MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 15, N° 1, 1986, pp. 27-35

SOME REMARKS ON A THEOREM ON BEST APPROXIMATIONS

OLGA HADŽIĆ (Novi Sad)

Abstract. In this paper we give a short proof of the Theorem from [12]. Some generalizations of this theorem in normed, convex metric and topological vector spaces will be obtained.

1. The following result, proved by Ky Fan, is well known [3].

Lemma 1. Let C be a compact convex subset of a normed space E, and let $F:C\to E$ be continuous. Then there exists at least one $y_0\in C$ such that:

$$\|y_0 - F(y_0)\| = \inf_{x \in \mathcal{C}} \|x - F(y_0)\|.$$

The proof of this lemma is given by the method of KKM mapping [2]. Definition 1. Let E be a vector space and X be an arbitrary subset of E. A function $G: X \to 2^E$ is called a Knaster-Kuratowski-Mazurkiewicz map (or simply a KKM-map) provided:

co
$$\{x_1, x_2, \ldots, x_n\} \subseteq \bigcup_{i=1}^n G(x_i)$$

for each finite subset $\{x_1, x_2, \ldots, x_n\}$ of X.

The following theorem is used in the proof of Lemma 1.

THEOREM 1. (Ky Fan) Let E be a topological vector space, $X \subseteq E$ and $G: X \to 2^E$ a KKM mapping. If the sets G(x) are closed, for every $x \in X$, and if there exists $x_0 \in X$ such that $G(x_0)$ is compact then $\bigcap G(x) \neq \emptyset$.

In [12] a generalization of Lemma 1 is proved and, in the proof, the author used Bohnenblust's and Karlin's fixed point theorem for set-valued mappings. Using the method of KKM mapping we shall generalize Prollas result. Let $(E, \| \|)$ be a Banach space, M a convex subset of E and $g: M \to E$. The mapping g is said to be almost affine if [12]:

If the mapping
$$g$$
 is said to be atmost affine it [12]:
$$\|g(t) - y\| \le \lambda \|g(t_1) - y\| + (1 - \lambda) \|g(t_2) - y\|$$
M and all $\lambda \in (0, 1)$ where y is an arbitrary $1 - \lambda = 0$.

for all $t_1, t_2 \in M$ and all $\lambda \in (0, 1)$ where y is an arbitrary element of E and $t = \lambda t_1 + (1 - \lambda)t_2$.

LEMMA 2. If E, M and g are as above and g is almost affine then:

(1)
$$\left\| g\left(\sum_{i=1}^{n} \lambda_{i} t_{i}\right) - y \right\| \leqslant \sum_{i=1}^{n} \lambda_{i} \|g(t_{i}) - y\|$$

for every $n \in N$ and every $\lambda_i \geqslant 0 (i \in \{1, 2, ..., n\}), \sum_{i=1}^n \lambda_i = 1$ every $t_i \in M$ $(i \in \{1, 2, ..., n\})$ and every $y \in E$.

Proof. For n=2 (1) is satisfied by the definition of an almost affine mapping. Suppose that for every $\lambda_i\geqslant 0$ $(i\in\{1,\,2,\,\ldots,\,n-1\})$ such that $\sum\limits_{i=1}^{n-1}\lambda_i=1$ we have:

(2)
$$\left\| g\left(\sum_{i=1}^{n-1} \lambda_i t_i \right) - y \right\| \leqslant \sum_{i=1}^{n-1} \lambda_i \|g(t_i) - y\|$$

for every $t_i \in M$ $(i \in \{1, 2, ..., n-1\})$ and every $y \in E$. Let us prove that (1) holds. Let $x_i \in M$, $\mu_i \geq 0$ $(i \in \{1, 2, ..., n\})$ and $\sum_{i=1}^n \mu_i = 1$. Then $x = \sum_{i=1}^{n-1} \frac{\mu_i}{1 - \mu_i} x_i \in M$ since $\sum_{i=1}^{n-1} \frac{\mu_i}{1 - \mu_i} = 1$ and M is convex. Since g is almost affine we have that (2) implies:

