe
deneral case,

sp 4142 {'22( >\7 2?) . 1); 7‘} T
o AE "}ﬁz_ 5 {(_pfbl + VD);LP : (_pa'l V{_wl PR VD)_‘_ ﬂ:}(?‘-"a’j _| = VE):!‘]J—I} %

N

tty 2p 4 1)* A

(
> da, ) w—l’
; (Zp + 1)t

Pl

4p“ A
i31) op+1lz\Ta2 (X 20 — 1), A1 — — oo, A — + co.

dpt —1 1
D = p? a? (l S -_), from which

The ordinate of the curve (8) at the point # = 7'90(hy 1) increases
mdefinitely in absolute value when A — l-co. This ordinate is {

(32) Yura 22 (M 0)N}= o oW, {755 (0, ), A
as_’L o _(_1)n+2.._’_i"+__2___
e ,722(7\’ ) . ) (F3a(Mm)" ™Y 1 10m which
Taa( Ay N[ aohs3 (A, m) — a,755( %, n) + a, ]
(33) _.7/1L+2 {7'é2 ()\) ’ﬂ.); X} - =00, A-—» -4 o00.
In a quite similar manner wo obtain
(34 Yty 72 (N 0), A — — 00, A — + oo}

amoreover, we have also

2051

"
’\(35) ’/n+3-{2wmln(>\)7>\}-: (_ ; ) Gy (7")\ + 1) ’
)
o " (’[‘min()“))“—l T o= (—J_>“+2 4o I
( 20a2 ) =yl A = 1) (7 o0, A - oo,
u @ 7
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i b rding . the Ve at the point @ = r,,(1) increases.
Finally, the ordinate of the curve (8) at t j . \) :
inlfrllgﬁgi’tely in absolute value when A — 4-oco. The ordinate of the curve
(8) at the point a = ry,(N)is

i . . Y g, Pl () 4
Yn+z {22 (B)y N} = 735 () {ag 73, (2) Ay Toy (W) = ay} s Pa2 ()

(36) oy 15 P (N (=) 2w, = i) { —a, +
i 4 (—1)rt? Qus o }_, —cc, A-—> -} o0,
Faa(h) ; 135 (M)

' tain i s concerning the arc of the curve
3. We shall represent certain theorems conce ‘mn_g _ f the :
Y = Yy1o(®, A) in the interval (1), ,(N), +o0), where the point x = ., ,(A)
- J» . A 1P 5
18 the last point of inflection. e,
h 6With fegard to the asymptotic relation (10) we consider the sequence
of parabolas
BT ¥ =z, n)= (n + 2)ayx* — (n 4+ L)a,» + iy, 0= 1,23,...
All parabolas (37) pass through the fixed points P(ry, N,) and Q(r,,,.
N,,;) whose ordinates arc
iy W A> 1
(38)  Nu(to, n) = 7 {rua(N), 1) = 20,00 —%* — 2= 1) <0, 1> 1,

A2 — A— 0, x> 1;
(39)  Nys(ag, n)=na{ry(R), nj = 2“2(?“1‘ VV A—1) >0,r > 1;

shat se lities ar t dependent on » and
it i8 easy to prove that these quantities are no CP ,
;%é;efii'zywe ér)rite them without the argument u, for instance

(40) N yo(ay) = Noy(ag, 1) = Nyplag, 1) = 3ay755(A) — 2a,75,(A) + a,.

If we use the parameter A, then we write N,,(2). For A=1 we have N ,,(1)=
= 0. In virtue of (15) and (17) we have

(41} zliffo Nyo(N) = ro0.

