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Abstract. In this paper we give a short proof of the Theorem trom
[12]. Some generalizations of this theorem in normed, convex melbric and

topological veetor spaces will he obtained.

I. The following result, proved by Ky Fan, is well known [3].

LEMMA 1. Tet ¢ be a compact convex subset of a normed space U,
and let F: 0 — B be continuous. Then there exists at least one y,e C such
that

o — IM(yy) || = 12{ lo — F'(y,)].

The proof of this lemma iy given by the method of KKM mapping [2].

Definition 1. Let B be a vector space _and X be an arbitrary subset of H.
4 function G:X 2% is called « Hnaster- Kuratowski- Mazurkiewics
map (or simply « KKM-map) provided :

ki
o {&y, sy, ..y m,} S U Glay)
i1

Jor each  finite subsel {my, 25,. .., 2,} of X.
The following theorem is used in the proof of Lemma 1.

Tmioreyd 1. (Ky Fan) ZLet I be a lopological vector space, X < B
and G : X—2% q KKM mapping. If the sets G(w) are closed, for every x e X,
and if there exists xye X such that G( Ty) 8 compact then ﬂ\G(m) #0.

YeX

In [12] a generalization of Lemma 1 is proved and, in the proot,
the author used Bohmenblust’s and Karlin’stfixed point theoren for set-
valued mappings, Using the method of KKM mapping we shall generalize
Prollas result. Let (I, || ||) be a Banach space, M a convex subset of X
and g: M — . The mapping ¢ is said to be almost affine if [12]:

ho(t) — w1l < lg(t) — yll + (1 — 2){lg(t,) — o]

for all ¢, t,e M and all xe (0, 1) where y is an arbitrary element of B
and t = it =+ (1 — n),.
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»

LEMMA 2. If B, M and g are as above and g s almost affine then :

0 Jo (3 14) -

<Y Nllg@) —wli
i=1

n
Jor every ne N and every 2 = 0(ie {1,2,...,n}), Y, N=1 every t,e M
i=1

(ie {1,2,...,n}) and every ye€ .

Proof. For n = 2 (1) is satisfied by the definition of an almost affine
mapping. Suppose that for every 2, > 0 (ie {1, 2, ..., n—1}) such that

n—1

¥ A =1 we have:

i=1
n—1 n—1

(@) Jo (5 7)o | < S nlotr —
i=1 1=1

for every t;e M (i€ {1,2, ..., n—1}) and every y € I. Let us prove that.
(1) holds. Let z;e M, p;, =0 (1€ {1,2,...,n}) and E' u; =1. Then ==

1
n—1 Ws n—1 Wi . . . -
=V — @€ M since ¥, ———=1and M is convex. Since g is.
il — i—1 — U

almost affine we have that (2) implies :

‘7(21 P—imz‘,)‘?/

=1

= [Jg((1 — )& + w.) — ¥l <

N

| n—1 '
(1= ) 19(&) — g1l tta (@) — 1l = (L= ) “g (z ' x) —y“ +

ol — Y

n—I1

F gz —yll < (1 —m[x . —y||]+ wnllglan) — gl =
i=1 — Y
— Y wlig@) — vl
i=1

2. The following theorem is proved in [12] and we shall give a new
proof of it using Theorem 1.

THEOREM 2. Let M be a compact and convex non-empty subset
of @ normed space I and let g be a continuous almost affine selfmap of M
onto M. For each continuous mapping f: M — B, there exists some ¥, €
such that :

lo(ye) —F(yo) | = st (J(go) ; M)
where dist (f(y) 5 M) = int o — (gl

Proof. The proof is similar to the proof of Lemma 1, given in [2].
Define the mapping G: M — 2% in the following way :

(3) G(w) = {ylye M, llgly) —fNI < llglw) — @)}
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Since f and g are continuous it follows that G() is closed in M and from
the compactness of M is follows the compactness of G(x), for every xe M.
Let us prove that @ is a KKM mapping. If we suppose that G is not a
KKM mapping then there exists a finite set {w, Ty ooy T} S M and an

element y from co {@;, ,,..., x,} so that y& U G(2;). From (3) we obtain
i=1
that:
(4) ) =IO > llglw) —f@)ll i€ {1,2,...,n).
Suppose that y= % A, &, 2 0(ie {1,2,..., n}) f‘l P L
=1