$$\left\| g\left(\sum_{i=1}^{n} \mu_{i} x_{i}\right) - y \right\| = \|g((1 - \mu_{n})x + \mu_{n} x_{n}) - y\| \leq$$

$$\leq (1 - \mu_{n}) \|g(x) - y\| + \|\mu_{n}\| g(x_{n}) - y\| = (1 - \mu_{n}) \left\| g\left(\sum_{i=1}^{n-1} \frac{\mu_{i}}{1 - \mu_{n}} x_{i}\right) - y \right\| +$$

$$+ \|\mu_{n}\| g(x_{n}) - y\| \leq (1 - \mu_{n}) \left[\sum_{i=1}^{n-1} \frac{\mu_{i}}{1 - \mu_{n}} \|g(x_{i}) - y\| \right] + \|\mu_{n}\| g(x_{n}) - y\| =$$

$$= \sum_{i=1}^{n} \|\mu_{i}\| g(x_{i}) - y\|.$$

2. The following theorem is proved in [12] and we shall give a new proof of it using Theorem 1.

THEOREM 2. Let M be a compact and convex non-empty subset of a normed space E and let g be a continuous almost affine selfmap of M onto M. For each continuous mapping $f: M \to E$, there exists some $y_0 \in M$ such that:

such that:
$$\|g(y_0) - f(y_0)\| = \operatorname{dist}\left(f(y_0)\,;\, M\right)$$

where dist $(f(y_0); M) = \inf_{m \in M} ||m - f(y_0)||$.

Proof. The proof is similar to the proof of Lemma 1, given in [2]. Define the mapping $G: M \to 2^E$ in the following way:

(3)
$$G(x) = \{ y | y \in M, \|g(y) - f(y)\| \leq \|g(x) - f(y)\| \}.$$

Since f and g are continuous it follows that G(x) is closed in M and from the compactness of M is follows the compactness of G(x), for every $x \in M$. Let us prove that G is a KKM mapping. If we suppose that G is not a KKM mapping then there exists a finite set $\{x_1, x_2, \ldots, x_n\} \subseteq M$ and an element g from co $\{x_1, x_2, \ldots, x_n\}$ so that $g \notin \bigcap_{i=1}^n G(x_i)$. From (3) we obtain that:

(4)
$$||g(y) - f(y)|| > ||g(x_i) - f(y)||, i \in \{1, 2, ..., n\}.$$

Suppose that $y = \sum_{i=1}^{n} \lambda_i x_i$, $\lambda_i \ge 0 (i \in \{1, 2, ..., n\}) \sum_{i=1}^{n} \lambda_i = 1$. Then (4) implies that:

$$\|g(y) - f(y)\| > \sum_{i=1}^{n} \lambda_i \|g(x_i) - f(y)\|$$

and from Lemma 2 we obtain that:

$$\|g(y) - f(y)\| > \left\| g\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) - f(y) \right\| = \|g(y) - f(y)\|$$

which is a contradiction. So, G is a KKM mapping and this implies that there exists $y_0 \in M$ such that $y_0 \in \bigcap_{x \in M} G(x)$. From (3) it follows that $||g(y_0) - f(y_0)|| = \inf_{x \in M} ||g(x) - f(y_0)||$. Since g(M) = M, we obtain that:

$$||g(y_0) - f(y_0)|| = \text{dist}(f(y_0); M).$$

Using Theorem 2 we can prove the following generalization of Ky Fan fixed point theorem ([2], Theorem 2.2).

Remark. It is obvious that Theorem 2 holds if the mapping g satisfies the condition:

$$\left\|g\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right)-y\right\|\leqslant\max\left\{\left\|g(x_{i})\right\|-y\right\|,\,i\in\{1,\,2,\ldots,\,n\}\right\}$$

for every $x_i \in M$, $\lambda_i \ge 0$ ($i \in \{1, 2, ..., n\}$), $y \in E \sum_{i=1}^n \lambda_i = 1$. A similar condition is introduced by Viorel Sadoveanu in [15].

