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Abstract. 'We establish inequalities for powers of polynomials in
several metrics by applying Markov-Bernstein’s type theorems. The
results are extended to some classes of regular functions which (from Jack-
son’s theorem) are well approximated by polynomials.

Introduction. Let f be a real-valued function in CP([—1, 1]) and
k

m(x) =q[ |& — a,1° where (), ay,..., a;) i3 a sequence of (not necessa-
1
rily distinet) points in [—1, 1] and o,..., o, are real positive exponents.
The purpose of this paper is to prove that one can give a lower bound for
k

81]1p lf(@)m(x)| depending only on f, f*' and Y. o;butnot on the positions
<1 =1
of the ¢} sin [—1, 17]. ;

We use here methods coming from approximation theory : in the
first part, we prove the result for polynomials by means of Markov’s
inequality ; in the second part the result is extended to functions in
C%([—1,1]) which from Jackson's theorem can be approximated up to a
well-controlled error, by polynomials.

Notation. We denote by H, the set of polynomials of degree n or
less. For any continuous function £ on [—1, 1], we set () = lIf]| =

= lSuP ()]

z|<1 r

I. The aim of this first part is to establish the two following theo-
rems :

THroREM 1. For ay,. .., ayreal, for apy. ..y oy Bryee .y Bry S real satisfy-
mg 0 < o < BB A0 =1,...,k),3>0, and for any Pe H, we have
<

H P@) P I o~ ail*

k
2 ,ZI {8y —a,)

1=

< 62”(%3 Tim é {31) “ [P(m)|81k;]; |z — a,|% ”



22 P. GOETGHELUCK

|

Tarorey 2. Let 1 be such that 0 < 1 < L.

B 0P Q... @t real satisfying la;| <1 (1= 1,..., k),

EOr ogy. e ey Gy Bryeeesr P S real satisfying 0 < o; < By B #0 (i =1,...,

yeoey )y 8 20,

# for any Pe H,, we have

<

” lP(m)lﬁ]iI & —al|

e
2 B By-ay)

oF [2(1 — Nt (11,8 + )E Bi)]

Remark. We note the fact that the result is_quite inc_lependant of
the (not necessarily distinet) positions of the a;'s in cither R (first theorem)
or in [ =1, 1] (second theorem). '

Before proving Theorems 1 and ¢ we establish some lemmas.

=iy

| e 0l —ml"ﬁ“-

LEayA 1. For any polynomtal P e H, and any pe IN we have
[P < n2(Lp DL -

Proof. We have [1,p. 1417 :

n¥(n?—1y ... (n*—(p—1)%) Pl
1.3.5... (2p—1)

1P <

whence the lemma follows immediately.

TEMaA 2. For any polynemial P € H,, any c€ R and any pe N
we have [Pl < (n -+ p)® (1p 2z —ap P@)]

Proof. First we assume lo] <1 and we put R(ix)y= (& — a.,)f’ P(a)..
Applying Taylor’s formula up to order p glves:

(# — a)? P(a) = R(a) = (1/p Y@ — @ EO(D)
for some b between x and a. Therefore, P(z) = (1/p HRW(b) and, using:
Lemma 1:
1P| < (/pHIRW| < (3/p H¥n + PR

Now let us assume |a| > 1. Clearly we have :
I(z —Ly?P(x)] if a >0

iz — aypP(a)| = {H(m 4+ 12P(2)] it @ <0

which leads us to the case |af < 1.
TEMMA 3. For any polynomial P e H,, any pe IN and any

zwe ]1—1, 1{we have | PO (x)| < (nf(1 — lz)? 1Pl
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Proof. From [2, p. 227], for any Pe I, and any interval [e¢, d] we

have |P@((c 4 d)/2)] < (2nj(d —¢))? sup |P(@)]. Let xe | —1, i[. I
€ [e,d]
@ > 0 the interval [22 — 1,17 is included in [ —1, 1] and has his centre
at «. Hence
1PO(m)] < (L —a)? sup  [Py)| < (o)1 —l21)? 1P
ye[2r—1,1]

We have an analogous proof when z < 0.

TimMaA 4. Let 1 be such that 0 < 1< 1. For any Pe H,, any « satis-
ying la| <1 and any pe N we have

120 < (Ifpl) 2/ =) (n + p)* (@ — a)* P(2)].
Proof. Let us assume a > 0. We set R(w) = (# — a)” P(«)- Applying
Taylor’s formula up to order p yelds
(v —a)*P(x) = R(a) = (1p!)(# —a)” B'(b) for some b between
x and a, thercfore P(x) = (1/p!)R'(h).
If we[a —(1 —a)2 a+ (1 —a)/2] = [(e —1)/2, (¢ + 1)/2], b belongs
to the same interval and, from Lemma 3
|P(z)] < (Lph) [n + p)/0 —(a + /2P |L]
= (Lp!) [2(n + p)/(L — a) P22}
Itz ¢l(e —1)/2, (@ + 1)/2], |# —a|l > (1 —a)/2 and
P(a)] < [2/(1 —@)Plz —aP|P(2)] < [2/0 — )R |R].
Clearly, [2/(1 —a)? < (I/p)[2(n + p)/(1 — «)]” therefore
1P| < (IpH[2(n + p)/(1 —a)Pl(e —a)? P(z)]-
To complete the proof we observe that 1/(1 —a) < /(1 —1). We have an
analogous proof when a < 0.