=1

Then (4) implies that :

i

) <> Y, o) —Ff)ll

J
i=1

and from Lemma 2 we obtain that -

lgy) — fpll > ,

o (30 ) ~1) | = latw) st

t=1

which is a contradiction. So, @is a KKM mapping and this implies that
there exists g, € M such that y,e (M G(z). From (3) it follows that {lg(y,) —
YEM

re
— [y | = Int |lg(w) — f(y,) ||l Sinee g(M) = M, we obtain that :
. veM

oty —J(ya)ll = dist (f(yo) ; M).

Usirg Theorem 2 we can prove the following generalization of Ky
Fan fixed point theorem ([2], Theorem 2.2).

Lemark. 1t is obvious that Theorem 2 holds if the mapping ¢ satis-
fies the condition :

|
i

/ n
(% 2 ) =l < e (o) — gl ie (1,2, )
| =1

n
for every w.e M, N> O(ie {1,2,...,0n)),yec B Y, % = 1. A similar con-
i=1

dition is introduced by Viorel Sadoveanu in [15].

TuEOREM 3. Let M be a compact and convex non-empty set of @
normed space By, g a continwous almost affine mapping of M into M and

J: M — B continwous such that jor each me M with g(m) #f(m) the line

segment [g(m), f(m)] = {rg(m) + (1 — Nf(m), 0 < & < 1) contains at least
two points of M. Then there ewists y,e M such that :

9y0) = J(ya)-

Proof. From Theorem 2 it follows that there exists y,e M such
that llg(ys) —f(o)ll = dist (f(yo) ; ).
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Suppose that 9(ie) #f(yo) and let ze M Lg(y0), .f(.’)"ﬂ)]\{ﬂ(?fﬂ)}' Then
@ = M(¥y) + (1 — 2)f(y,) for some »e (0,1) and so :

'|ff(."fu) _r"(?fn} III = “ lﬁ(}'/u) '|" (l P )‘)‘f(]”ﬂ) "_.f('ffn) “
= Allg(yo) —f(yo)

which implies that g(y,) = [(5,).

We shall give some generalizations of Theorem 2 in metvic gpaces
with a convex strueture [16].

In 1970 Takahashi introduced the notion of a metrie space with a
convex structure. Some fixed point theorems in such spaces are proved
in [57, [1L], [18]; [17].

Definition 2. Let X be a metric spuce and I = [0, 1. A mapping
W:X x X xI-X issaid to be @ conver structure on X i for all w,
ye X and xe I we huve :

dCuty Wi, g, 1)) < 2w, @) + (1= N)d(a, y)

Jor all we X. Then X, together with a conver structire, is called o eonven
metrie space.

Definition 3. ‘Let X be a conver melyic space. A nonemply subset
K =X is convex if and only if :

Wiw, y, 1) e K, for every (a9, \)e X'x X x [0, 1].

The conver hull cop(A) of o set A < X is the intersection of all convex sebs
containing A.

Lemark. The mapping 1 is not continuous in general, however if
A s ecompacet that )W is eontinuous. In a Banach space X, W ois defined
by W, y, 2) = da + (1 — Ay, for every a, ye X and Ae I. If (X, d)
is a linear metric space with a translation invariant metric d such that :

d(he + (1 — Ny, 0) < M@, 0) + (1 — Nd(y, 0) (@, ye X, xe I)

then U is a convex metrie space.

In [7] the noticn of a prendo-convex strueture is introduced. )

Dejenition 4. Let X be a topological space and h+ X x X % I — X
so that _

(0) B{wy 4y 0) = o, Bty 9, 1) =, for every (x, y)e X x X,

(¢) For every finite subset A of X :
hleoy(A) Xeo(A) xT is continuous (eo, (A) is defined as coy (A), for
W= h). Then h is a pseudo-convex structure on X and (X, ) ds a psendo-
conver space. L .