THEOREM 3. Let M be a compact and convex non-empty set of a normed space E, g a continuous almost affine mapping of M into M and $f: M \to E$ continuous such that for each $m \in M$ with $g(m) \neq f(m)$ the line segment $[g(m), f(m)] = \{\lambda g(m) + (1 - \lambda)f(m), 0 \leq \lambda \leq 1\}$ contains at least two points of M. Then there exists $y_0 \in M$ such that:

$$f(y_0)=f(y_0)$$
 . The definition of the $f(y_0)=f(y_0)$ is the standard form of $f(y_0)$ and $f(y_0)$

Proof. From Theorem 2 it follows that there exists $y_0 \in M$ such that $\|g(y_0) - f(y_0)\| = \text{dist}\,(f(y_0)\,;\,M).$

Suppose that $g(y_0) \neq f(y_0)$ and let $x \in M \cap [g(y_0), f(y_0)] \setminus \{g(y_0)\}$. Then $x = \lambda g(y_0) + (1-\lambda)f(y_0)$ for some $\lambda \in (0,1)$ and so:

$$\begin{split} \|g(y_0) - f(y_0)\| & \leqslant \|\lambda g(y_0) + (1 - \lambda) f(y_0) - f(y_0)\| \\ & = \lambda \|g(y_0) - f(y_0)\| \end{split}$$

which implies that $g(y_0) = f(y_0)$.

We shall give some generalizations of Theorem 2 in metric spaces

with a convex structure [16].

In 1970 Takahashi introduced the notion of a metric space with a convex structure. Some fixed point theorems in such spaces are proved in [5], [11], [13], [17].

Definition 2. Let X be a metric space and I = [0, 1]. A mapping $W: X \times X \times I \rightarrow X$ is said to be a convex structure on X if for all x, $y \in X$ and $\lambda \in I$ we have:

$$d(u, W(x, y, \lambda)) \leq \lambda d(u, x) + (1 - \lambda)d(u, y)$$

for all $u \in X$. Then X, together with a convex structure, is called a convex metric space.

Definition 3. Let X be a convex metric space. A nonempty subset $K \subseteq X$ is convex if and only if: which is a contradiction for a particular

$$W(x, y, \lambda) \in K$$
, for every $(x, y, \lambda) \in X \times X \times [0, 1]$.

The convex hull $co_W(A)$ of a set $A \subseteq X$ is the intersection of all convex sets containing A.

Remark. The mapping W is not continuous in general, however if X is compact that W is continuous. In a Banach space X, W is defined by $W(x, y, \lambda) = \lambda x + (1 - \lambda)y$, for every $x, y \in \hat{X}$ and $\lambda \in I$. If (X, d)is a linear metric space with a translation invariant metric d such that:

$$d(\lambda x + (1 - \lambda)y, 0) \le \lambda d(x, 0) + (1 - \lambda)d(y, 0) (x, y \in X, \lambda \in I)$$

then X is a convex metric space.

In [7] the notion of a pseudo-convex structure is introduced. Definition 4. Let X be a topological space and $h: X \times X \times I \to X$ so that :

(i) $h(x, y, 0) = y, h(x, y, 1) = x, \text{ for every } (x, y) \in X \times X.$

(ii) For every finite subset A of X: 1886 2 20 1 188 $h \operatorname{co}_h(A) \times \operatorname{co}_h(A) \times I$ is continuous ($\operatorname{co}_h(A)$ is defined as $\operatorname{co}_W(A)$, for W=h). Then h is a pseudo-convex structure on X and (X,h) is a pseudoconvex space. It is additioned with breaks encountries in the Al small bearing

It is obvious that a convex structure W on a metric space X satisfies condition (i). If we suppose that a convex metric space (X, d) is such that $co_{W}(A)$ is compact for every finite subset A of X then $W|co_{W}(A) \times co_{W}$ $(A) \times I$ is continuous and W is a pseudo-convex structure in the sense of Definition 4. In [17] Talman introduced the notion of a strong convex structure (SCS) on a metric space. A strong convex structure on X is a continuous functions $K: X \times X \times X \times P \to X$, where $P = \{(t_1, t_2, t_3) \in A \in A \}$ $\in I \times I \times I : t_1 + t_2 + t_3 = 1$, with the property that for each (x_1, x_2, t_3)