Proof of Theorem 1. First we remark that for any givenay,. . ., a; I,
the funetion

(11- 44y ¥p ) — Il | P(w)| |2 ‘“1]Yl

z — ;]|

is continuous from (10, 4 oo[)/+! to R+*. It is then sufficient to prove
the theorem when ag,..., &z Byy- -+, By 0 are rational. From now on we
will suppose this to be the case. _

One can find an integer ¢ such that 8, to;, 18, (1 = 1,..., k) are inte-
gers. We put

Ny =1 [P@)P I o — el = (P T (@ — @)
k
Ny = || | P(a) P I |2 — ™ =W 2(@)® fw — a5,

Then applying Lemma 2 k-times gives :

gl BT

N, |isa :

((to; — R 1)

2,
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Or, setting #8, — o;) = d,,

f[ ()5 )2 D)) N .

i=1
Therefore to prove Theorem 1 it is sufficient to observe that
((t?‘){li/(d[ !)2)1/! - ((tdl/dl !) (t(li,/di !))l/t < (Gt A el)l/ﬁ — @2,

Proof of Theorem 2. We carry out the same proof as in Theorem 1
but using Lemma 4 instead of Lemma 2.

2. Let ay,. .., a; be (not necessarily distinet) points in [k—l, 1] and

k o

oy - +y 0 be real and positive. We put o= %) o; and m(w) = [ 1& —a:|°
i=1 i=_l

We are going to use Theorems 1 and 2 to prove the following result :

TuworeM 3. For each pe N* there ewist two positive cgnstavntslA
and B (depending in o and k) such that, for any function fe C?([ —1,1])
we have

either Ifol] = AlfI
or Hme > DB ” f’[1+(20/(1‘)—20)) ||f(!)) “—’Zc/(b—QG),

Furthermore if there ewists 1 satisfying 0 <1 <1 such that ) la) <1
(1 = 1,..., k) then o can be replaced by o[2 in the second incqualily.

Remark. The constants 4 and B depend neither on the iqdjvidu:al
s;’s (but only on their sum and nmuber) nor on the «,’s positions 1n
[—1,1] and [ —I,1].
: < re exists a cons-
Proof. From Jackson’s theorem (see [1, p. 128]) there exis
tant O, sujch that, for any n satisfying » > p, one can tind Pe H, such

_that ||f — P < C,n ?||f®]|. Therefore
(1) IFl < If — Pl + IPI < G llf @1 + |12

i i = = == g (0=1,..., k)
But applying Theorem 1 with 8§ =1, «; =0, .0'81 o; (@ ALY
yelds ﬁ)}’)ll < e (n + o) | Pm| < e¥n*®(1 + ofp)*°|| Pm]],

(2) ie. ||P] < Cn2||Pml.
[ Pm — fm| + llfm]]

On the other hand, [[Pml] <
< lmll 1P —fll + [Ifml]

Theretore, since |m] < 2°
(3) | Pm| < Csn=?[f@ | + [lfm]]

From (1), (2) and (3) we deduce the existence of a constant €, such that,
for any integer n strictily grater than p,

(4) IfIl < Can>*(n=*If O] 4 lfml)-

We will now consider two cases separately.
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,Firstly, let us asswme that CIfe I/ fmhY? < p. Then, [lfe <
< pPllfm|| which implies, by (4) with 7 = p + 1 : lfm] = A|lf|l. Now,
let us assume that (||f®]/|fm()Ve > p.

Let » an integer satisfying

WP Ifml)Ye < < (150 fmyee -+ 1.

Then we have n < 2(|[f®@||/|lfm|)¥* and n=P[fPH < fIfm|l. Substituting
in (4) yelds

IFIl < Cs[lf|2ol7]| fam|[! =212, therefore

o] = [ +ieslir=2en || 01 =ottp=2a)

It the a,’s belongs to [ —1, 1], the proof is carried out in the same way,
using Theorem 2 instead of Theorem 1. :

Lemark. Let B — O([ —1, 1]) with the norm |||If, = I - Ifm|
and I" = O?[( —1,1]) with the norm {|f||; = |If]. Inequality (4) then says
that the inclusion map of B in F is continuous.
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