It is obvious that a convex structure W on a metric space X satis-
Ties condition (7). It we suppose that a convex metrie space (X, d) is such
that coy(d) is compaet for every finite subset 4 of X then Wieow(4) xcoy
(4) XTI i eontinuous and 1 is a pseudo-convex structure in the sense of
Definition 4. In [17] Talman infroduced the notion of strong convex
structure (SUS) on a metric space. A strong convew structure on X is g
continuous functiony K: X' x X' x X x P — X, where P = {1y, 15, 15) €
EIXIXIity by ty =1}, with the property that for each {yy v
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[}

gy Ty by 1y) € X x A x Xx Pl 25 %50 8, 15 ts) is the unique point
of .\ which satisfies the Inequality :

3
d(yy Ky, 2, Lgy by Ly 15)) < Y, Led(y, @)
P

for every ye X. A metric space with a strong eonvex structure will be
called strongly convew. By Theorem 3.1 from Talmans Pbaper [17] it follows
that for every finite set A {from a strongly convex metric space X,
cow (A) I8 compaet, where Wy is the induced Takahashi corvex strue-
wure, defined by :
Wity gy £) = K(zyy a5y 2, 1 —t,.0)

where (2, @, 1) e X X X x I. From this it follows that (X, W &) 18 apsendo-
convex space.

_Let (X, R) beoa pieudo-eonvex space and B : I — 2%, Phe mapping
L2 is said to be wn element, of KEKM, (LX) [7] if and only it for every finite
subset 4 of %

cop(d) = ULR(z).

g =)
In [7] the following proposition is proved.

Prorosirion 1. Let (X, d) be « complete pseudo-conves melric
space and e WRM(X) such that L) is Slosed for every we X. I | Jfor
cvery € = 0 theve ewists a finite set A suel that : ' '
o:(QIf(:r:)J_ < ela—the Kuratowski measure of  noncompaciness)

LB
thenw (MYH() s ronemply and  compact.
1e4 '

o Definition 5. Let (X, q) e a metric space with a convew structure W
Mo won-empty  subsel of X which is convex and g: M-+ X, The map-
png g s sadto re W-almost affine tf and only if for every finile set
{2 Ly .y w ) €M wnd every ze X .

Y€ copfayy wy .., ap=d{g(y)y ) < max dlgl); 2). 1€ {1,2,..., n}.

Using the above Proposition and Definition 5 Wwe can prove the following
gencralization of Theorem 2. |

THEGREM 2. Let M be a compact and convex non-empty subsel
of @ convex melrie space (19, d) with conver structure W, ¢ a continuous
Wealmost affine mapping of M onto M and f: M— E a continyous Mapping.
If (;ul;}( A?;) is compact, for every fimite subsei A of B, then theve ewists yo€ M
sueh that: -

(5) U gyo)y o)) = dist (f(y,) ; M)
Proof. As in the proof of Theorem 2 let .
Ga) = {ylye M, dg(y), f(y)) sd(g(a), f(y)}, xe A

%u.l(',u M 15 compact it is complete and G(w) iy compact, for every xe M.
So we have that ol (MG(2)) = G, for every Ac M. Since g is W-almost
=] :

2 A Tk
affine, similarly as in Thcm'w_n 2, we conclude that GE.K]"{M],-(M) and
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80, using Proposition 11t follows that (MG(z) #0. The rest of the proot is
YE M
as in Theorem 2.

CorOLLARY. Let E be a strongly convex metric space with o strong
convew structure I, M « compact, convex and non-empty subset of B, g &
continuous W-almost affine mapping of M onto M and f: M — B a con-
tinuous mapping. Then there exists y,e M such that (5) is salisfied.

THEOREM 3'. Let M be a compact, convex and non-empty subset
of a comvex metric space (B, d) with convex structure W, g & continuous
W-almost affine mapping of M onio M, f: M — B a continous mapping
and for each me M such that g(m) # f(m) :

card ({W(g(m), f(m), x)Ixne [0, 1} n M) > 2.

IJ cow(d) is compact jor every finite subset A of I then there ewists Yo M
swuch that gye) = f(Yo).