of X which satisfies the inequality:

$$d(y, K(x_1, x_2, x_3, t_1, t_2, t_3)) \leq \sum_{k=1}^{3} t_k d(y, x_k)$$

for every $y \in X$. A metric space with a strong convex structure will be called strongly convex. By Theorem 3.1 from Talmans paper [17] it follows that for every finite set A from a strongly convex metric space X, $\operatorname{co}_{\mathcal{W}_K}(A)$ is compact, where W_K is the induced Takahashi convex structure, defined by:

$$W_K(x_1, x_2, t) = K(x_1, x_2, t, 1 - t, 0)$$

where $(x_1, x_2, t) \in X \times X \times I$. From this it follows that (X, W_R) is apsendoconvex space.

Let (X, h) be a pseudo-convex space and $R: X \to 2^X$. The mapping R is said to be an element of $KKM_h(\hat{X})$ [7] if and only if for every finite subset A of X: $\operatorname{co}_h(A) \subseteq \bigcup_{x \in A} R(x).$

$$co_h(A) \subseteq \bigcup_{x \in A} R(x).$$

In [7] the following proposition is proved.

Proposition 1. Let (X, d) be a complete pseudo-convex metric space and $R \in KKM_h(X)$ such that R(x) is 3losed for every $x \in X$. If for

every $\varepsilon > 0$ there exists a finite set A such that: $\varepsilon(\bigcap_{x \in A} R(x)) < \varepsilon(\alpha - the \ Kuratowski \ measure \ of \ noncompactness)$ then $\bigcap_{x \in A} K(x)$ is nonempty and compact.

Definition 5. Let (X, d) be a metric space with a convex structure W, M a non-empty subset of X which is convex and $g: M \rightarrow X$. The mapping g is sa d to se W-almost affine if and only if for every finite set $\{x_1, x_2, \ldots, x_a\} \subseteq M$ and every $z \in X$:

$$y \in co_{W}\{x_{1}, x_{2}, \ldots, x_{n}\} \Rightarrow d(g(y), z) \leqslant \max d(g(x_{i}), z). \ i \in \{1, 2, \ldots, n\}.$$

Using the above Proposition and Definition 5 we can prove the following generalization of Theorem 2.

Theorem 2'. Let M be a compact and convex non-empty subset. of a convex metric space (E, d) with convex structure W, g a continuous W-almost affine mapping of M onto M and $f: M \rightarrow E$ a continuous mapping. If $co_{W}(A)$ is compact, for every finite subset A of E, then there exists $y_{0} \in M$ such that the dams guigger breaks a stay balls agained to

(5)
$$d(g(y_0), f(y_0)) = \text{dist}(f(y_0); M)$$

Proof. As in the proof of Theorem 2 let:

$$G(x) = \{y | y \in M, d(g(y), f(y)) \leq d(g(x), f(y))\}, x \in M$$

Since M is compact it is complete and G(x) is compact, for every $x \in M$. So we have that $\alpha(\bigcap G(x)) = 0$, for every $A \subseteq M$. Since g is W-almost affine, similarly as in Theorem 2, we conclude that $G \in KKM_W(M)$ and

so, using Proposition 1 it follows that $\bigcap G(x) \neq \emptyset$. The rest of the proof is as in Theorem 2.

Corollary. Let E be a strongly convex metric space with a strong convex structure K, M a compact, convex and non-empty subset of E, g a continuous W_{K} -almost affine mapping of M onto M and $f: M \to E$ a continuous mapping. Then there exists $y_0 \in M$ such that (5) is satisfied.

THEOREM 3'. Let M be a compact, convex and non-empty subset of a convex metric space (E, d) with convex structure W, g a continuous W-almost affine mapping of M onto M, $f: M \to E$ a continuous mapping and for each $m \in M$ such that $g(m) \neq f(m)$:

$$\operatorname{card} \left(\{ W(g(m), f(m), \lambda) | \lambda \in [0, 1] \} \cap M \right) \geqslant 2.$$

If $co_W(A)$ is compact for every finite subset A of E then there exists $y_0 \in M$ such that $g(y_0) = f(y_0)$.