-

With regard to the asymptotic relation (11) we consider the sequence:
of parabolas

gy "oy, nm=1,2,3...
y = GLi(z,n) = (ﬂ;}—Z )“o @ — ( 9 ) a x + ( 2)0/27 n=1,2,
(42)

; (n BV (e, we have.
In virtue of the f(n‘mulu( . )+ (?‘—l— N ) = (7‘ )

Lol w0 -- 1) = L, n) + ny(w, n)

and from the last formula it follows immediately

(43) Col@, m -+ 1) = Gy, 1)+ 3 (@, v)
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and from this Colraa(2)y m 1) = Lalra(N), 1) * Noo(2) =
(44) @{2(n + 2)(0 + 2F Z 5 1) 4 1} —+4 00, A -+ oo.

The tangent to the curve Y= Ypsa(2, 1) at the point g — Pa5( )
forms an acute angle which tends to —721 as h— -f co. The first derivate
©of this function at the point » =, ‘(A) i3
(45) Ypz (739 (), A} =
—(—1) g,

-+ 4
LY par|
22 74%)?—:1( }\) K ,Z\‘ng (;\) } F o0,

20 - N (n) - {1 i (r — 1) a, 755 *(N) A

A— 4 co,
from which it follows
(46) .7/z:+z'{7°22(7\0)> Nf =4 (Ro) > 0,

where A(%,) is a positive and arbitrarily great number depending on A,
while 2, is a sufficiently great value of the Parameter A,
Since y;,,,(2, A,) is a polynomial, we have, by a known theorem,
Yoeal@, X)) = + 0, ¥ — o0

and in virtue of this there exists in the neighbourhood of the pont 5 — + o
such a 2’ for which we have

(47) Lo ypes (@, %) > 4 (ho)

(48) 2.3 =ry(N) >0, N> Ag-
In virtue of (13) we have

(49) 0 <7y (M) < 795 (N) for A" > Aoy

from which, in virtue of (48), it follows

(50) 0 <y, () < 2
From (47) and (h0) it follows

TurorrM (2). For all values 3’ Z kg, where A\, is a sufficiently
yreat value of the parameter A, the parabola y — Yo+2(®, ') increases mono-

tonously to the right of the straight line @ — Tos( '),
From (36) it follows

(51) yp+2 {7,22( )‘0)1 )\0} = — R( )\0) << ().

The value 2, can so be chosen as to be the same in relations (46) and (51).
By theorem (2) the parabola y =y, ( @, A) is monotonously increasing to
ithe right of the straight line # — 735(A) and the ordinate (61) is negative,
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thus the point of intersection 7, , ,4o(2) of this parabola with the axis X'y 4o
is situated to the right of the point ry,(2), namely

(H2) 0 < go( A) << P g0, p+2(N)-
Owing to (16), from (b2) it follows
(53) Tprapra(h) = 400, A — 00,

The First derivate of the parabola y=1u, (2, A) at the point &=
= 735( 0, P) 18

Yo +2Pas(Xy D) A} = {a(2 D)2 {— B Tl 77722(7” ») T

s 1)r+1.¢1_f} A
(raa( 2y P72
from which it follows
'J/fp+2‘(')'£2(7‘a P); Aj = —00, h— 4 00,
thus
(54) Yoro{ha(hoy D)y 2oy = — B(g) < 0. B {
The value %, can 30 be chosen as to be the same in rela-tlozls (46), (52) a_n(:]],
(54). From (46) and (54) it follows that in the interval {')'22(7\0,’ ) 1'22(3\19) )
the first devivate ys,., (1, o) changes the sign and takes the value 0, thas
(55) Yp+alThazpt1(ho)y Poy =0, .
whereby 7,44 p41(2) is the greatest root of the equation y,,(x, &) =

— 0. Owing to (h4) and (46), for the abscissa 75,5 ,41(%,) there ]101(15-

the inequality .
(56) 0 << 749 Roy ) < ThpomaslPa) << 72a(Po)-
T[‘hé second derivate of the parabola y == ¥, ,.(x, 1) ab the ppint
z = r5(h, p)1s
."/;;’+2 {7'2’5(7\: ,7))7 7‘} ==

p—2
FE)

P'—.l_ S E A 1P-3 ., 1 aL » '_:i:---'“-
_2( " )ﬂ"n [raa(h, P)) (p~1)a3 (2, )
9 :
2 a
o) " 1 _
A o()p e A —— 1
i (P—‘- ] VR O et |
m =) i
(Hh1 Yl o lras(ky )y A — —o0, & — ~-00, from which
.’,/7(/’+2‘1"'°:§(_}‘_0, ), )‘o}f;*(_’(( 7~Q) < 0.