Proof. Let y,e M be such that d(g(y,), f(y,)) = dist (f(yo) 3 M.
I g(yo) #(yo) then there exists e [W(glyo) [(5o)y 1) M\ {gly,)} for
gome x€ (0,1). Then we have :

ACg(0)y f(76)) < AW (glwo)y f(Wo)s M (o))
< dg(yo)s f(wo)) 4 (1 — NAS o)y J(yo)) = 2dg(ye)s f(110))

which implies that g(y,) = f(y,).

Remark. Let (E, d) be a convex metric space with convex structure
W, M a closed and convex subset of 7, f : M = E a continuous mapping
and g a continuous mapping of M onto M such that :

gty 15, 2)) = W(y(ty), g(ty), 1), for every bytae M

and every Ae [0, 1]. Using the same method as in Prollas paper [12] we
can prove the existence of y,€ M such that d(g(y,), f(y,)) = dist (f(y,) ; M)
it M is such that Fix () 20 (the set of fixed points of #) for every multi-
valued mapping F: M — 2"\ © which is closed (in the sense of the closed
graph) and such that ¥ (z) is closed and convex. To prove this let us define
the mapping Fy: M — 2 in the following way :

: 1 ;
Ei{@) = {m|me M, dlgm), f(2)) < — [dlgla), J@) + st (f(a); I))
for every xze M. ]
As in [12] it follows that ¥, is a closed mapping such that F(w) is
closed and non-empty, for every me M. The convexity of I {x) follows
from the inequalities :
(Z(_()(Wr(tl, tay W), f(@)) = d(W (g(4), g(ts), 0, ()
< Mlg(d), f(@) + (1 — Ndlg(ty), f(@))
1
< - [dlgle)y f() + dist (J(@) 5 M), for every b, tpe Fa), Ae [0, 1],

Then for y,e Fix (F,) it follows that d(gly,), f(ye)) = dist (f(y,) ; M)
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3. U_smg the following resulf proved by Allen in [1] we can prove
a generalization of Theorem 9.

Prorosition 2. Let X pe o nonemply, convexr set
vector, space and f: X x X = R such that g

(a) _Ij”m' each fizved xe X, f(x, Y) s a lower semiconlinuous Junctions
of y on Y.

(&) For each fized y e X, [0, 9) is a quasi-concar ]

. Y e X, fla, y) i asi-concove function of x on X,

() f(ilf, ) <0, for all ze X. / d

(d) X has a nonempty compact convexr subset X, such that the set
{_?;lee A [loyy) <0 for al we X} is compact. Then there exists a
pount ye X such thai f(w, ) < 0, for all ze X.

m a topological

‘ Tﬁl’EO_l’iEI\-[ 4. 1aneé! M be a non-empty convezx set in a normed vector
Spuce TN/ M — B a continuous mapping, g: M — B almost affine con-
tinwows mapping, M, a nonempty compact conver subsel of M and I a nonem-

3;(;:;5 compact subset of M. If for every w€ MNI theve is a point xe M o Such
vt : :

lg(@) — k() | < flgly) — h(y) |
then there exists e K so that

(6) lg(§) — B(@) 1| = min flg(a) = R(7)].

Proof. Tiet f: M x M — R be defined in the following way :

J@y y) = llg(y) — ) || — |lg() —h(ll (=, ye M).
Let us prove that the set

{?/1.7/ = ﬂ[’f(m’ ¥) < 0, for all ae ﬂia}

is compact. Since for every ye MNJK there exists we 3. suel th
S(&,ly) > 0, it follows that N o e v

A = {ylye i, {(x, ¥) <0, for all xe MK,

The set 4 is closed and so from the compactness of & it follows that A

%S cotl;npaotf pet us prove that for each ye X, Ha, y) is & quasi-concave

.uuic;()i 1.Jet t€ Ryye M, g¢ {wlee M, f(z, ) > i {1, 2} u, 0 > 0,

The APy €] |

ol e lgze) — ) | < llgly) — h(y)ll —1, 1e1{1, 2 ; ’
lg(uwy + vw,) — Wy) || < wlg(a) — R I+ wllglwyy — h(y) |

< ]lg(y/?jll(g/)l.] — 1. Hence? all the conditions (@) —(d) are satisfied.

It ¢ € K is such that Slay, ) <0, for all ge M, then (6) is satisfied.