Proof. Let $y_0 \in M$ be such that $d(g(y_0), f(y_0)) = \text{dist}(f(y_0); M)$. If $g(y_0) \neq f(y_0)$ then there exists $x \in [W(g(y_0), f(y_0), \lambda) \cap M] \setminus \{g(y_0)\}$ for some $\lambda \in (0, 1)$. Then we have:

$$d(g(y_0), f(y_0)) \leq d(W(g(y_0), f(y_0), \lambda), f(y_0))$$

$$\leq d(g(y_0), f(y_0)) + (1 - \lambda)d(f(y_0), f(y_0)) = \lambda d(g(y_0), f(y_0))$$

which implies that $g(y_0) = f(y_0)$.

Remark. Let (E, d) be a convex metric space with convex structure W, M a closed and convex subset of $E, f: M \to E$ a continuous mapping and q a continuous mapping of M onto M such that:

$$g(W(t_1, t_2, \lambda)) = W(g(t_1), g(t_2), \lambda), \text{ for every } t_1, t_2 \in M$$

and every $\lambda \in [0, 1]$. Using the same method as in Prollas paper [12] we can prove the existence of $y_0 \in M$ such that $d(g(y_0), f(y_0)) = \text{dist}(f(y_0); M)$ if M is such that Fix $(F) \neq \emptyset$ (the set of fixed points of F) for every multivalued mapping $F: M \to 2^M \setminus \emptyset$ which is closed (in the sense of the closed graph) and such that F(x) is closed and convex. To prove this let us define the mapping $F_f: M \to 2^M$ in the following way:

$$F_f(x) = \{m \mid m \in M, d(g(m), f(x)) \leq \frac{1}{2} [d(g(x), f(x)) + \text{dist}(f(x); M)]\}$$

for every $x \in M$.

As in [12] it follows that F_f is a closed mapping such that $F_f(x)$ is closed and non-empty, for every $m \in M$. The convexity of $F_f(x)$ follows from the inequalities:

$$d(g(W(t_1, t_2, \lambda)), f(x)) = d(W(g(t_1), g(t_2), \lambda), f(x))$$

$$\leq \lambda d(g(t_1), f(x)) + (1 - \lambda) d(g(t_2), f(x))$$

 $\leq \frac{1}{2} [d(g(x), f(x)) + \text{dist}(f(x); M)], \text{ for every } t_1, t_2 \in F_f(x), \lambda \in [0, 1].$

Then for $y_0 \in \text{Fix}(F_f)$ it follows that $d(g(y_0), f(y_0)) = \text{dist}(f(y_0); M)$

3. Using the following result proved by Allen in [1] we can prove a generalization of Theorem 2.

REMARKS ON A THEOREM ON BEST APPROXIMATIONS

Proposition 2. Let X be a nonempty, convex set in a topological vector space and $f: X \times X \to \mathbb{R}$ such that:

(a) For each fixed $x \in X$, f(x, y) is a lower semicontinuous functions

of y on X.

(b) For each fixed $y \in X$, f(x, y) is a quasi-concave function of x on X.

(c) $f(x, x) \leq 0$, for all $x \in X$.

(d) X has a nonempty compact convex subset X_0 such that the set $\{y \mid y \in X, \ f(x,y) \leq 0 \ for \ all \ x \in X_0\}$ is compact. Then there exists a point $\hat{y} \in X$ such that $f(x, \hat{y}) \leq 0$, for all $x \in X$, degree $\hat{y} \in X$

THEOREM 4. Let M be a non-empty convex set in a normed vector space $E, h: M \to E$ a continuous mapping, $g: M \to E$ almost affine continuous mapping, Mo a nonempty compact convex subset of M and K a nonempty compact subset of M. If for every $x \in M \setminus K$ there is a point $x \in M_0$ such that nothing the transmission of the property of the state of promounts then there exists $\hat{y} \in K$ so that :

$$||g(x) - h(y)|| < ||g(y) - h(y)||$$

(6)
$$||g(\hat{y}) - h(\hat{y})|| = \min ||g(x) - h(\hat{y})||.$$

Proof. Let $f: M \times M \to R$ be defined in the following way:

$$f(x, y) = \|g(y) - h(y)\| - \|g(x) - h(y)\| \ (x, y \in M).$$

Let us prove that the set

$$\{y | y \in M, f(x, y) \leq 0, \text{ for all } x \in M_0\}$$

is compact. Since for every $y \in M \setminus K$ there exists $x \in M_0$ such that f(x, y) > 0, it follows that we have the following that the following that we have the following that the following the fo

$$A=\{y\,|y\in M, f(x,y)\leqslant 0, ext{ for all }x\in M_0\}\subseteq K.$$
 The set A is closed and as for all

The set A is closed and so from the compactness of K it follows that Ais compact. Let us prove that for each $y \in X$, f(x, y) is a quasi-concave function. Let $t \in R$, $y \in M$, $x_i \in \{x | x \in M$, $f(x, y) > t\}$, $i \in \{1, 2\}$ $u, v \geqslant 0$,

Then $\|g(x_i) - h(y)\| < \|g(y) - h(y)\| - t$, $i \in [\{1, 2\};$

$$\|g(ux_1 + vx_2) - h(y)\| \le u \|g(x_1) - h(y)\| + v \|g(x_2) - h(y)\|$$

 $<\|g(y)-h(y)\|-t$. Hence, all the conditions (a)-(d) are satisfied. If $\hat{y} \in K$ is such that $f(x, \hat{y}) \leq 0$, for all $x \in M$, then (6) is satisfied.

Remark. Theorem 4 can be generalized to topological vector spaces. Let E be a topological vector space, M a convex subset of \hat{E} and $g:M\to E$. The mapping g is said to be almost affine if for every continuous seminorm p on E, every $x_1, x_2 \in M$, every $z \in E$ and every $u, v \geqslant$ $\geqslant 0, u+v=1$ we have the produced the subject of v=0

$$p(g(ux_1 + vx_2) - z) \leq up(g(x_1) - z) + vp(g(x_2) - z).$$

Using this definition Theorem 4 can be generalized in the following way: Let M be a non-empty convex set in a topological vector space $E, h: M \to E$ a continuous mapping, $g: M \to E$ almost affine continuous mapping, M_0 a nonempty compact convex subset of M and K a non-empty compact subset of M. If p is a continuous seminorm on E such that for every $g \in M \setminus K$ there is a point $x \in M_0$ such that p(g(x) - h(y)) < p(g(y) - h(y)) then there exists $\hat{y}_p \in K$ so that:

(7)
$$p(g(\hat{y}_p) - h(\hat{y}_p)) = \min_{x \in M} p(g(x) - h(\hat{y}_p)).$$

If E is a topological vector space then E has sufficiently many continuous linear functionals if for every $x \neq 0$, $x \in E$ there exists a continuous linear functional f such that $f(x) \neq 0$.

Similarly as in [8] we shall prove the following theorem using the

above result on best approximations.

THEOREM 5. Let M be a nonempty, convex subset of a topological vector space E which has sufficiently many continuous linear functionals, $h:M\to E$ a continuous mapping, g an almost affine continuous mapping of M onto M, M_0 a nonempty compact convex subset of M and K a nonempty compact subset of M. Suppose that the following two conditions are satisfied:

(i) If p is a continuous seminorm on E such that p(z) > 0 for every $z \in B = h(K) - g(K)$ then for every $y \in M \setminus K$ there exists $x_p \in M_0$ such

that:

$$p(g(x_p) - h(y)) < p(g(y) - h(y)).$$

(ii) For every $y \in M$, $g(y) \neq h(y)$ implies that there exists $t \in (-1, 1)$ such that $tg(y) + (1 - t)h(y) \in M$.

Then there exists $y_0 \in K$ such that $g(y_0) = h(y_0)$.