= 1, ) for a sulficiently great value 2.

(€ e e : %) is convex atb the, point o =
Consequently the parabola ¥ = u,4,(r, X) i3 convex at the po
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The second derivate of the parabola y = v, (2, A) at the point

@ = ry( R, p) is
\(58) Yira 150 D), A = 2 {r5(, D)2 - L0, ), Pl
— 2N by, P
P72 ey (g v s (A J @
{ 1 2 2

153N p) s Lirg(hD), p)
LN D), p) = ay ”’*—”( A l/7 R 1;) (e
p 4+ 2 p + 1)
— +007 h— +OO,
Yp+21T32(2 ), N} = - 00, k. — o0, from which

i(59) Yo +2 17520, D), o} = 4 I(%) >0,

Consequently the parabola y =y, .(x, %)) iy concave at the point ==
¥
I 722(7‘0; p) ! . ] )
From (57) and (59) it tollows that in the interval (92, p). 7. (%
! R - (=5 N 13 ) fR2 Aoy
p); the sccond derivate changes the sign and takes the value 0, thus

{(60) Yool ?5ia,0(Ro)y 29} =0,

whereby )., ,(},) is the greatest root of the equation ypatn(rs Jehi =i
Dwing to (57) and (59), for the absecissa 7)., ,(%,) there holds the mequality

(61) 0 < 785(hoy B) < 7% 0 Re) < ol gy D)-

Since 154, ,(2) is the last real zero of the polynomial Yo wol@, ), this
means that g (x, 1), taking only positive values, tends to -Loo as o
inereases 'from 79, (A) to -co. Hence the second derivate Wyssn (1, N)
remains permanently positive as z inereases from 7., (1) to 400, and
this means that the parabola is coneave in the interval {754a,0(2), + ool
Counsequently in the interval {r;,, (), 4 co} there are no waves on the
arc of the parabola y =y, (2, A) and therefore, when X inereases, no
new zero can arixe behind the zero 7., ,4,(2). This is the concept of the
last zero. Thus we have the

IHROREM (3). For a sufficiently {wrge N = 2, the curve y =y, .,
(2, ') culs the axis X, ., at ihe point x== v, ,, el W) and when 1 continues
o increase, no new zero can arise belind this zero.

At the point D{r,,(2), 4,1l 70(2), A [} ol the system (X,,,) the
tangent to the curve y = y, (2, 1) is, by (46), arbitravily steep; sinec
bhis curve is concave in the interval {7, ., (}), +-o0}, it Tollows that this
curve lies above the tangent at the point D. If we denote by d,ya(R)
the abseissa of the point of intersection of this tangent with the axis .\
we have
(62) 0 <T795(N) < Pygnpre () < gD, 1 > 2y,

The point of interseciion if the mentioned tangent with the axis A
has the abscissa

‘\1'0«!-2:

P+2

(63) Qo= (lp+2( 7\) =7, =

Y Pas(N), K}

2

() — ?/_p_+2{7'22(7\)7 A
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In virtue of (16) and (45) we have

:f/_lp+2{/r22()\)7 7\}_)0, A — 4 oo
YpraiTaa(N), A}
and therefore from (63) it follows that

(64) {dy1o(1) — T5o(N)} — 0 a8 A — 4 c0.
From (62), in virtue of (64), we obtain
(65) Pog( M)~ Ppya pag (A) @5 A — 4-c0.

