MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 15, N° 1, 1986, pp. 21-25

APPLICATION OF SOME METHODS OF APPROXIMATION THEORY

PIERRE GOETGHELUCK (Paris)

Abstract. We establish inequalities for powers of polynomials in several metrics by applying Markov-Bernstein's type theorems. The results are extended to some classes of regular functions which (from Jackson's theorem) are well approximated by polynomials.

Introduction. Let f be a real-valued function in $C^p([-1, 1])$ and $m(x) = \prod_{i=1}^k |x - a_i|^{\sigma_i}$ where (a_1, a_2, \ldots, a_k) is a sequence of (not necessarily distinct) points in [-1, 1] and $\sigma_1, \ldots, \sigma_k$ are real positive exponents. The purpose of this paper is to prove that one can give a lower bound for $\sup_{|x| \le 1} |f(x)m(x)|$ depending only on f, $f^{(b)}$ and $\sum_{i=1}^k \sigma_i$ but not on the positions

of the a_i' s in [-1,1]. We use here methods coming from approximation theory: in the first part, we prove the result for polynomials by means of Markov's inequality; in the second part the result is extended to functions in $C^p([-1,1])$ which from Jackson's theorem can be approximated up to a well-controlled error, by polynomials.

Notation. We denote by H_n the set of polynomials of degree n or less. For any continuous function f on [-1,1], we set $||f(x)|| = ||f|| = \sup_{|x| \le 1} |f(x)|$.

1. The aim of this first part is to establish the two following theorems:

THEOREM 1. For a_1, \ldots, a_k real, for $\alpha_1, \ldots, \alpha_k$, β_1, \ldots, β_k , δ real satisfying $0 \leq \alpha_i \leq \beta_i$, $\beta_i \neq 0$ $(i = 1, \ldots, k)$, $\delta \geq 0$, and for any $P \in H_n$ we have

$$\begin{split} & \left\| |P(x)|^{\delta} \prod_{i=1}^{k} |x - a_{i}|^{\alpha_{i}} \right\| \leqslant \\ & \leqslant \mathrm{e}^{2k} \bigg(n\delta + \sum_{i=1}^{k} \beta_{i} \bigg)^{2 \sum\limits_{i=1}^{k} (\beta_{i} - \alpha_{i})} \left\| |P(x)|^{\delta} \prod_{i=1}^{k} |x - a_{i}|^{\beta_{i}} \right\|. \end{split}$$

2

THE DRIVE THE BUT LANGUAGEST AND THE Theorem 2. Let l be such that $0 \le l < 1$.

* For a_1, \ldots, a_k real satisfying $|a_i| \leq l \ (i = 1, \ldots, k)$,

* for $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_k, \delta$ real satisfying $0 \leq \alpha_i \leq \beta_i, \beta_i \neq 0$ ($i = 1, \ldots, \beta_k, \delta$)

 $,\ldots,k),\ \delta\geqslant 0,$

* for any $P \in H_n$, we have

$$\left| |P(x)|^{\delta} \prod_{i=1}^{k} |x - a_i|^{\alpha_i} \right| \leq$$

$$\mathrm{e}^{k} \left[2(1-l)^{-1} \left(n\delta + \sum_{i=1}^{k} \beta_{i} \right) \right]^{2 \sum\limits_{i=1}^{k} (\beta_{i} - \alpha_{i})} \left\| |P(x)|^{\delta} \prod_{i=1}^{k} |x - a_{i}|^{\beta_{i}} \right\| \cdot$$

Remark. We note the fact that the result is quite independent of the (not necessarily distinct) positions of the a_i 's in either R (first theorem) or in $\lceil -l, l \rceil$ (second theorem).

Before proving Theorems 1 and 2 we establish some lemmas.

LEMMA 1. For any polynomial $P \in H_n$ and any $p \in \mathbb{N}$ we have

$$\|P^{(p)}\| \leqslant n^{2p}(1/p!)\|P\|.$$

Proof. We have [1, p. 141]:

Proof. We have
$$[1, p. 141]$$
:
$$\|P^{(p)}\| \leq \frac{n^2(n^2-1)\dots(n^2-(p-1)^2)}{1.3.5\dots(2p-1)} \|P\|$$

whence the lemma follows immediately.

LEMMA 2. For any polynomial $P \in H_n$, any $a \in \mathbb{R}$ and any $p \in \mathbb{N}$? we have $||P|| \le (n+p)^{2p} (1/p!)^2 ||(x-a)^p| P(x)||$.

Proof. First we assume $|a| \le 1$ and we put $R(x) = (x - a)^p P(x)$. Applying Taylor's formula up to order p gives:

$$(x-a)^p P(x) = R(x) = (1/p!)(x-a)^p R^{(p)}(b)$$

for some b between x and a. Therefore, $P(x) = (1/p!)R^{(p)}(b)$ and, using Lemma 1:

$$\|P\| \leqslant (1/p!)\|R^{(p)}\| \leqslant (1/p!)^2(n+p)^{2p}\|R\|.$$

Now let us assume |a| > 1. Clearly we have:

$$\|(x-a)^p P(x)\| \ge \begin{cases} \|(x-1)^p P(x)\| & \text{if } a > 0 \\ \|(x+1)^p P(x)\| & \text{if } a < 0 \end{cases}$$

which leads us to the case $|a| \leq 1$.