_ {Ee-m.m'}'.:. Tlleornn_l 4 can be generalized to topological vector spaces.

let H l-’“f a topnlnglcm vector space, M a convex subset of K and

gl:] M;—» K. The Itlal-ppl}}!g g 18 said to be almost affine if for every conti-
ous seminorm p on H, every z, z,e M every z€ 1 anc

2 0u4v=1 we h:-wé : oo | 7 e M

Dlglusy + o) —2) < uplg(o,) —2) 4 vp(g(@s) — ).

3 —c. 2176
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alized in the following way :
Teing this definition Theorem 4 can b{e ;;:illc;{(lr;l;z:;}d;l;. 1}:;(’?]}1}:\; : ﬁf VAL ¢
A 0 De onvex set in AT PR =
s o @ mon-emply convew sel m @ tog gass} vy i i M
:r';r :.oi::(.{:’ar‘il;"f,\{;f(’?n.rrj}fie'fr}{',’, g: M — B (r_-r'm;(;stﬂg f _)‘-mf} }gﬁi{mrﬂﬁwﬂgﬁﬁp cof;;jm,(,%
4 MONCMY ompacl convex subset of M and i @ ROL oy, Sl
& nn‘m‘lﬂ-})fj’{f ('0}1;?; is a continwous seminorm on B such Ha.(at(?j)m_ (_;}w )‘,;
mebi‘%;!\% ﬁé(f%‘@ is @ point we M, such that plg(@) — h(y)) <9y 1
Yy e here 18 e :
then there ewists y,€ I so that: s
7 7.)) = min p(g(x) — Myy))-
(7) plgl§y) — 1(y,) = mit p(g(2) »
ficiently man
If B is a topological vector space then B hEasthsgiﬁggsr}t%ga élcl)nti}f
continuous linear funetionals if for exjr((arj)f ;0#0, xE ere e
incar functional f such that f(z ; R T i
lluouSsl_ln(;i)ruiﬂi\ul};;‘ﬁli%n’Eé]fwe shall prove the following theorem using the
Imuarly i i
above result on best approximations.

M 5. Lel M be a nonemply, convew subset Uj. * iﬁi?f::ﬁf&f

THEOREE phich has sufficiently many continuous linew Ju it f'u'-n.r:r

Lockol FPACE wt"nu/ou-‘s mapping, ¢ an almost affine co "'t?"”umw_ ﬂf;;? ty

g = e ;; " nonempty compact conven subset of M and I a ”'{)-{‘.@f'«fﬁzl'.

of M onto M, M, (.EM i pose that the following two conditions a.-}z(?]sa J-L'p-.a;'g;r-r.

COMYPACERsbAGE 'Ofa r"ontf.-'.g]mou.s seminorm on I such that p(z) > Ef;r; Quci

c B(II') III{KP) % g(ll(J then for every ye MN\JK there ewists 2, € 0tq

. pg(a,) — Wy) < plgly) — W)

(it) Tor every ye M, g(y) #hy) implies that there cwists t€ (
such that ty(y) + (L — Oh(y) e M.
Then there exists y,€ I such that g(y,) = h(yo)- ‘ i
Proof. Suppose that g(y) #y), for every y € K. Then 0& L5 and x

O ve 5 A= J R 8 i e |'| .H“ ‘ i . .11011 1)11'(]11}
gl . EA 8 T

"

i -, let plu :5‘|fxi(10)[,
we B so that f.(y) #0 for every y € U,. It BEJ U, let p(u) )

i=1 =

3. Fr ; ' ; follows
for every we H. Then p(z) > 0, for every =z € B. From (¢) and (7) it fo
that there exists 9, € K so that:

y for y xe M.
0 < plg(7,) — M) < plyg(w) — k(g,)), for every o€ 1
=3 . 1 == 1 on we have:
Let te (—1, 1) be such that t ¢(#,) + (1 Oy, e M. Tht,n/‘ we o
— 4 (11— 7.) —My,) = — iy,
0 < p(gld,) — M(F)) < pUgFa) + (L= Oh(§y) — W §s) = 1p(g(Y0) — 1Y,

which is a contradiction.

1, 11)
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