: e ’ —t N ,1 T O.x
The equations ¢,,.(%, A) =0 and (p + 2)agz* — (p + Lz + a,
belongqto the sangéini’te sequence of equations (5) since their first three
terms are equal. Therefore to their greatest roots there can be applied:
the asymptotic relation (65) which now has the following fomr

(66) 0 < 1hig.p41 (W)~ 7 5(X; P)y A — - co.
In the same manner the equations

| . 2 p—+1 1
Uy 1o, A) = 0 and (10—;— ) ayx? — (2 _: )a1m+(]2) a, =0

L

give the relation
(67) 0 < 7 v p(Ny~T55( Ry P)y A — 00,

By (33), (34), (35) and (36) the absolute values of the 01'(}§nates of’
the parabola y = ¥, .o(2, A) abt the points @ = ;& (N). << ras(Ay p) <
< (N, P) << Tap()) Increase indefinitely with X and z.uccordm.g'”to the
aforesaid the arc of this parabola is concave in the iterval {#', ., ,(}),
1
]p+2’pftg(‘€\})1g square roots in formulae (14) and (23) are expanded in series
or formulae (27) and (28) are added up, we obtain ~

by M

Poo N} — Fap(Ay )~ ———=—— A — +00

) — )~ =

and in view of the asymptotic relations (65) and (67) we have
(68) Pproprs (M Ty pa, g (W)= 4005 1A 00,

The are of the parabola y = y,,.(x, A) in the interval {rj ., ,(7),
Ppropsa(M)} I8 called the ,last arc” of this parabola. Thus, the following
theorem has been proved : .

TaiorEM (4) : The ,last arc” of the parabola y = Yp+o(@) N) lies
below the axis X, ., and the cbsohute value of each ordinate of fh@s are
as well as the length {Tyi5p10 (X) -~ 75 42,5 (N} of the interval {7y yq(N)y
Povs oo M)} tncrease indefinilely with . :

ph’pflzl viéw of relations (65), (66) and (67), from the asymptotic relatiom
(30} we obtain

(69) TprgpralN) = Tpaawra (A) 1, & — 4-co.

P s 2 g (e 42, (™)
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4. The inequality 74, 4, (A) < 755419541 (A) and the asymptotic rela-
GlON 75y 95 (A) ~ P3p41,0041 (R).

In virtue of teorem (4) it follows : The ,last arc’” of the parabola
Y = Yap (@, \) touches the axis X,, from the side of the positive ordinates
for the value A = a,, of the parameter A. From this we deduce the

TarorEM (5). If the coefficient a, of a polynomial of even degree
decreases and if all the zeros of this polynomial are complew, then this polyno-
mial has at least one double real zevo for an exactly determined value N = oy,
of the parameter N and to the right of this zero mo new zero can arise when
h continues to increase indefinitely.

It is known from the theory of algebraic equations [5]: the presence
-of a positive minimum or of a negative maximum of a polynomial means
the existence of two conjugate complex roots. Consequently two conju-
-gate complex roots are bound to the ,last arc” if this are doesnot cut
‘the axis X,,. Hence we have

THEOREM (6). The two conjugate compleax roots which are bound to
the positive minimum of the ,last arc” of the parabola y = y,, (x, \) vanish
if the parameter ) takes the value h = a,, and these two conjugate complex
roots change to one double real root.

As long as the parameter X has a value which is infinitely little diffe-
rent from and smaller than o,,, the curve y = y,, (%, A), A = a,, — ¢,
(e — 0) is arbitrarily close to and above the axis X,, in the neighbourhood
of the last double real zero. Thus, for A = «,, — ¢ the complex zeros
belonging to the positive minimum are situated in the neighbourhood of
the last double real zero, while the other complex zeros, if they exist, have
smaller real parts.

For % > a,, the ,last arc” of the curve
{70) Y = Yapsr(@y X) = &« Ypp(2, X) — Cop 41y b = dgyp,

passes through the points 7, 0,_3(A) and 7,, ,,(7) of the axis X,, and Lies
‘below this axis in the interval between these two points. The arc of
the curve (70) is in the interval {7y, :,(}), -+o0} concave and monotonously
increasing. Owing to this, the curve (70) cuts the axis X,,.,, lying above
the axis X,,, at the point 7y, 5,.,(?) situated to the right of the straight
1ine @ = 4 0,(X), X > ay,, i.e.