LEMMA 3. For any polynomial $P \in \mathcal{H}_n$, any $p \in \mathbb{N}$ and any

$$x \in]-1, 1[we have |P^{(p)}(x)| \le (n/(1 - |x|))^p ||P||.$$

Proof. From [2, p. 227], for any $P \in H_n$ and any interval [c, d] we have $|P^{(p)}((c+d)/2)|^2 \le (2n/(d-c))^p \sup |P(x)|$. Let $x \in [-1, 1]$. If $x \ge 0$ the interval [2x - 1, 1] is included in [-1, 1] and has his centre at x. Hence

 $|P^{(p)}(x)| \leq (n/(1-x))^p \sup_{y \in [2x-1,1]} |P(y)| \leq (n/(1-|x|))^p ||P||.$

We have an analogous proof when $x \leq 0$.

LEMMA 4. Let l be such that $0 \le l < 1$. For any $P \in H_n$, any a satisying $|a| \leq l$ and any $p \in N$ we have

$$||P|| \le (1/p!) (2/(1-l))^p (n+p)^p ||(x-a)^p P(x)||.$$

Proof. Let us assume $a \ge 0$. We set $R(x) = (x - a)^p P(x)$. Applying Taylor's formula up to order p yelds // welling land and a

 $(x-a)^{p}P(x) = R(x) = (1/p!)(x-a)^{p}R'(b)$ for some b between x and a, therefore P(x) = (1/p!)R'(b). If $x \in [a - (1 - a)/2, a + (1 - a)/2] = [(a - 1)/2, (a + 1)/2], b$ belongs to the same interval and, from Lemma 3

$$|P(x)| \le (1/p!) [(n+p)/(1-(a+1)/2)]^p ||R||$$

= $(1/p!) [2(n+p)/(1-a)]^p ||R||$.

If $x \notin [(a-1)/2, (a+1)/2], |x-a| > (1-a)/2$ and

$$|P(x)| \le [2/(1-a)]^p |x-a|^p |P(x)| \le [2/(1-a)]^p ||R||.$$

Clearly, $[2/(1-a)]^p \le (1/p!)[2(n+p)/(1-a)]^p$ therefore

$$||P|| \le (1/p!)[2(n+p)/(1-a)]^p ||(x-a)^p P(x)||.$$

To complete the proof we observe that $1/(1-a) \le 1/(1-l)$. We have an analogous proof when $a \leq 0$.

Proof of Theorem 1. First we remark that for any given a_1, \ldots, a_j, P , the function

$$(\gamma_1, \ldots, \gamma_j, \delta) \to \| |P(x)| |x - a_1|^{\gamma_1} \ldots |x - a_j|^{\gamma_j} \|$$

is continuous from $(0, + \infty)^{j+1}$ to R^+ . It is then sufficient to prove the theorem when $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_k, \delta$ are rational. From now on we will suppose this to be the case.

One can find an integer t such that $t\delta$, $t\alpha_i$, $t\beta_i$ (i = 1, ..., k) are integers. We put

$$\begin{split} N_1 = & \parallel |P(x)|^{\delta} \prod_{i=1}^k |x - a_i|^{\alpha_i} \parallel = \|(P(x))^{t\delta} \prod_{i=1}^k (x - a_i)^{t\alpha_i} \|^{1/t} \\ N_2 = & \parallel |P(x)|^{\delta} \prod_{i=1}^k |x - a_i|^{\beta_i} \parallel = \|(P(x))^{t\delta} \prod_{i=1}^k (x - a_i)^{t\beta_i} \|^{1/t}. \end{split}$$
 Then applying Lemma 2 k -times gives:

$$N_1 \leqslant \left[\prod_{i=1}^k \frac{\left[t \left(n\delta + \sum_{i=1}^k \beta_i \right) \right]^{2t(\beta_i - \alpha_i)}}{((t \alpha_i - t\beta_i) \,!)^2} \right]^{1/t} N_2.$$

Or, setting $t(\beta_i - \alpha_i) = d_i$,

$$N_1\leqslant \left(n\delta+\sum\limits_{i=1}^keta_i
ight)^{2\sum\limits_{i=1}^k(eta_i-lpha_i)}\prod_{i=1}^k((t^2)^{d_i}/(d_i\,!)^2/(d_i\,!)^2)^{1/t}N_2.$$

Therefore to prove Theorem 1 it is sufficient to observe that

$$((t^2)^{d_i}/(d_i\,!)^2)^{1/t}=((t^{d_i}/d_i\,!)\,(t^{d_i}/d_i\,!))^{1/t}\leqslant (e^t\cdot e^t)^{1/t}=e^2.$$

Proof of Theorem 2. We carry out the same proof as in Theorem 1 but using Lemma 4 instead of Lemma 2.