Proof. Suppose that $g(y) \neq h(y)$, for every $y \in K$. Then $0 \notin B$ and so for every $x \in B$ there exists a continuous linear functional f_x such that $f_x(x) \neq 0$. Since f_x is continuous there exists an open neighbourhood U_x of $x \in B$ so that $f_x(y) \neq 0$ for every $y \in U_x$. If $B \subseteq \bigcup_{i=1}^n U_{x_i}$, let $p(u) = \sum_{i=1}^n |f_{x_i}(u)|$, for every $u \in E$. Then p(z) > 0, for every $z \in B$. From (i) and (7) it follows that there exists $\hat{y}_p \in K$ so that:

$$0 < p(g(\hat{y}_p) - h(\hat{y}_p)) \leqslant p(g(x) - h(\hat{y}_p)), \text{ for every } x \in M.$$
 Let $t \in (-1, 1)$ be such that $t g(\hat{y}_p) + (1 - t)h(\hat{y}_p) \in M$. Then we have:
$$0 < p(g(\hat{y}_p) - h(\hat{y}_p)) \leqslant p(tg(\hat{y}_p) + (1 - t)h(\hat{y}_p) - h(\hat{y}_p)) = tp(g(\hat{y}_p) - h(\hat{y}_p))$$
 which is a contradiction.

THE WILLIAM TO THE PRINCE SERVE SERVED TO THE WAR THE

1. Allen, G., Variational inequalities, complementarity, and duality theorems, J. Math. Appll., 53 (1977), 1-10.

2. Dugun dji J., and Granas, A., Fixed Point Theory, Vol. 1, Monografie Matematyczne 61, Warszawa, (1982), 209 pp.

- 3. Fan, K., Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234-240.
- 4. Fan, K., Some Properties of Convex Sets Related to Fixed Point Theorems, Math. Ann., 266 (1984), 519-537.
- 5. Hadžić, O., Common fixed point theorems in convex metric spaces, Numerical Methods and Approximations Theory, Novi Sad, September 4-6, 1985, Institute of Mathematics, Novi Sad (1985), 73-82.
- 6. Hadžić O., Fixed Point Theory in Topological Vector Spaces, Institute of Mathematics, Novi Sad (1984), 337 pp.
- 7. Horvath, Ch., Point fixes et coincidences pour les applications multivoques sans convexité, C. R. Acad. Sc. Paris, t. 296, Séric 1 (1983), 403-406.
- 8. Kaczynski, T., Quelques théorèmes de points fixes dans des espaces ayant suffisamment de fonctionnelles linéares, C. R. Acad. Sc. Paris, t. 296, Série I (1983), 873-874.
- 9. Knaster, B., Kuratowski, C., Mazurkiewicz, Ein Beweis des Fixpunklsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132-137.
- Lassonde, M., On the use of KKM mullifunctions in fixed point theory and related topics,
 Math. Anal. Appl., 97 (1983), 151-201.
- 11. Naimpally S. A., Singh, K. L., Whitfield, J. H. M., Common fixed points for nonexpansive and asymptotically nonexpansive mappings, Comm. Math. Univ. Carolinae, 24, 2 (1983), 287-300.
- 12. Prolla, J. B., Fixed-point theorems for set-valued mappings and existence of best approximants, Num. Funct. Anal. and Optimiz., 5(4), (1982-83), 449-455.
- 13. Rhoades, B. E., Singh, K. L., Whitfield, J. H., Fixed points for generalized non-expansive mappings, Comm. Math. Univ. Carolinae, 23, 3 (1982) 443-451.
- 14. Rus, I. A., Principii și aplicații ale teoriei punclului fix, Editura D.cia, Cluj-Napoca, 1979, 261 pp.
- Sadoveanu, V., Coincidence theorems, "Babes-Bolyai" University, Fac. Math. Res. Sem., Seminar on Fixed Point Theory, nr. 3, 1983, 158-159.
- Takahashi, W., A convexity in metric spaces and nonexpansive mappings, I., Kodai Math. Sem. Rep., 29 (1977), 62-70.
- 17. Talman, L., Fixed points for condensing multifunctions in metric spaces with convex structure, Kodal Math. Sem. Rep., 29 (1977), 62-70.

Received 20.IX.1985

Received 20.1X.1985

University of Novi Sad
Faculty of Science
Institute of Mathematics
21000 NOVI SAD
Dr Ilije Duričića 4
YUGOSLAVIA