{71) . 0 <73p,00(2) < Popyraper(N)y A > oy

The point of intersection of the tangent to the cwwve y = #,,.,(2, \),
at the point T'{ry, 4,(X), — gy} of the system (X, ,,), with the axis X,,,,
has the abscissa

@
{72) bop+1{N) = Tap2p (A) — . 2
Yop+1 1T2p,2p (N), A}

‘We wish to prove that y;,. {75, 2,(2), &} increases indefinitely with x.
By (53) we have

3 )\ > C/_zp'

{73) Topap(h) = - 00, A — + o0
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and by (H2)
(74) 0 << 7y (1) < 7'217,211(7‘)7 Aoy
The value of the first derivate ys,, (@, Ay at the point w == 1y, ,,(7) I8
(75) Yap+1 Pop.ap(N)y N} == 18550(N) + 1 {P05,00(R), 2p — 1}
{ {L I (2}', ‘))” 5":‘::!3_'?:( 7\') :F AL (‘_“1)23’ {E'Ejl'.' } ;
.Elg 'P( ) ek l’2p 21\1( ?‘} 2}3_1}

The parabola
(76) ¥y = n(ay, 2p — 1) = (2p + Dega? — 2pa,x 4 (2p — 1)4,

cuts the axis X, at the points.ay = 75,(2,2p — 1) and 2y = 75,(R, 2p — 1).
In virtue of the inequality (26) we have

0 << riy(h, 2p — 1) <Trye(n), A =1,
and with regard to the inequality (74) it follows,
(77) 0" 75y (R, 2p — 1) <T P99(N) < Pypop(R)," 'R > dyy,.
carabola (76), for » = ry(2), has the ordinate
(T8)  ulran(N), 2p — 11, == 2ay(h -F Y22 = X — 1) = 4 00, A — + co.

The ordinates of parabola (76) are positive for u = ry,(x, 2p == 1) and they
ierease monotouomlv as p— 71 oo. Thus, owing to (74), there exists the
inequality

T}Z{”'Qi))fj)(7\), 21’ il lj = '02{7‘22( 7\)5 2[ [ 1} > 0? = Lap

and, owing to (78), from this it follows

(79) Na{ 735 00( M), 2p 1} + 00, k-0,
From (75) and (79) it follows .

(80) it Wt {aaa(N), ) o 60, bion oo

The formulae (72) and (80) 'give ' o T
(81) apas(R) — Papap(W)} = 0, N> o0

and, since the curve y .= ,.‘]/227_'_1( ¢, A) is concave in the interval {r}), 1 sn_ (),

4- o0, in virtue of this concavity and in virtue of (71) we ob‘mm

{8279 S 0 < 9p0p{ ) < "27:+1,2p+1(7‘) ) (7\) A > 0’277

Thus, from (82), in virtue of (81), we obtain

(83) Fopoaplh) ~ Topyppei(A)y A — o000 |
For the negative roots of the greatest/absolute value »,, ., ()

and: #,, ; (&) of real equations with: positive coetficients

»
Y, an” " =90, p==2n2n 41
v=0

13 ASYMPTOTIC RELATIONS FOR THE INDEFINITELY INCREASING ZEROS o6

it can be proved by means of the same method [4] that for them there
exists the asymptotic relation

7"211+1,1(7\) i 7'2n,1(7‘)5 h— + oo,

Since the proofs for the inequalities 24, ,,(R) << 1y, 40 ap+al N)
altd P9, 450, +3(A) < Popyqapei(A) are very lengthy, we shall give them in
separate paper. Tt should be mentioned that the proots for tho e inequa-
Iities have their basis in Theorem (4).
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