2. Let a_1, \ldots, a_k be (not necessarily distinct) points in [-1, 1] and $\sigma_1, \ldots, \sigma_k$ be real and positive. We put $\sigma = \sum_{i=1}^{n} \sigma_i$ and $m(x) = \prod_{i=1}^{n} |x - a_i|^{\sigma_i}$.

We are going to use Theorems 1 and 2 to prove the following result:

THEOREM 3. For each $p \in N^*$ there exist two positive constants A and B (depending in σ and k) such that, for any function $f \in C^p([-1,1])$ we have

either

$$||fm|| \geqslant A \, ||f||$$

 $||fm|| \ge B ||f||^{1+(2\sigma/(p-2\sigma))} ||f^{(p)}||^{-2\sigma/(p-2\sigma)}.$

Furthermore if there exists l satisfying $0 \leqslant l < 1$ such that $|a_i| \leqslant l$ $(i=1,\ldots,k)$ then σ can be replaced by $\sigma/2$ in the second inequality.

Remark. The constants A and B depend neither on the individual σ_i 's (but only on their sum and number) nor on the a_i 's positions in [-1, 1] and [-l, l]. The stringship the ground was observed little to the

Proof. From Jackson's theorem (see [1, p. 128]) there exists a constant C_1 such that, for any n satisfying n > p, one can find $P \in H_n$ such that $||f - P|| \le C_1 n^{-p} ||f^{(p)}||$. Therefore

$$||f|| \leq ||f - P|| + ||P|| \leq C_1 n^{-p} ||f^{(p)}|| + ||P||.$$

But applying Theorem 1 with $\delta = 1$, $\alpha_i = 0$, $\beta_i = \sigma_i$ (i = 1, ..., k) yelds $||P|| \leq e^{2k} (n + \sigma)^{2\sigma} ||Pm|| \leq e^{2k} n^{2\sigma} (1 + \sigma/p)^{2\sigma} ||Pm||$,

(2) i.e.
$$||P|| \leqslant C_2 n^{2\sigma} ||Pm||$$
.

On the other hand, $||Pm|| \leq ||Pm - fm|| + ||fm||$

$$\leq ||m|| ||P - f|| + ||fm||$$

Therefore, since $||m|| \leq 2^{\sigma}$

(3)
$$||Pm|| \leq C_3 n^{-p} ||f^{(p)}|| + ||fm||$$

From (1), (2) and (3) we deduce the existence of a constant C_4 such that, for any integer n strictly grater than p,

(4)
$$||f|| \leqslant C_4 n^{2\sigma} (n^{-\rho} ||f^{(\rho)}|| + ||fm||).$$

We will now consider two cases separately.

Firstly, let us assume that $(\|f^{(p)}\|/\|fm\|)^{1/p} \leq p$. Then, $\|f^{(p)}\| \leq p$ $\leq p^p ||fm||$ which implies, by (4) with n = p + 1: $||fm|| \geq A ||f||$. Now, let us assume that $(\|f^{(p)}\|/\|fm\|)^{1/p} > p$. Let n an integer satisfying

$$(\|f^{(p)}\|/\|fm\|)^{1/p} \le n < (\|f^{(p)}\|/\|fm\|)^{1/p} + 1.$$

Then we have $n < 2(\|f^{(p)}\|/\|fm\|)^{1/p}$ and $n^{-p}\|f^{(p)}\| \leq \|fm\|$. Substituting in (4) yelds

$$\begin{split} \|f\| &\leqslant \, C_5 \, \|f^{(\rho)}\|^{2\sigma/\rho} \|fm\|^{1-(2\sigma/\rho)}, \text{ therefore} \\ \|fm\| &\geqslant \, \|f\|^{1+(2\sigma/(\rho-2\sigma))} \|f^{(\rho)}\|^{-2\sigma/(\rho-2\sigma)}. \end{split}$$

If the a_i 's belongs to [-l, l], the proof is carried out in the same way. using Theorem 2 instead of Theorem 1.

Remark. Let $E = C^p([-1, 1])$ with the norm $|||f_E = ||f^{(p)}|| + ||fm||$ and $F = C^p[(-1,1])$ with the norm $||f||_F = ||f||$. Inequality (4) then says that the inclusion map of E in F is continuous.

REFERENCES

1. Natanson I. P., Constructive Function Theory, Vol. I, Ungar, New York, 1964. 2. Timan, A. F., Theory of Approximation of Functions of a Real Variable, Pergamon, Elmsford, New York, 1963.

A function of the Decide of New York Karnburger Countries

Received 28.V.1985

Université de Paris-Sud, Centre d'Orsay, Département de mathématiques, Bâtiment 425, The proof of till bounds in 11820 to 91405 ORSAY CEDEX, FRANCE IN